• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Toxic Effects of Three Heavy Metallic Ions on Rana zhenhaiensis Tadpoles

    2015-10-31 09:11:39LiWEIGuohuaDINGSainanGUOMeilingTONGWenjunCHENJonFLANDERSWeiweiSHAOandZhihuaLIN
    Asian Herpetological Research 2015年2期

    Li WEI, Guohua DING, Sainan GUO, Meiling TONG, Wenjun CHEN, Jon FLANDERS, Weiwei SHAOand Zhihua LIN*

    1College of Ecology, Lishui University, Lishui 323000, Zhejiang, China

    2School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol,BS8 1TQ. UK

    Toxic Effects of Three Heavy Metallic Ions on Rana zhenhaiensis Tadpoles

    Li WEI1, Guohua DING1, Sainan GUO1, Meiling TONG1, Wenjun CHEN1, Jon FLANDERS2, Weiwei SHAO1and Zhihua LIN1*

    1College of Ecology, Lishui University, Lishui 323000, Zhejiang, China

    2School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol,BS8 1TQ. UK

    Heavy metal pollution is widespread in some areas of China and results in contamination of land, water,and air with which all living organisms interact. In this study, we used three heavy metallic ions (Cu2+, Pb2+and Zn2+) to assess their toxicity effects on mortality, blood biomarker and growth traits (body length and body mass) of Rana zhenhaiensis tadpoles. The results showed that the toxicity levels of the three metallic ions were different when conducted with different experiment designs. For acute toxicity tests, Cu2+was the most toxic with the highest tadpole mortality. The mortalities of tadpoles showed signifi cant differences among the treatments at the same exposure time endpoints (24, 48, 72 and 96h). Results from repeated measures ANOVA indicated that metallic ion concentration,exposure time and their interactions signifi cantly affected the mortalities of R. zhenhaiensis tadpoles. Also, the toxicity effects of all binary combinations of the three metallic ion treatments showed synergism. The half lethal concentrations(LC50) decreased with increasing exposure time during the experimental period, and the safe concentration (SC) values of Cu2+, Pb2+and Zn2+were different from each other. Combined and compared LC50values with previous data reported,it is suggestes that the toxicity levels of metal pollution to anuran tadpoles should be species-and age-related. For blood biomarker tests, Zn2+was the most toxic with the highest total frequencies of abnormal erythrocytic nucleus. All three metallic ions caused higher abnormal erythrocytic nucleus compared with control groups. In a chronic toxicity test,Pb2+was the most toxic with lowest growth traits. Survival rate (except for 18 days), total body length and body mass showed signifi cant differences among the treatments. These fi ndings indicated that tadpoles of R. zhenhaiensis should be as a bioindicator of heavy metals pollution.

    Acute toxicity; micronucleus; chronic toxicity; growth; metal pollution; Rana zhenhaiensis

    1. Introduction

    The rapid and unprecedented decline of global biodiversity is of great concern and highlights the need to research the many different factors that can impact a species and its ecosystem. Amphibians play an important role in many ecological communities, ranging from helping nutrient cycles to serving as high quality prey items for predators, and as such their decline will impact on the ecosystems they are part of (deMaynadier andHunter, 1995; Vertucci and Corn, 1996; Stuart et al.,2004; Natale et al., 2006; Hussain and Pandit, 2012).

