• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of the Genetic Diversity of Trachemys dorbigni and Phrynops hilarii

    2015-10-31 10:56:51GUIDETTIBrendaYamileSIROSKIPabloArielandAMAVETPatriciaSusana
    Asian Herpetological Research 2015年3期

    GUIDETTI Brenda Yamile, SIROSKI Pablo Ariel and AMAVET Patricia Susana

    Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina

    Characterization of the Genetic Diversity of Trachemys dorbigni and Phrynops hilarii

    GUIDETTI Brenda Yamile*, SIROSKI Pablo Ariel and AMAVET Patricia Susana

    Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina

    The utilization of RAPD and ISSR molecular markers is proposed to initiate studies of genetic variability in Phrynops hilarii (Chelidae) and Trachemys dorbigni (Emydidae), two species of fresh water turtles distributed in South America. Three primers of RAPD and four of ISSR were selected and the amplified products of these markers were evaluated by electrophoretic runs in agarose and polyacrylamide gels. The levels of heterozygosity, Shannon index and different allele numbers were slightly higher in P. hilarii for both types of markers. Levels of polymorphism were also higher in P. hilarii than T. dorbigni and both were elevated compared to those recorded for other species. The fact that similar results were obtained with both types of markers for all estimates of diversity highlights the usefulness and validity of the RAPD technique. The molecular markers used were found potentially useful for analysing future temporal and spatial distribution of genetic diversity in both species, expanding scales work.

    fresh water turtles, variability, molecular markers, RAPD, ISSR

    1. Introduction

    According to the method of Hoffmann et al. (2010), between 48% and 54% of turtle species in the world are threatened or endangered. Longevity and overlapping generations that characterize the group mask the problem, with severe demographic effects which are not yet observable likely to take years or decades to manifest (Fagundes et al., 2010). Some turtles may exhibit little plasticity in habitat use, in freshwater turtles this can be particularly serious because they generally require more than one environment throughout the life cycle. Despite this, at least in Argentina, those species receive the least protection within the group (Ubeda and Grigera, 2003). Trachemys dorbigni (Emydidae) and Phrynops hilarii (Chelidae) are freshwater turtles widely distributed in South America. Neither of the two species are considered endangered (CITES, 2011; IUCN, 2011). Phrynops hilarii is well represented across its vast distribution, even more, the area of the species has expanded inrecent times favoured by anthropochory, showing the ability to adapt to highly modified habitats (Richard, 1999). On the other hand, according to the evaluation index for tetrapod fauna proposed by Reca et al. (1994), T. dorbigni can be considered a vulnerable species and there are many reasons for the current situation to be aggravated: the species is being affected by the advance of the agricultural frontier, is capable of hybridizing with native species (Lavilla et al., 2000; Richard, 1999), and also suffers a severe pressure through egg and juvenile capture for illegal trafficing that supplies pet markets and has high levels of exploitation for consumption of meat and meat products (Bujes, 2010; Carreira et al., 2007; Fagundes et al., 2010). What is more, both species live in environments with polluted waterways, where there also have been established hydroelectric stems (Bujes, 2010). Ecologists have also started to become aware of the many deaths resulting from accidents on roads and paths (Bager et al., 2007; Bujes, 2010).

    The necessity to update the information referring to population parameters, current distribution and conservation status of these species motivates the realization of this study. Mostly, T. dorbigni genetic studies are related to karyotypic analysis and cytogenetictechniques (Martinez et al., 2009; Salas, 2011) and as far as is known, there are no genetic studies for P. hilarii. This lack of antecedents was considered sufficient to initiate studies of the genetic variability by comparing the inter and intra specific diversity. It was proposed to employ the methodology of two molecular DNA markers: RAPD (random amplified polymorphic DNA) and ISSR (intersimple sequence repeats ), that have been used successfully in other species of aquatic turtles (Duan et al., 2011; Zheng et al., 2008; Zhu et al., 2008; Zhu, 2011). Both techniques are practical, simple, easily reproducible and cheap, which allows researchers to obtain results quickly and without destructive or highly invasive sampling for a large number of individuals (Rentaria Alcántara, 2007; Rocha and Gasca, 2007; Zietkiewicz et al., 1994). Considering broader scales of work, such methodologies allowed one to obtain a large amount of genetic information for analysing the temporal and spatial distribution of genetic diversity of species, which is the foundation for planning accurate actions for species conservation (Alacs et al., 2007; Ma et al., 2007b; Souza et al., 2002; Zhu et al., 2005). These molecular markers can also be useful to determine the origin of organisms extracted from their habitat, to reintroduce them at appropriate locations (Rocha and Gasca, 2007) or guide the management of captive populations in reserves, zoos and urban areas (Amavet et al., 2009).

    2. Methods

    2.1 Sample collection and DNA extraction Twenty six (26) blood samples were obtained from adult specimens (Phrynops hilarii, N = 13 and Trachemys dorbigni, N = 13) from the Applied Zoology Laboratory: Vertebrates (MASPyMA / FHUC UNL) according to Olson’s technique (Olson et al., 1975). All the individuals used in this experiment were rescued during seizure operations and the original geographical location of each specimen is unknown. DNA extraction was performed using the technique of extraction of Murray and Thompson (1980) from blood samples diluted (1:10) in a lysis buffer (Longmire et al., 1988) for long-term blood storage at room temperature according to White and Densmore (1992). The extractions for each individual were stored at 4 ± 2°C until to test the quality and quantity of extracted DNA by electrophoresis using 0.8% agarose gels, runs at 120 V in 0.5× TBE (Tris/Borate/EDTA) buffer, stained with Gel Green (Biotium) and analysed in dark light transilluminator (Dark Reader). DNA samples were diluted with H2O 1:4, 1:3 and mostly 1:2.

    2.2 Amplifcation of polymorphic regions with primers RAPD and ISSR Three samples for each species were used to screen a set of 10 primers from Promega? (B050-10 and B051-10) for RAPD and 13 primers from Operon? series for ISSR, to test amplification profiles for readability and reproducibility. Seven primers that showed the best resolution and reproducible bands were selected to obtain RAPD and ISSR profiles for all individuals, and three repeatability test samples were included in each amplification reaction.