    Among amphibians, they have a biphasic life cycle comprising of an aquatic and terrestrial phase. They are highly sensitive to water pollution due to their association with aquatic habitats and permeable skin and are widely used in the monitoring of water contamination(Ezemonye and Tongo, 2009; Xia et al., 2012). Indeed,the pollution of anuran habitats is considered to be one of the major factors in their decline (Hussain and Pandit,2012) with heavy metals considered as one of the worst chemical stressors due to their high toxicity at very low concentrations (Shuhaimi-Othma et al., 2012a). There have been many studies documenting the toxicity of exposure to metal compounds in different aquaticspecies. For example, in fish exposure metals such as copper (Cu2+), cadmiun (Cd2+) and Chromium (Cr6+)is known to affect key parameters, including survival,growth and development and has been shown to interfere with the octavolateral system (Johnson et al., 2007). Freshwater insects, such as Nais elinguis were found to be more sensitive to exposure to Cu2+, Cd2+, iron (Fe3+),manganese (Mn2+), lead (Pb2+), nickel (Ni2+), zinc (Zn2+)and aluminum (Al3+) than freshwater worms (Shuhaimi-Othman et al., 2012b). In amphibians, identifying what effects being exposed to metals such as Cd2+, Cu2+, Pb2+and Zn2+have been carried out on a number of species including Hypsiboas pulchellus (Natale et al., 2006),Duttaphrynus melanostictus (Shuhaimi-Othma et al.,2012a), Bufo bufo gargarizans (Yang and Jia, 2006),Rana chensinensis (Shi et al., 2007) and R. catesbeiana(Li and Tian, 2010). These studies show that although increases in metallic ion concentration and time of exposure leads to higher rates of mortality there is considerable species-specifi c variation in their sensitivity to different metallic ions. Moreover, in studies focusing on the sub-lethal/chronic effects of heavy metallic ions,such as R. chensinensis exposed to Pb2+(Wang and Wang, 2008) and Cu2+(Shi et al., 2007), Pelophylax nigromaculatus exposed to Pb2+, Cu2+and Hg2+(Zhang,2009; Huang et al., 2014) and B. raddei exposed to Cd2+and Pb2+(Zhang et al., 2007), found that individuals exhibited abnormal growth, development, behavior and erythrocytic nuclear abnormalities, which increased their susceptibility to predation and competition and overall decrease reproductive success.

    Rana zhenhaiensis (previously Rana japonica) is common in Southeast China. This species is mainly found in rural areas with tadpoles living in low-lying, temporary water bodies and ditches (Zhou et al., 2005). Previous studies on this species have focused on their vulnerability to pesticides such as Triazophos (Zhong et al., 2011)and emamectin benzoate (Chen et al., 2011), and they found the tadpoles were highly sensitive to agricultural pesticides. In south and east China metals such as Cu,Cd, Zn, Pb, Cr, Fe are widely used in industry and are common water pollutants. As the full impact of these metallic ions on the aquatic habitats and species is still unknown. In this study, we examine the acute and chronic toxicity effects of three heavy metallic ions (Cu2+, Pb2+and Zn2+) on tadpoles of R. zhenhaiensis, an important bio-indicator for water quality. The results of this work will provide a fundamental platform for establishing regulatory limits for metal loads in aquatic environments.

    2. Materials and Methods

    We collected Zhenhai brown frog (R. zhenhaiensis) eggs from a fi eld in a suburb of Lishui City, Zhejiang Province,China, in March 2014. Eggs were then incubated within opaque plastic cages (60 cm length × 40 cm width × 30 cm height) with 20cm depth of dechlorinated tap water. Prior to experimentation the tadpoles were reared with commercial fi sh food (Shanghai Tech-bank feed industry Co. LTD). Tadpoles that were considered to be in good health (swimming freely, with good reflexes; average body weight = 0.04±0.001g; average body length = 1.54±0.11cm) were selected for toxicity treatment.

    A standard stock solution of Cu2+, Pb2+and Zn2+(100 mg/ L) were prepared from analytical grade metallic salts of CuSO4·5H2O, ZnSO4·7H2O and (CH3COO)2Pb·3H2O. The stock solutions were prepared with deinoized water in 1L volumetric flask and then kept for subsequent concentration dilutions.

    2.1 Pre-experiment A wide range of metal solution concentrations were used in the pre-experiment; seven Cu2+(0.2, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mg/L), fi ve Pb2+(10.0, 30.0, 50.0, 70.0 and 90.0 mg/L) and six Zn2+(5.0, 10.0, 20.0, 30.0, 40.0 and 50.0 mg/L). Each metaltreated concentration group consisted of 2 replicates of 10 randomly allocated tadpoles in a round 1000mL plastic container with 500 mL of the appropriate solution. The numbers of dead tadpoles in each container were counted 48h later. By observing tadpole mortality the lethal concentration of no mortality (LC0) and maximum mortality (LC100) were used to obtain the range concentration of LC0to LC100for the following experiments (Wei et al., 2014).