    The RAPD amplification reactions were carried out at first in accordance to the methodology of Bardakci and Skibinski (1994), in a final volume of 15 μl, containing 1.5 μl of buffer, 1.5 μl of dATP, dTTP, dGTP and dCTP solution (200 mM), 0.75 μl of the selected primer, 1.5 μl of MgCl2, 0.15 μl of Taq DNA polymerase (PB-L?)and 50 ng of genomic DNA. Occasionally, the amounts of reactants were adjusted, such as varying the amount of primer from 0.75-1 μl and then from 1-1.2 μl. The amount of Taq DNA polymerase (PB-L?) must also be increased from 0.15-0.2 μl, but returned to settle in 0.15 μl when it was decided to use the brand Invitrogen?. Amplifications were performed in a thermocycler (MPI?)with a program of 40 cycles of 1 min at 94°C, 1 min at 40°C and 1 min at 72°C, with an initial denaturation of 94°C for 4 minutes and a final extension at 72°C for 10 minutes.

    To amplify ISSR regions, reactions were performed to a final volume of 15 μl containing 1.5 μl buffer, 1 μl dATP , dTTP , dGTP and dCTP solution (200 mM),1 μl of the selected primer, 1 μl of MgCl2, 0.15 μl of Taq DNA polymerase (PB-L?) and 50 ng of genomic DNA. Amplifications were performed in a thermocycler (MPI?) with a program of 40 cycles of 1 min at 94°C, 1 min at annealing temperature according to the selected primer and 1 min at 72°C , with an initial denaturation of 94°C for 4 minutes and a final extension at 72°C for 10 minutes.

    2.3 Analysis of markers For the selection of primers, the PCR products were visualized and analyzed by electrophoretic runs in 2% agarose gels, at 120–130 V in 0.5× TBE buffer. For RAPD: 3 primers Series A were selected (Table 1) and the PCR products corresponding to these primers were analyzed by vertical electrophoresis runs performed in 4% polyacrylamide gels, of 33 cm × 39 cm, run at 220 V and 75 W in 0.5× TBE buffer for 2:30 to 3 hours, with a 30 minutes pre-electrophoretic run. Gel staining was performed with silver nitrate, using the methodology of Bassam et al. (1991) described by Promega?. In all electrophoresis runs, DNA ladders (10bp from Invitrogen? and 100 bp from PB-L?) were used to estimate the size of the amplified fragments. For ISSR:4 primers were selected (Table 1) and the PCR products were analyzed by electrophoresis runs performed in 6% non-denaturing polyacrylamide gels, of 10 cm × 10 cm, at 120V–130V in 0.1× TBE buffer. Pre-electrophoretic run was performed during 20 minutes, and finally the gel was electrophoresed for period between 2 and 2:40 hours. The staining was performed with silver nitrate, using the methodology of Herring et al. (1982). A molecular weight marker (O’RangeRuler?20 bp DNA Ladder) was used in all electrophoresis runs to estimate the size of the amplified fragments. All gels were observed with background light and photographed with an Olympus? C- 5000 Zoom 5.0 Megapixel digital camera.

    2.4 Data Analysis The bands are interpreted as present if they can be clearly detected, whether they had more or less intensity. Through the observation of all obtained bands in the gels, we built binary matrices that were analyzed using the program GenAlEx (version 6.41) (Peakall and Smouse, 2006).

    Measures of genetic variability thrown by these program for each species were: original (1972) and unbiased Nei genetic distance (1978), percentage of polymorphic loci = number of polymorphic loci/total number of loci analyzed, He = heterozygosity expected (on HW equilibrium) = 2 * p * q; UHE = unbiased heterozygosity (Nei) = (2N / (2N-1)) * I ; I = Shannon’s information index = –1 * (p * Ln (p) + q * Ln (q)) (used in ecology to measure the specific biodiversity and considered robust for dominant markers when heterozygous loci cannot be detect); Na = Number of alleles and Ne = number of effective alleles = 1 / (p2+ q2). Keep in mind that for diploid binary data, Hardy-Weinberg equilibrium is assumed: q = (1 – frequency band) 0.5 and p = 1 – q.

    3. Results

    The total number of loci (bands) analyzed with the 3 RAPD primers was 122, with an average of 40.66 per primer. Of the 122 bands, 104 were amplified in individuals of P. hilarii and 102 in individuals of T. dorbigni, all at a higher frequency than 5%. Numerous bands that appear only in one species were observed (20 exclusive bands of P. hilarii and 18 bands in T. dorbigni), but these bands were not recorded in all individuals of the species. The total number of amplified fragments was 866, considering 439 fragments in P. hilarii and 427 for T. dorbigni, with an average number of fragments per individual of 33.77 for P. hilarii and 32.85 for T. dorbigni. The size of the PCR products ranged from 352 bp to about 2419 bp.

    The total number of loci (bands) analyzed with the 4 ISSR primers was 117, with an average of 29.25 per primer. Of the 117 bands, 106 amplified in individuals of P. hilarii and 86 in individuals of T. dorbigni, all at a higher frequency than 5%. None of the 31 exclusive bands of P. hilarii found occurred in all individuals, on average these exclusive bands appeared only in 3.48 individuals. In T. dorbigni, only one of 11 unique bands observed is presented in all sampled individuals (average exclusive bands appear in 5.09 individuals). The total number of fragments amplified with 4 primers of ISSR was 1040, considering 470 fragments for P. hilarii and 570 for T. dorbigni. The average number of fragments per individual was 36.15 for P. hilarii and 43.85 for T. dorbigni. The descriptive statistics values (percentage of polymorphic loci, genetic distance, expected heterozygosity, unbiased heterozygosity, Shannon index, different alleles and effective alleles) obtained in both species by analysis of RAPD and ISSR markers employing software GenAlEx are summarized in Tables 2 and 3.

    The percentage of polymorphic loci obtained in this study with RAPD were similar for both species (84.43% for Phrynops hilarii and 82.79% for Trachemys dorbigni) and could be considered high when compared to those found for other species studied with these types of molecular markers (Duan et al., 2011; Ma et al., 2007a; Zheng et al., 2008; Zhu, 2011). The estimated percentage of polymorphic loci based on ISSR was higher in P. hilarii (89.74%) than in T. dorbigni (69.23%). These percentages reaffirm the idea that levels of polymorphism within Chelonia are not as low as previously thought (Souza et al., 2002). It is also true that the estimates of polymorphism could be sensitive to a certain level of subjectivity during the counting of the bands, and somehow this would limit the possibility of making comparisons between different studies.

    Levels of expected heterozygosity (He) and unbiased heterozygosity (UHE) were similar in both species, slightly higher in P. hilarii when compared to T. dorbigni for RAPD and ISSR markers. The values from the Shannon information index (I) (0.348 ± 0.021 in P. hilarii and 0.327 ± 0.020 in T. dorbigni with RAPD, and 0.379 ± 0.019 in P. hilarii and 0.345 ± 0.026 in T. dorbigni with ISSR) and the number of different alleles (1.697 ± 0.065 and 1.664 ± 0.067 with RAPD and 1.803 ± 0.055 and 1.427 ± 0.082 with ISSR for P. hilarii and T. dorbigni, respectively) are also similar in both species, barelyhigher in P. hilarii than T. dorbigni for both marker types. Only with ISSR the number of effective alleles per locus is somewhat higher in T. dorbigni (1.407 ± 0.037, in contrast with 1.370 ± 0.027 for P. hilarii). The values of the descriptive statistics obtained with RAPD and ISSR molecular markers for P. hilarii are higher in all cases comparing to those obtained for T. dorbigni, suggesting more genetic variability in this species.

    Table 1 RAPD (Promega?) and ISSR (Operon?) primers selected to perform PCR amplifications.

    Table 2 Descriptive statistics obtained with RAPD primers according to GenAlEx software.

    Table 3 Descriptive statistics obtained with ISSR primers according to GenAlEx software.

    4. Discussion

    Molecular methodologies used in this study proved to be effective for an initial screening of the genetic variability of these species. We were able to observe a higher number of variable markers than other similar studies in turtles. The total number of loci (bands) analyzed was 117 with the four ISSR primers and 122 with the 3 RAPD primers. In Semyenova et al. (2004) the five RAPD primers allowed amplification of a total pool containing 180 fragments, while Zhu et al. (2008) scored a total of 20 population-specific RAPD fragments from 16 primers. In Zheng et al. (2008) 8 fragments were obtained with each of the 12 RAPD primers. This would be due in part to the use of polyacrylamide gels, which provide greater resolution and depth analysis. These methods also allow working with small amounts of DNA and it is not necessary to have prior knowledge of their sequence, furthermore, nonradioactive probes are required in the process (Grosberg et al., 1996; Lynch and Milligan, 1994; Rocha and Gasca, 2007).

    In both species for RAPD and ISSR, the numbers of different alleles were higher than the effective numbers of alleles, which might suppose that the presence of low frequency alleles may influence the presenceof heterozygous, causing a decrease in the genetic variability.

    The RAPD genetic distance calculated between individuals of the same species showed peak (0.140–0.680 for P. hilarii; 0.180–0.630 for T. dorbigni) and mean values (0.374 for P. hilarii; 0.342 for T. dorbigni) that may be somewhat high if one takes into account those recorded for other species studied with RAPD. Duan et al. (2011) calculate genetic distances from 0.0829 to 0.1813 and an average of 0.1327 ± 0.0299 in Eretmochelys imbricate. For Chinemys reevesii the genetic distance calculated ranged from 0.168 to 0.467, and the average was 0.324 ± 0.0631 according to Zhu et al. (2005) but ranged from 0.1360 to 0.3609, with an average of 0.2092 ± 0.0623 according to Zhu (2011). In Mauremys mutica the average genetic distance among two populations was 0.299 ± 0.108 (Zhu et al., 2008). The genetic distance between individuals of the two species determined by ISSR markers in this study also showed a wide range with high maximum values (0.130–0.560 for P. hilarii; 0.560–0.070 for T. dorbigni). These high values suggest that individuals sampled may belong to different populations, situated in distant geographical locations (the exact origin of the rescued individuals is unknown, reason for which this statement cannot be tested).

    The RAPD and ISSR markers may be useful to analyse the temporal and spatial distribution of genetic diversity in these species. Most amphibians and reptiles exhibit deep phylogeographic differentiation, basically due to their low vagility, understood as the distance between the point of birth of an individual and the point of death (constituting a parameter that define mobility or dispersion, referring to the ability or tendency of individuals or populations to spread, changing its distribution over time) (Fagundes et al., 2010; Souza et al., 2002). Based on site fidelity, reduced dispersal and longevity, turtles seem to be an interesting group to include in phylogenetic studies. Moreover, high levels of population structure were recognized, it would be possible and necessary to begin delineating ESUs (Evolutionarily Significant Units) that consider and protect long-term evolutionary potentials (Vázquez Domínguez, 2007).

    The ISSR technique is very useful to evaluate diversity in species. Given the high genetic variation between individuals within a population, it is possible to use these markers in paternity analysis and identification of individuals (Rentaría Alcantara, 2007; Rocha and Gasca, 2007). Their high polymorphism also allows to apply them in distinction of intraspecific varieties and population genetic subdivision, including complex cases where gene flow, introgression and hybridization is evidenced (Ma et al., 2007b, Schilde et al., 2004). They have also been used to perform genetic mapping and phylogenetic reconstruction including sometimes cryptic species distinction (Fritz et al., 2005, 2007).

    Given the high polymorphism detect by RAPDs, they have proven to be useful in the genetic identification (including clones, hybrid or mutant) and the study of relationship. The technique is also applied in genetic mapping, detection of genetic uniformity and analysis of intraspecific population structure at different spatial scales, allowing estimating effective size, reproductive isolation and levels of crossing fecundation (Alacs et al., 2007; Rocha and Gasca, 2007; Rubin et al., 2001). The RAPD markers facilitate the realization of fast and efficient analysis of genetic variability in not well known,vulnerable or endangered species, also in those that are of economic interest to subsistence of certain societies (Duan et al., 2011; Ma et al., 2007a; Mockford et al., 1999; Tan et al., 2000; Zheng et al., 2008; Zhu et al., 2008). The genetic information collected usually can be integrated with ecological data in advance, allowing the development of more effective conservation strategies (Souza et al., 2002).