    2.2 Acute toxicity Based on the pre-experiment results static-water tests were used in the toxicity experiments(Zhou and Zhang, 1989). Six Cu2+(0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 mg/L), fi ve Pb2+(30.0, 40.0, 50.0, 60.0 and 70.0 mg/L) and Zn2+(10.0, 20.0, 30.0, 35.0 and 45.0 mg/L)were chosen for the acute toxicity experiments with each having their own control (0.0 mg/L). 15 experimental tadpoles were randomly allocated to each metal-treated concentration in a 1000 mL plastic container with 800 mL metal solution. Each concentration treatment was conducted in triplicate at room condition. Mortality was recorded every 24 hours for 4 days (96 hours) for each treatment. Tadpoles were recorded as dead when they turned upside down and sank to the bottom of the container or when their tail showed no form of movement even when prodded with a glass rod (Mgbaeruhu, 2002).During the acute toxicity test, the tadpoles were not fed.

    2.3 Joint toxicity To examine the joint toxicity of the three metallic ions, pairwise combinations were performed based on the results of the acute toxicity tests. The half lethal concentration (LC50) acute toxicity test at 48h was then taken as 1 toxic unit (U). For the following joint toxicity testing, test concentrations of the three metallic ions combined are listed in table 1. Ten experimental tadpoles were randomly allocated to each joint concentration following the method of acute toxicity tests. The mortalities of tadpoles exposed to combined metals at 48h were recorded following the methods of Chen et al. (2007).

    2.4 Blood biomarkers To further investigate the toxic effects of the three metallic ions on R. zhenhaiensis tadpoles, blood parameter measurements were conducted. Five tadpoles were randomly exposed to three new concentrations of each metallic ion (0.10, 0.20 and 0.33 mg/L) with 4 replications respectively over a period of 4 days (96h). One more treatment (0 mg/L) was set up for control. Every 24 hours genotoxicity of each treatment was tested using the measuring erythrocytic nuclear assay (ENA), carried out in mature peripheral erythrocytes according to the procedures of Guilherme et al (2008). The blood smear of the live tadpoles were fixed with methanol for 10 min and stained with 10% Giemsa for 15-20 min. For each smear, 500 erythrocytes were observed and scored under 1000× magnification to determine the frequency of the following nuclear lesions categories: mitotic (M), binucleated (BN),micronuclei (MN), 8 shape nuclei (8SN), karyopyknosis(K), anucleated (AN) and unequal division (UD). The control group was only carried out after the 48h exposed. The results were expressed as the mean value (%) of the sum (M+BN+MN+8SN+K+AN+UD) for all the lesions observed (Guilherme et al., 2008).

    2.5 Chronic toxicity Chronic toxicity tests were carried out in a similar manner as the acute tests. Only one low concentration (1/10 toxic U) of each metallic ion was used. Thus the treatment concentrations of Cu2+, Pb2+and Zn2+were 0.055, 4.44 and 2.40 mg/L, respectively. Tests were done using three replications per metallic ion and one control group. Ten tadpoles were randomly allocated to each container. Exposure lasted for 18 days, and growth traits including survival rate, body mass and total body length (the length from snout to tail tip) of tadpoles were collected every 6 days. Tadpoles were reared with commercial fi sh food (Shanghai Tech-bank feed industry Co. LTD). A new stock solution for each metallic ion was made up every 3 days immediately before each water change.

    2.6 Data analysis Prior to any statistical tests all variables were tested for normality and homogeneity. For the acute tests, One-way ANOVA and Tukey's post hoc multiple comparisons test were used to evaluate the effects of each metal on the mortalities of tadpoles under different concentrations and different exposure times. To examine the correlated effects of both concentration and exposure on tadpole mortality repeated measures ANOVA was used. For comparisons of the growth data among the three metallic ions in the chronic toxicity tests, Oneway ANOVAs were mainly used. Statistical analyses were conducted via Statistica 6.0, with α=0.05 taken as statistically signifi cant.