    5. Conclusions

    Estimators of genetic variability for Phrynops hilarii and Trachemys dorbigni were obtained from the use of molecular markers RAPD and ISSR, two relatively new, simple, fast and economical techniques, so far had not been used in any of the two species under study. It is also considered that the use of polyacrylamide gels increases the resolution of the analysis bands.

    The usefulness and validity of RAPD is reinforced in this study by the fact that very similar results were obtained with both types of markers for all diversity estimators. Taking the necessary precautions (appropriate laboratory conditions, negative controls and repetitions, etc.) the lack of reproducibility that sometimes has been criticized for this technique can be avoided.

    The results achieved encourage research in both species according to all the possibilities offered by these markers in relation to the lack of studies on them. The information obtained in this work can be useful as a starting point for phylogeographic studies at the population and/or specific level in both P. hilarii and T. dorbigni, suitable for the development of appropriate management strategies to protect and conserve these species in the region.

    Acknowledgements We thank the staff of Laboratory of Applied Zoology: Vertebrates, MASPyMA / FHUC-UNL that took blood samples and made available for this work.

    Alacs A., Janzen F., Scribner K. 2007. Genetic issues in freshwater turtle and tortoise conservation. In Shaffer H., FitzSimmons N., Georges A., Rhodin A. (Eds.), Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises. Chelonian Research Foundation, Chelon Res Monogr, 4: 134–152

    Amavet P., Vilardi J., Rosso E., Saidman B. 2009. Genetic and morphometric variability in Caiman latirostris (broad-snouted caiman), reptilia, alligatoridae. J Exp Zool, 309A: 1–12

    Bager A., de Freitas T., Krause L. 2007. Nesting ecology of population of Trachemys dorbignyi (Emydidae) in Southern Brazil. Herpetologica, 63(1): 56–65

    Bardakci F., Skibinsi O. 1994. Application of the RAPD technique in tilapia fish: Species and subspecies identification. Heredity, 73: 117–123

    Bassam B., Caetano-Anollés G., Gresshoff P. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 196: 80–83

    Bujes C. 2010. Os Testudines continentais do Rio Grande do Sul, Brasil: Taxonomía, historia natural e conserva??o. Iheringia, Sér Zool, 4: 413–424

    Carreira S., Estrades A., Achaval F. 2007. Estado de conservación de la fauna de tortugas (Reptilia, Testudines) de Uruguay. Boletín Sociedad Zoológica del Uruguay, 16: 20–25

    CITES 2011. Convention on International Trade in Endangered Species of Wild Fauna and Flora. Appendix I, II and III (http:// www.cites.org/eng/app/appendices.shtml)

    Duan J., Gu H., Xia Z., Ye M., Chen H., Zhang F. 2011. Genetic diversity analysis of Eretmochelys Imbricata by RAPD method. Chin J Wildl, 5: 264–266, 292

    Fagundes C., Bager A., Zanini S. 2010. Trachemys dorbigni in an anthropic environment in southern Brazil: Sexual size dimorphism and population estimates. Herpetol J, 20: 185–193

    Fritz U., Fattizzo T., Guicking D., Tripepi S., Pennisi., M., Lenk P., Joger U., Wink M. 2005. A new cryptic species of pond turtle from southern Italy, the hottest spot in the range of the genus Emys (Reptilia, Testudines, Emydidae). Zool Scr, 34: 351–371

    Fritz U., Hundsd?rfer A., ?iroky P., Auer M., Kami H., Lehmann J., Mazanaeva L., Türkozan O., Wink M. 2007. Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex; Testudines, Testudinidae). Amphibia-Reptilia, 28: 97–121

    Grosberg R., Levitan D., Cameron B. 1996. Characterization of genetic structure and genealogies using RAPD-PCR markers: A random primer for the novice and nervous. In Ferraris J., Palumbi S. (Eds.), Molecular Zoology: Advances, Strategies, and Protocols. New York: Wiley-Liss, 67–100

    Herring A., Inglis N., Ojeh C., Snodgrass D., Merizies J. 1982. Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. J Clin Microbiol, 16: 473–477

    Hoffmann M. et al. 2010. The Impact of Conservation on the Status of the World’s Vertebrates. Science, 330: 1503–1509

    IUCN. 2011. International Union for Conservation of Nature and Natural Resources. Red List of Threatened Species. Version 2011.1 (http://www.iucnredlist.org)

    Lavilla E., Richard E., Scrocchi G. 2000. Categorización de los Anfibios y Reptiles de la República Argentina. Asociación Herpetológica Argentina, San Miguel de Tucumán

    Longmire J., Lewis A., Brown N., Buckingham J., Clark L.,Jones M., Meincke L., Meyne J., Ratliff R., Ray F., Wagner R., Moyzis R. 1988. Isolation and molecular characterization of a highly polymorphic centromic tandem repeat in the family Falconidae. Genomics, 2: 14–24

    Lynch M., Milligan B. 1994. Analysis of population genetic structure with RAPD markers. Mol Ecol, 3: 91–99

    Ma L., Zheng G., Zhu X., Liu Y., Chen Y., Luo J. 2007a. Genetic diversity analysis of Platysternon megacephalum by RAPD method. Freshw Fish, 2: 76–79

    Ma L., Zheng G., Zhu X., Liu Y., Chen Y., Luo J. 2007b. Genetic diversity in two natural populations of Platysternon megacephalum as revealed by ISSR technique. Chin J Zool, 49(1): 13–20

    Martinez P., Boeris J., Sánchez J., Pastori M., Bolzán A., Ledesma M. 2009. Karyotypic characterization of Trachemys dorbigni (Testudines: Emydidae) and Chelonoidis (Geochelone) donosobarrosi (Testudines: Testudinidae), two species of Cryptodiran turtles from Argentina. Genetica, 3: 277–283

    Mockford S, Snyder M., Herman T. 1999. A preliminary examination of genetic variation in a peripheral population of Blanding’s turtle, Emydoidea blandingii. Mol Ecol, 8(2): 323–327

    Murray M., Thompson W. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 8: 4321–4325

    Nei M. 1972. Genetic distance between populations. Amer Nat, 106(949): 283–292

    Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3): 583–590

    Olson G., Hessler J., Faith R. 1975. Technics for blood collection and intravascular infusion of reptiles. Lab Anim Sci, 6: 783–786