    Half lethal concentration (LC50) for each metallic ion was determined using probit analyses and straight line interpolations (Chen et al., 2007), while the corresponding safe concentrations (SC) were carried out with two typical equations:

    SC I = (48h-LC50×0.3)/(24h-LC50/48h-LC50)2(Zhang et al.,2011)

    SC II = 96h-LC50×0.1 (Ezemonye and Tongo, 2009)

    The evaluation of joint toxicity for each binary metallic ions combined was conducted using characteristic of mortality-concentration curves based on data recorded at 48h exposure. When the mortality was > 50%, the co-effects were taken as synergistic; in turn, when the mortality < 50%, the coeffects were taken as antagonistic(Chen et al., 2007).

    3. Results

    3.1 Acute toxicity and joint toxicity When R. zhenhaiensis tadpoles were exposed to the three different metallic ion solutions over the same exposuretimes tadpole mortality was significantly different between treatments (P<0.001, Table 2) with half lethal concentrations (LC50) decreasing with increasing exposure time. Variation between metallic ion types was also observed in the safe concentration (SC) values (Table 3)with overall toxicity levels going from Cu2+> Zn2+> Pb2+. The results of repeated measures ANOVA indicated that metallic ion concentration and exposure time signifi cantly affected R. zhenhaiensis tadpole mortality (Table 4).

    Table 1 The proportion of binary combined concentrations of the three metallic ions.

    For pairwise ions combined tests, the toxicity effects of all the three treatment groups were similar (Figure 1). However, tadpole mortality was not significant different between the various concentrations within each joint treatments (Cu-Pb: F4,10=2.000, P=0.171; Zn-Pb:F4,10=0.657, P=0.635; Cu-Pb: F4,10=1.000, P=0.452, Oneway ANOVA).

    3.2 Blood biomarker All tadpoles in 0.33 mg/L of Cu2+treatment died before the end of their 12 hour exposure. Overall the three metallic ions produced sev en different types of erythrocyte abnormalities: mitotic, binucleated,micronuclei, 8 shape nuclei, karyopyknosis, anucleated and unequal division (Figure 2). The results showed that the total frequencies of abnormal erythrocytic nuclei(TFAEN) were all significantly higher than the control group (Table 5). Moreover, during the same exposure concentration, frequencies of abnormal erythrocytic nuclei observed (FAEN) were also different among various exposure times (Table 5).

    3.3 Chronic toxicity Tadpoles exposed to the three metallic ions at low concentrations showed differences in growth pattern compared to the control group (Figure 3). The percentage survival of the exposed tadpoles was reduced compared to that of the control group, and signifi cant differences were found at day 6 (F3,11=9.200,P=0.006, One-way ANOVA) and at day 12 (F3,11=4.133,P=0.048, One-way ANOVA) but not on day 18 (Figure 3A). The Pb2+treatment recorded the lowest survival rate,body mass and smallest total body length across all time periods. Cu2+treatment caused significantly lower body lengths across all time periods compared to Zn2+treatment and also when compared to the control for body mass and body length (all P < 0.05, One-way ANOVA, Figure 3B and 3C).

    4. Discussion

    4.1 Acute and joint toxicity Our study shows that tadpole mortality was positively correlated with heavy metallic ion concentration. However, mortality rates were not uniform across the different metal types with copper being more toxic than zinc which was more toxic than lead (Cu2+> Zn2+> Pb2+; Table 2). These results correspond with previous studies by Khangarot et al.(1985) and Yang and Jia (2006) who identifi ed the level of toxicity of different metallic ions on R. hexadactyla and B. bufo gargarizans tadpoles to be Cu2+> Zn2+> Fe3+> Pb2+and Cu2+> Cd2+> Zn2+, respectively. In contrast,Shuhaimi-Othman et al. (2012b) found that Duttaphrynus melanostictus tadpoles were more sensitive to Cu2+>Cd2+> Fe3+> Al3+> Pb2+> Zn2+> Ni2+> Mn2+indicatingthat some species are more susceptible to certain metallic elements more than others.