    Peakall R., Smouse P. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes, 6: 288–295

    Reca A., úbeda C., Grigera D. 1994. Conservación de la fauna de tetrápodos. Un índice para su evaluación. Mastozool Neotrop, 1(1): 17–28

    Rentaría Alcántara M. 2007. Breve revisión de los marcadores moleculares. In Eguiarte L., Souza V., Aguirre X. (Eds.), Ecología molecular. México: Semarnat-UNAM-Conabio, 541–566

    Richard E. 1999. Tortugas de las Regiones áridas de Argentina. Editorial LOLA, Buenos Aires

    Rocha M., Gasca J. 2007. Ecología molecular de la conservación. In Eguiarte L., Souza V., Aguirre X. (Eds.), Ecología molecular. México: Semarnat-UNAM-Conabio, 253–278

    Rubin C., Warner R., Bouzat J., Paige K. 2001. Populationgenetic structure of Blanding′s turtle (Emydoidea blandingii) in an urban landscape. Biol Cons, 99: 323–330

    Salas A. 2011. Estudios citogenéticos en la tortuga pintada (Trachemys dorbigni: Reptilia, Emydidae). Bachelor Thesis UNL-FHUC, Santa Fe, Argentina

    Schilde M, Barth D., Fritz U. 2004. An Ocadia sinensis x Cyclemys shanensis hybrid (Testudines:Geoemydidae). Asiat Herpetol Res, 10: 120–125

    Semyenova S., Korsunenko A., Vasilyev V., Pereschkolnik S., Mazanaeva L., Bannikova A., Ryskov A. 2004. RAPD variation in Mediterranean turtle Testudo graeca (Testudinidae). Russ J Genet, 12: 1348–1355

    Souza F., Cunha A., Oliveira M., Pereira G., Pinheiro H. F. dos Reisa S. 2002. Partitioning of molecular variation at local spatial scales in the vulnerable neotropical freshwater turtle, Hydromedusa maximiliani (Testudines, Chelidae): Implications for the conservation of aquatic organisms in natural hierarchical systems. Biol Cons, 104: 119–126

    Tan S., Ng Y., Joseph J., Chan E. 2000. Genetic variation in hawksbill turtle (Eretmochelys imbricata) from Malaysia using RAPD markers. Towards sustainable management of the Straits of Malacca, 261–266

    Ubeda C., Grigera D. 2003. Analysis of the last assessment of conservation status of amphibians and reptiles from Argentina. Gayana, 67(1): 97–113

    Vázquez Domínguez E. 2007. Filogeografía y vertebrados. In Eguiarte L., Souza V., Aguirre X. (Eds.), Ecología molecular. México: Semarnat-UNAM-Conabio, 441–466

    White P., Densmore L. 1992. Mitochondrial DNA isolation. In Hoelzel A. (Eds.), Molecular genetic analysis of populations. A practical approach. The practical approach series. Oxford: Oxford University Press, 29–57

    Zheng G., Ma L., Zhu X., Liu Y., Chen Y., Luo J. 2008. Genetic diversity analysis between two populations of Platysternon megacephalum by RAPD. J Huazhong Agric Univ, 27(4): 510–514

    Zhu X., Du H., Zhou L., Li M., Gui J. 2005. Genetic diversity analysis of Chinese three-keeled pond turtle (Chinemys reevesii) by RAPD. Acta Hydrobiol Sin, 29: 167–171

    Zhu X., Zhou L., Chen Y., Du H., Gui J. 2008. Phenotypic and genetic variation between two populations of the Chinese yellow pond turtle, Mauremys mutica (Cantor, 1842). Chin High Tech Lett, 14: 104–111

    Zhu X. 2011. Analysis of genetic diversity amongst Chinemys reevesii in Guangxi using RAPD markers. J South Agric, 42(9): 1148–1150

    Zietkiewicz E., Rafalski A., Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20: 176-183

    GUIDETTI Brenda Yamile, from Universidad Nacional del Litoral, Santa Fe, Argentina, with his research focusing on conservation ecology.