    Table 2 The acute toxicity test results of the three metallic ions alone to R. zhenhaiensis tadpoles (n = 15).

    This study showed that LC50values for 24, 48, 72 and 96h of Cu2+, Pb2+and Zn2+were 0.62, 67.08 and 32.90;0.55, 44.39 and 23.98; 0.48, 31.72 and 16.88, and 0.43,31.72 and 12.21 mg/L, respectively (Table 3). Compared to other studies that have investigated the toxicity of the three heavy metallic ions on anuran species at their different life stages, especially for tadpoles, we found different LC50values produced by different study species(Table 3, Table 6). One possible reason for this is because the experimental methods conducted in each study, such as body size/developmental stage, body mass of tadpoles and experimental water (soft or hard) were different. For example, Rao and Madhyastha (1987) conducted a study on the toxicity of heavy metallic ions (Hg2+, Cd2+, Cu2+,Mn2+, and Zn2+) on different ages (1- and 4-week old) of tadpoles of M. ornata and found that 4-week old tadpoles were more sensitive toward heavy metallic ions than were l-week old ones. Also, Harris et al. (2000) conducted toxicity testing with R. pipiens and B. americanus to pesticides, and found that the former was more sensitive to pesticides than the latter. This is probably due to species and age related differences in susceptibility to pesticides and heavy metallic ions.

    In this study we found that Cu2+was approximately 100 times more toxic to R. zhenhaiensis tadpoles than Pb2+and 50 times more toxic than Zn2+. Typically, aquatic organisms sensitivity to trace metals follows the trend:Hg2+> Ag+> Cu2+> Cd2+> Zn2+> Ni2+> Pb2+> Cr6+>Sn4+(Luoma and Rainbow, 2008). However, some toxicity studies with other species found that Pb2+was more toxic than Zn2+, such as with D. melanostictus (Shuhaimi-Othman et al., 2012a), R. hexadactyla (Khangarot et al.,1985), Nais slinguis (Shuhaimi-Othman et al., 2012b). Therefore, It is by no means the case that all essential metals are more toxic than all nonessential metals.

    Comparisons of the pairwise joint toxicity treatments were highly similar across treatments (Figure 1). This corresponds to a study on R. limnocharis tadpoles by Jia et al. (2005) who found similar results when testing the joint toxicity of Cu-Zn. Compared to previous studies reporting on the toxicity of metallic ions to aquatic organisms, we found that different results produced by different species. For example, the joint toxicity of Cu-Zn conducted by Yang and Jia (2006) with B. bufo gargarizans showed antagonistic. Likewise, the joint toxicity of Cu-Zn, Pb-Zn, and Cu-Pb conducted by Chen et al. (2007) with Hydra sp, and Pb-Zn conducted by Zhang et al. (2011) with Carassius auratus showed antagonistic. This is probably because the co-effects of metallic ions are complicated, which the way they act on cells are different (Eaton, 1973).

    4.2 Blood biomarker The toxic effects of Cu2+, Pb2+and Zn2+on the tadpoles could be observed in their blood tests(Table 5). The total frequency of abnormal erythrocytic nuclei (TFAEN) increased by increasing exposure concentration for all the three metallic ions (Table 5).Zn2+was the most toxic to the tadpoles blood red cells followed by Pb2+and then Cu2+at 0.10 mg/L treatments,Zn2+>Cu2+>Pb2+at 0.20 mg/L treatments and Zn2+>Pb2+with 0.33 mg/L treatment (Table 5). This is in agreement with the results of Rosenberg et al. (1998) conducted with B. arenarum exposed to Pb2+and Jiang et al. (2008)conducted with B. melanostictus exposed to Cu2+, Pb2+and Hg2+, which showed that there was a micronuclei response to heavy metallic ions. Interestingly, Jiang et al. (2008)and Zhang (2009) also found that TFAEN produced by B. melanostictus and Pelophylax nigromaculatus were higher in Pb2+treatments than in Cu2+treatments. However,other micronuclei studies with other species found that Cu2+was more toxic than Pb2+, such as B. gargarizans(Zhou et al., 2008). Although these contrasting results may be due to different methodologies, they also show that amphibian hematological parameters will be affected by the interactions between various combinations of nutrients, metals and pesticides (Ilizaliturri-Hernandez et al., 2013). Thus, erythrocytic nuclear abnormalities(ENA) should be recognized as one type of biomarker to assess water quality and the genotoxicity of contaminants on organisms (Costa et al., 2011).