    E-mail: guidettibrenda@gmail.com

    7 September 2014 Accepted: 16 March 2015

    青春草视频在线免费观看| 午夜激情福利司机影院| 熟妇人妻不卡中文字幕| 在线精品无人区一区二区三 | 欧美日韩视频精品一区| 日本猛色少妇xxxxx猛交久久| 亚洲国产最新在线播放| 蜜桃亚洲精品一区二区三区| 亚洲精华国产精华液的使用体验| 男的添女的下面高潮视频| 少妇人妻 视频| 超碰av人人做人人爽久久| 五月天丁香电影| 又爽又黄a免费视频| 国产色爽女视频免费观看| 内射极品少妇av片p| 2022亚洲国产成人精品| 噜噜噜噜噜久久久久久91| 亚洲精品日本国产第一区| 涩涩av久久男人的天堂| 白带黄色成豆腐渣| 我的老师免费观看完整版| 久久热精品热| 亚洲天堂av无毛| 五月玫瑰六月丁香| 少妇人妻久久综合中文| 国产精品一二三区在线看| 亚洲欧美清纯卡通| 最后的刺客免费高清国语| 禁无遮挡网站| 亚洲最大成人手机在线| 国产美女午夜福利| 高清欧美精品videossex| 久久久久精品性色| 国产美女午夜福利| 建设人人有责人人尽责人人享有的 | 色5月婷婷丁香| 久久久久国产网址| 国产熟女欧美一区二区| 亚洲精品日韩在线中文字幕| 五月玫瑰六月丁香| 狂野欧美激情性bbbbbb| 另类亚洲欧美激情| 亚洲精品亚洲一区二区| 久久综合国产亚洲精品| 热re99久久精品国产66热6| 在线播放无遮挡| 午夜福利在线在线| 欧美性猛交╳xxx乱大交人| 亚洲精品第二区| 赤兔流量卡办理| 中文字幕av成人在线电影| 高清av免费在线| 亚洲最大成人手机在线| 亚洲av成人精品一区久久| 一级毛片黄色毛片免费观看视频| 国产一区亚洲一区在线观看| 人妻少妇偷人精品九色| 亚洲av不卡在线观看| 免费人成在线观看视频色| 亚洲欧美精品自产自拍| 成人特级av手机在线观看| 国产精品嫩草影院av在线观看| 老司机影院成人| 欧美 日韩 精品 国产| 日韩一区二区视频免费看| 久久久久久久久久人人人人人人| av在线观看视频网站免费| 国产欧美另类精品又又久久亚洲欧美| 高清欧美精品videossex| 国产成人a区在线观看| 午夜福利在线观看免费完整高清在| 日韩大片免费观看网站| 狂野欧美白嫩少妇大欣赏| 赤兔流量卡办理| 亚洲精品久久久久久婷婷小说| 国产高清国产精品国产三级 | 人人妻人人看人人澡| 中文字幕av成人在线电影| 亚洲av福利一区| 久久久久网色| 人妻一区二区av| 国产午夜精品久久久久久一区二区三区| 亚洲av一区综合| 狂野欧美激情性bbbbbb| 九草在线视频观看| 黑人高潮一二区| 五月天丁香电影| 秋霞伦理黄片| 深夜a级毛片| 久久精品久久精品一区二区三区| 又爽又黄a免费视频| 亚洲电影在线观看av| 我的女老师完整版在线观看| 国产成人aa在线观看| 欧美97在线视频| 女人久久www免费人成看片| 免费看a级黄色片| 日韩大片免费观看网站| 一级毛片久久久久久久久女| 国产在视频线精品| 如何舔出高潮| 一级毛片黄色毛片免费观看视频| 亚洲精品国产成人久久av| a级毛色黄片| 99re6热这里在线精品视频| 国产一区二区在线观看日韩| av国产久精品久网站免费入址| 真实男女啪啪啪动态图| 国产乱人视频| 亚洲av电影在线观看一区二区三区 | 精品熟女少妇av免费看| 我要看日韩黄色一级片| 高清毛片免费看| 精品国产露脸久久av麻豆| 亚洲自偷自拍三级| 超碰97精品在线观看| 伊人久久精品亚洲午夜| 日韩大片免费观看网站| 2021少妇久久久久久久久久久| 超碰97精品在线观看| 天天一区二区日本电影三级| 男人舔奶头视频| 亚洲国产欧美人成| 中文字幕免费在线视频6| 国产高清不卡午夜福利| 久久精品综合一区二区三区| 午夜精品国产一区二区电影 | 啦啦啦中文免费视频观看日本| 亚洲精品国产av蜜桃| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产av玫瑰| 国产淫片久久久久久久久| 国产精品国产av在线观看| 日本色播在线视频| 日日摸夜夜添夜夜爱| 久久久久久久久久久丰满| 亚洲欧美精品自产自拍| 国产黄片视频在线免费观看| 亚洲av在线观看美女高潮| 九草在线视频观看| 国产亚洲5aaaaa淫片| 国产国拍精品亚洲av在线观看| 性色avwww在线观看| 寂寞人妻少妇视频99o| 男的添女的下面高潮视频| 亚洲国产av新网站| 综合色av麻豆| 一级毛片久久久久久久久女| 亚洲欧美清纯卡通| 亚洲国产成人一精品久久久| 又黄又爽又刺激的免费视频.| 免费看不卡的av| 免费观看av网站的网址| 久久99蜜桃精品久久| 欧美精品国产亚洲| av国产精品久久久久影院| 国产人妻一区二区三区在| 高清在线视频一区二区三区| 国产毛片a区久久久久| 久久精品国产自在天天线| 亚洲欧美清纯卡通| 内射极品少妇av片p| 七月丁香在线播放| 又爽又黄无遮挡网站| 亚洲经典国产精华液单| 午夜激情久久久久久久| 内地一区二区视频在线| 神马国产精品三级电影在线观看| 六月丁香七月| 精品久久久噜噜| 国产亚洲5aaaaa淫片| 舔av片在线| 好男人在线观看高清免费视频| 高清毛片免费看| 人人妻人人看人人澡| 精品国产露脸久久av麻豆| 精品国产乱码久久久久久小说| 噜噜噜噜噜久久久久久91| 国精品久久久久久国模美| 国产69精品久久久久777片| 国产综合懂色| 黄色配什么色好看| 国产精品偷伦视频观看了| av一本久久久久| 人妻少妇偷人精品九色| 中国美白少妇内射xxxbb| 边亲边吃奶的免费视频| 亚洲av福利一区| 春色校园在线视频观看| 国产精品麻豆人妻色哟哟久久| 在线精品无人区一区二区三 | 三级男女做爰猛烈吃奶摸视频| 九九久久精品国产亚洲av麻豆| 亚洲av电影在线观看一区二区三区 | 国产在线一区二区三区精| 国产综合懂色| 大陆偷拍与自拍| 久久精品国产自在天天线| 