    Table 3 The half lethal concentrations (LC50) and safe concentrations (SC) of the three metallic ions, mg/L.

    Table 4 The effects of ion concentration, exposure time and their interactions on mortality of R. zhenhaiensis tadpoles.

    4.3 Chronic toxicity This study revealed the chronic toxicity of Cu2+, Pb2+and Zn2+to R. zhenhaiensis tadpoles over an 18-day period. The tadpoles were exposed to 1/10 LC50concentration of metallic ions with the toxic effects were recorded over several time points. The results showed that the three metallic ions affected the growth of the tadpoles compared to the control group. In the Pb2+treatment survival rate, body length and body mass were all lower than those in Cu2+and Zn2+treatments (Figure 3)showing that Pb2+was the most toxic to the development of R. zhenhaiensis tadpoles. Similar results were seen in a study by Jiang et al (2008). on B. melanostictus, although Jackson et al. (2005) found that Pb2+was less toxic than other metallic ions in Callianassa kraussi.

    In conclusion, we predict that Cu2+, Pb2+and Zn2+could significantly affect the mortality, blood biomarker and growth traits of R. zhenhaiensis tadpoles. It is indicatedthat different heavy metallic ions should produced various toxic effects to organisms. Therefore, R. zhenhaiensis tadpoles should be a potential objective in toxicity testing and as a bioindicator of heavy metals pollution.

    Table 5 Effects of the three metallic ions on micronuclei of red blood cells of R. zhenhaiensis tadpoles. N = the numbers of trial tadpoles, n = erythrocytic cells from smear observed, TNAEN = total numbers of abnormal erythrocytic nucleus observed, FAEN = frequency of abnormal erythrocytic nucleus observed, TFAEN = total frequency of abnormal erythrocytic nucleus observed

    Acknowledgements This work was funded by the National Natural Science Foundation of China(31270443) and Natural Science Foundation of Zhejiang Province (LY13C030004). We thank Mengsha Xu for herassistance with laboratory work.

    Table 6 Comparisons of LC50values of different larval amphibian species tadpoles tested with the three heavy metallic ions.

    Chen N., Hao J. S., Wang Y., Su C. Y., Wu B. F. 2007. Single and binary-combined acute toxicity of heavy metal iron Hg2+, Cu2+,Cd2+, Ag+, Zn2+and Pb2+to Hydra. J Biol, 24(3): 32-35

    Chen Z. X., Fang X. Q., Lin L., Geng B. R. 2011. Acute toxicity of emamectin benzoate on Rana zhenhaiensis tadpoles. J Ningde Teach Coll (Nat Sci Edit), 23(1): 21-23

    Costa P. M., Neuparth T. S., Caeiro S., Lobo J., Martins M., Ferreira A. M., Caetano M., Vale C., Del Valls T. A., Costa M. H. 2011. Assessment of the genotoxic potential of contaminated estuarine sediments in fi sh peripheral blood: Laboratory versus in situ studies. Environ Res, 111(1): 25-36

    Eaton J. G. 1973. Chronic toxicity of a copper, cadmium and zinc mixture to the fithead minnow (Pimcobales promelas rafi nesque). Wat Res, 7(11): 1723-1736

    Ezemonye L. I. N., Tongo I. 2009. Lethal and sublethal effects of atrazine to amphibian larvae. Jordan J Biol Sci, 2(1): 29-36

    Guilherme S., Válega M., Pereira M. E., Santos M. A., Pacheco M. 2008. Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotoxicol Environ Saf, 70(3): 411-421

    Huang M. Y., Duan R. Y., Ji X. 2014. Chronic effects of environmentally-relevant concentrations of lead in Pelophylax nigromaculata tadpoles: Threshold dose and adverse effects. Ecotoxicol Environ Saf, 104: 310-316