青春草亚洲视频在线观看| av国产久精品久网站免费入址| 亚洲图色成人| 黄色配什么色好看| 亚洲av中文av极速乱| 成人国产av品久久久| 日本三级黄在线观看| 久久亚洲国产成人精品v| 国产午夜福利久久久久久| 又大又黄又爽视频免费| 69人妻影院| 国产亚洲一区二区精品| 国产探花在线观看一区二区| 国产熟女欧美一区二区| 亚洲综合色惰| 色播亚洲综合网| 亚洲精品乱码久久久v下载方式| 五月开心婷婷网| 亚洲成人中文字幕在线播放| 久久久国产一区二区| 国产成人a∨麻豆精品| 又爽又黄无遮挡网站| 午夜免费观看性视频| 人体艺术视频欧美日本| 2021天堂中文幕一二区在线观| 日韩三级伦理在线观看| 国产精品久久久久久av不卡| 韩国av在线不卡| 日韩欧美一区视频在线观看 | 一区二区三区四区激情视频| 国产精品久久久久久久久免| 男女啪啪激烈高潮av片| 美女cb高潮喷水在线观看| 中国美白少妇内射xxxbb| 亚洲av免费在线观看| 亚洲欧美日韩另类电影网站 | freevideosex欧美| 精品久久久精品久久久| 岛国毛片在线播放| 视频中文字幕在线观看| a级一级毛片免费在线观看| 亚洲欧美成人综合另类久久久| 国产黄色视频一区二区在线观看| 国产黄片美女视频| 嫩草影院新地址| 日韩电影二区| 亚洲精品乱久久久久久| 精品99又大又爽又粗少妇毛片| 欧美精品人与动牲交sv欧美| 大片免费播放器 马上看| 亚洲无线观看免费| 欧美另类一区| 熟妇人妻不卡中文字幕| av免费观看日本| 国产淫片久久久久久久久| 人妻一区二区av| 九色成人免费人妻av| 亚洲不卡免费看| 亚洲真实伦在线观看| 丰满少妇做爰视频| 亚洲欧美日韩东京热| 亚洲国产欧美人成| 国产淫语在线视频| 免费不卡的大黄色大毛片视频在线观看| 免费看日本二区| 欧美精品人与动牲交sv欧美| 在线 av 中文字幕| 看十八女毛片水多多多| 亚洲欧美日韩卡通动漫| kizo精华| a级毛片免费高清观看在线播放| 老师上课跳d突然被开到最大视频| 日本色播在线视频| 超碰97精品在线观看| 天天躁夜夜躁狠狠久久av| 性色avwww在线观看| 伦精品一区二区三区| 色吧在线观看| 成年免费大片在线观看| 亚洲,欧美,日韩| 日日啪夜夜撸| 国产精品精品国产色婷婷| 欧美丝袜亚洲另类| 欧美日韩一区二区视频在线观看视频在线 | 国产成人aa在线观看| 肉色欧美久久久久久久蜜桃 | 午夜福利网站1000一区二区三区| 性色avwww在线观看| 久久久久国产网址| 91在线精品国自产拍蜜月| 亚洲精华国产精华液的使用体验| 精品一区在线观看国产| 国产成人a区在线观看| 亚洲怡红院男人天堂| 嘟嘟电影网在线观看| 2022亚洲国产成人精品| 国产黄色视频一区二区在线观看| 欧美精品人与动牲交sv欧美| 国语对白做爰xxxⅹ性视频网站| 久久亚洲国产成人精品v| 国产男女内射视频| 可以在线观看毛片的网站| 亚洲精品乱久久久久久| 又黄又爽又刺激的免费视频.| 视频区图区小说| 亚洲精品456在线播放app| 欧美三级亚洲精品| 久久影院123| 在线免费观看不下载黄p国产| 97超碰精品成人国产| 2021天堂中文幕一二区在线观| 国产av国产精品国产| 国产欧美日韩一区二区三区在线 | 国精品久久久久久国模美| 亚洲欧美成人精品一区二区| 国产高清国产精品国产三级 | 亚洲精品乱码久久久久久按摩| 老司机影院成人| 亚洲国产高清在线一区二区三| 大片免费播放器 马上看| 伦精品一区二区三区| 亚洲国产av新网站| 成人无遮挡网站| 午夜精品一区二区三区免费看| 国产精品国产三级专区第一集| 在线观看美女被高潮喷水网站| 如何舔出高潮| 色网站视频免费| 欧美少妇被猛烈插入视频| 国产综合懂色| 爱豆传媒免费全集在线观看| 久久久久久久久久久丰满| 又大又黄又爽视频免费| 日本三级黄在线观看| 日韩伦理黄色片| 美女视频免费永久观看网站| 久久国产乱子免费精品| 干丝袜人妻中文字幕| 午夜福利在线在线| 美女高潮的动态| 亚洲av欧美aⅴ国产| 在线观看国产h片| 国产亚洲一区二区精品| 伊人久久精品亚洲午夜| 又大又黄又爽视频免费| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩东京热| 亚洲av一区综合| 国产成人一区二区在线| 久久精品久久精品一区二区三区| 国产毛片a区久久久久| 免费观看性生交大片5| 人妻一区二区av| av在线天堂中文字幕| 免费看不卡的av| 综合色av麻豆| 国产毛片在线视频| 黄色怎么调成土黄色| 在线精品无人区一区二区三 | 国产高清国产精品国产三级 | 麻豆乱淫一区二区| 亚洲欧美成人精品一区二区| 最近最新中文字幕免费大全7| 亚洲av在线观看美女高潮| 一区二区av电影网| 国产 一区 欧美 日韩| 亚洲美女视频黄频| 麻豆精品久久久久久蜜桃| 国产成人精品福利久久| 在线观看人妻少妇| 亚洲欧美日韩无卡精品| 欧美日韩国产mv在线观看视频 | 久久这里有精品视频免费| 哪个播放器可以免费观看大片| 18禁在线无遮挡免费观看视频| 亚洲性久久影院| 夫妻午夜视频| 亚洲精品一区蜜桃| 日本午夜av视频| 久久99热6这里只有精品| 国产免费福利视频在线观看| 国产成人免费无遮挡视频| 尾随美女入室| av免费在线看不卡| 又爽又黄无遮挡网站| av网站免费在线观看视频| 好男人视频免费观看在线| 日韩在线高清观看一区二区三区| 亚洲伊人久久精品综合| 水蜜桃什么品种好| 看免费成人av毛片| 爱豆传媒免费全集在线观看| 极品教师在线视频| 制服丝袜香蕉在线| 久久韩国三级中文字幕| 精品久久久久久久人妻蜜臀av| 99热国产这里只有精品6| 美女cb高潮喷水在线观看| 国产爽快片一区二区三区| 欧美精品一区二区大全| 少妇的逼好多水| 午夜激情福利司机影院| 精品国产一区二区三区久久久樱花 | 观看免费一级毛片| 汤姆久久久久久久影院中文字幕| 亚洲国产色片| 天天一区二区日本电影三级| 在线观看av片永久免费下载| 午夜免费鲁丝| 