    Hussain Q. A., Pandit A. K. 2012. Global amphibian declines: A review. Inter J Biodiv Conserv, 4(10): 348-357

    Ilizaliturri-Hernández C. A., González-Mille D. J., Mejía-Saavedra J., Espinosa-Reyes G., Torres-Dosal A., Pérez-Maldonado I. 2013. Blood lead levels, δ-ALAD inhibition, and hemoglobin content in blood of giant toad (Rhinella marina)to asses lead exposure in three areas surrounding an industrial complex in Coatzacoalcos, Veracruz, Mexico. Environ Monit Assess, 185(2): 1685-1698

    Jackson R. N., Baird D., Eis S. 2005. The effect of the heavy metals lead (Pb2+) and zinc (Zn2+) on the brood and larval development of the burrowing crustacean, Callianassa kraussi. Water SA, 31(1): 107-116

    Jia X. Y., Dong A. H., Yang Y. Q. 2005. Acute and joint toxicities of copper, zinc and triazophos to Rana limnocharis Boie tadpole. Res Environ Sci, 18(5): 26-30

    Jiang B. Q., Chen W. T., Li D. F. 2008. Effect of heavy metal iron on growth of tadpole of toad (Bufo melanostictus Schneider). J South Chin Nor Univ (Nat Sci Edit), 2: 100-105

    Johnson A., Carew E., Sloman K. A. 2007. The effects of copper on the morphological and functional development of zebrafi sh embryos. Aquat Toxicol, 84(4): 431-438

    Khangarot B. S., Sehgal A., Bhasin M. K. 1985. ‘‘Man and Biosphere''-Studies on the Sikkim Himalayas. Part 5: Acute toxicity of selected heavy metals on the tadpoles of Rana hexadactyla. Acta Hydrochim Hydrobiol, 13(2): 259-63

    Li H. M., Tian X. J. 2010. The effects of nine chemicals factors on the subsistence of Rana catesbeiana tadpoles. J Anhui Agricult Sci, 38(2): 769-771

    Mgbaeruhu J. E. 2002. The influence of pH on the toxicity domestic detergents against tadpoles of Rana rana and fi ngerlings of Tilapia niloticus. MSc thesis University of Lagos. 67p

    Natale G. S., Ammassari L. L., Basso N. G., Ronco A. E. 2006. Acute and chronic effects of Cr(VI) on Hypsiboas pulchellus embryos and tadpoles. Dis Aquat Organ, 72(3): 261-267

    Rao I. J., Madhyastha M. N. 1987. Toxicities of some heavy metals to the tadpoles of frog, Microhyla ornata (Dumeril & Bibron). Toxicol Lett, 36(2): 205-208

    Rosenberg C. E., Perí S. I., Arrieta M. A., Fink N. E., Salibián A. 1998. Red blood cell osmotic fragility in Bufo arenarum exposed to lead. Arch Physiol Biochem, 106(1): 19-24

    Shi G., Wang J. X., Wang R. X. 2007. Toxic Effects of Cu2+on Rana Chensinensis tadpole growth and development. J Jilin Nor Univ (Nat Sci Edit), 3: 71-73

    Shuhaimi-Othman M., Nadzifah N. S., Umirah N. S., Ahmad A. K. 2012a. Toxicity of metals to tadpoles of the common Sunda toad, Duttaphrynus melanostictus. Toxicol Environ Chem, 94(2):364-376

    Shuhaimi-Othman M., Nadzifah Y., Umirah N. S., Ahmad A. K. 2012b. Toxicity of metals to an aquatic worm, Nais slinguis(Oligochaeta, Naididae). Res J Environ Toxicol, 6(4): 122-132

    Stuart S. N., Chanson J. S., Cox N. A., Young B. E., Rodrigues A. S., Fischman D. L., Waller R. W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science,306(5702): 1783-1786

    Vertucci F. A., Corn P. S. 1996. Evaluation of episodol acidifi cation and amphibian declines in the rocky mountains. Ecol Appl, 6(2):449-457