久久久久久久亚洲中文字幕| 亚洲真实伦在线观看| 久久久a久久爽久久v久久| 午夜福利在线在线| 免费观看无遮挡的男女| 真实男女啪啪啪动态图| 日韩av在线免费看完整版不卡| 91精品伊人久久大香线蕉| 国产 一区 欧美 日韩| 日韩一本色道免费dvd| 女人十人毛片免费观看3o分钟| 精品久久久噜噜| 日本色播在线视频| 亚洲欧美一区二区三区国产| 少妇高潮的动态图| 精品久久国产蜜桃| 亚洲成人一二三区av| 国产免费福利视频在线观看| av国产精品久久久久影院| 日韩一区二区视频免费看| 久久久成人免费电影| 免费黄色在线免费观看| 精品熟女少妇av免费看| 免费观看性生交大片5| 可以在线观看毛片的网站| 99久久精品热视频| 欧美3d第一页| 日本黄大片高清| 91精品伊人久久大香线蕉| 波多野结衣巨乳人妻| 我的女老师完整版在线观看| 成人二区视频| 永久免费av网站大全| 18禁在线无遮挡免费观看视频| av在线亚洲专区| 精品午夜福利在线看| 女的被弄到高潮叫床怎么办| 久久热精品热| 久久久久九九精品影院| 久久久久久久久久成人| 麻豆国产97在线/欧美| 97在线人人人人妻| 日韩欧美精品v在线| 99热6这里只有精品| 日本-黄色视频高清免费观看| 国产av国产精品国产| 波多野结衣巨乳人妻| 亚洲一级一片aⅴ在线观看| 国产一级毛片在线| 欧美精品人与动牲交sv欧美| 六月丁香七月| 十八禁网站网址无遮挡 | 18禁裸乳无遮挡免费网站照片| 人人妻人人看人人澡| 一级毛片电影观看| 可以在线观看毛片的网站| 一级片'在线观看视频| 在线观看一区二区三区激情| 国产精品一及| 精品人妻一区二区三区麻豆| 久久精品国产自在天天线| 成人鲁丝片一二三区免费| 日韩av在线免费看完整版不卡| 水蜜桃什么品种好| 大陆偷拍与自拍| 国产成人免费无遮挡视频| 在线精品无人区一区二区三 | 免费大片18禁| 欧美高清成人免费视频www| 国产一区二区亚洲精品在线观看| 高清在线视频一区二区三区| 婷婷色综合大香蕉| 免费看av在线观看网站| 国产黄色免费在线视频| 好男人在线观看高清免费视频| 国产老妇女一区| 六月丁香七月| 免费看光身美女| 99九九线精品视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 国产成人福利小说| 一级爰片在线观看| 99热网站在线观看| 免费看av在线观看网站| 2022亚洲国产成人精品| 亚洲成人久久爱视频| 永久免费av网站大全| 性色avwww在线观看| 亚洲成色77777| 久久韩国三级中文字幕| 亚洲国产精品999| a级毛片免费高清观看在线播放| 一级爰片在线观看| 精品一区二区免费观看| 欧美成人精品欧美一级黄| 只有这里有精品99| 青春草国产在线视频| 91午夜精品亚洲一区二区三区| 99久国产av精品国产电影| 高清午夜精品一区二区三区| av国产久精品久网站免费入址| 国产精品.久久久| 久久97久久精品| 国产成人freesex在线| 国产精品女同一区二区软件| 久久久久久久久久成人| 偷拍熟女少妇极品色| av在线亚洲专区| av在线天堂中文字幕| 赤兔流量卡办理| 男女边吃奶边做爰视频| 男女无遮挡免费网站观看| 精品午夜福利在线看| 国产亚洲av片在线观看秒播厂| 精品国产三级普通话版| 啦啦啦啦在线视频资源| 亚洲经典国产精华液单| 综合色av麻豆| 久久久精品免费免费高清| 2021天堂中文幕一二区在线观| 美女内射精品一级片tv| 网址你懂的国产日韩在线| 天美传媒精品一区二区| 伦精品一区二区三区| 青青草视频在线视频观看| 人人妻人人爽人人添夜夜欢视频 | 美女视频免费永久观看网站| 哪个播放器可以免费观看大片| 韩国高清视频一区二区三区| 成人毛片60女人毛片免费| 国产片特级美女逼逼视频| 国内精品美女久久久久久| 欧美成人a在线观看| h日本视频在线播放| 亚洲,一卡二卡三卡| 日日摸夜夜添夜夜添av毛片| 国产高清国产精品国产三级 | 国产精品人妻久久久久久| 久久精品综合一区二区三区| a级一级毛片免费在线观看| 国产精品三级大全| 美女被艹到高潮喷水动态| 黑人高潮一二区| 99热这里只有是精品50| 亚州av有码| 涩涩av久久男人的天堂| 日日撸夜夜添| 国产精品麻豆人妻色哟哟久久| 99热网站在线观看| 亚洲人成网站在线播| 日本wwww免费看| 国产综合懂色| 成人国产av品久久久| 一级毛片电影观看| 久久这里有精品视频免费| 中国国产av一级| 在线精品无人区一区二区三 | 亚洲aⅴ乱码一区二区在线播放| 人妻制服诱惑在线中文字幕| 亚洲精品久久午夜乱码| 看免费成人av毛片| 久久97久久精品| 久久久久久久久久久免费av| 男男h啪啪无遮挡| 最近中文字幕2019免费版| 国语对白做爰xxxⅹ性视频网站| 国产成人精品久久久久久| 亚洲国产色片| 男女边摸边吃奶| 国产视频内射| 亚洲精品成人久久久久久| 日本三级黄在线观看| 精品久久久久久电影网| 国产日韩欧美亚洲二区| 亚洲精品乱久久久久久| 成年女人在线观看亚洲视频 | 日韩电影二区| 97在线视频观看| 人妻一区二区av| 亚洲,一卡二卡三卡| 亚洲av二区三区四区| 天天躁日日操中文字幕| 九九在线视频观看精品| 亚洲欧美清纯卡通| 身体一侧抽搐| 下体分泌物呈黄色| 91aial.com中文字幕在线观看| 亚洲国产精品国产精品| 一级毛片电影观看| www.av在线官网国产| 黄色怎么调成土黄色| 全区人妻精品视频| 麻豆精品久久久久久蜜桃| 免费观看a级毛片全部| 最近最新中文字幕大全电影3| av一本久久久久| 国产白丝娇喘喷水9色精品| 中文乱码字字幕精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 亚洲美女搞黄在线观看| 色哟哟·www| 国产精品一区二区三区四区免费观看| 一个人观看的视频www高清免费观看| 我的老师免费观看完整版| 免费看日本二区| 免费不卡的大黄色大毛片视频在线观看| 成人午夜精彩视频在线观看|