    Wang J. X., Wang R. X. 2008. Toxic effects of Pb2+on growth and development of Rana chensinensis tadpole. Acta Agricult Zhejiangensis, 20(3): 203-207

    Wang X. Y., Lu X. Y., Li C. M., Gao W. P., Gao M. 2001. Toxicity of heavy metal irons to embryos and larvae of Rana nigromaculata. Sichuan J Zool, 21(2): 59-61

    Wei L., Shao W. W., Ding G. H., Fan X. L., Yu M. L., Lin Z. H. 2014. Acute and joint toxicity of three agrochemicals to Chinese tiger frog (Hoplobatrachus chinensis) tadpoles. Zool Res, 35(4):272-279

    Xia K., Zhao H. F., Wu M. Y., Wang H. Y. 2012. Chronic toxicity of copper on embryo development in Chinese toad, Bufo gargarizans. Chemosphere, 87(11): 1395-1402

    Yang Y. Q., Jia X. Y. 2006. Joint toxicity of Cu2+, Zn2+and Cd2+to tadpole of Bufo bufo gargarizans. Chin J Appl Environ Biol,12(3): 356-359

    Yao D., Wan L. Y., Geng B. R., Huang H., Zhang Q. J. 2004. Acute toxicity of Cu2+to Rana japonica tadpoles. J Fujian Nor Univ (Nat Sci Edit), 20(4): 117-120

    Zhang M. H. 2009. The toxic effect analysis of heavy metal ions on tadpoles of Pelophylax nigromaculatus. J Guiyang Coll (Nat Sci Edit), 4(1): 19-23

    Zhang Y. L., Yuan J., Chen L. P., Shao H. 2011. Joint toxicity experiment of three heavy metal on fry of Carassius auratus. Heibei Fish, 39(2): 24-27

    Zhang Y. M., Huang D. J., Zhao D. Q., Long J., Song G., Li A. N. 2007. Long-term toxicity effects of cadmium and lead on Bufo raddei tadpoles. Bull Environ Contam Toxicol, 79(2):178-183

    Zhong B. J., Geng Y., Geng B. R. 2011. Acute toxicity of triazophos to Rana japonica tadpoles and its effects on growth. Herpetol Sinica, 11: 209-215

    Zhou F., Jiang A.W., Lu Z. 2005. A new record of amphibian species in Guangxi-Rana zhenhaiensis. J Guangxi Agricult Biol Sci, 24(3): 248

    Zhou X. R., Shen H. F., Pan Z. J., Wang L. J. 2008. Study on micronuclear and nuclear abnormalities induced by Pb2+and Cu2+in tadpoles erythrocyte. J Anhui Agricult Sci, 36(14): 5842-5844

    Zhou Y. X., Zhang Z. S. 1989. Toxicity testing methods of aquatic organism. Beijing: Chinese Agricultural Press

    Prof. Zhihua LIN, from Lishui University,Zhejiang, China, with his research focusing on physiological ecology of amphibians and reptiles.

    E-mail: zhlin1015@126.com

    14 December 2014 Accepted: 21 May 2015

    蜜桃久久精品国产亚洲av| 亚洲五月天丁香| 欧美一区二区精品小视频在线| 欧美日韩精品网址| 成人国产综合亚洲| 日韩精品中文字幕看吧| 久久精品亚洲精品国产色婷小说| 亚洲色图av天堂| 婷婷精品国产亚洲av| 国产午夜精品论理片| 老司机在亚洲福利影院| 欧美精品啪啪一区二区三区| 怎么达到女性高潮| 高潮久久久久久久久久久不卡| 亚洲不卡免费看| 日本三级黄在线观看| 欧美一级毛片孕妇| 首页视频小说图片口味搜索| 国产v大片淫在线免费观看| 国产成人欧美在线观看| 成年女人毛片免费观看观看9| av片东京热男人的天堂| 性欧美人与动物交配| 窝窝影院91人妻| 精品一区二区三区视频在线观看免费| 99热只有精品国产| 成人无遮挡网站| 亚洲人成网站在线播| 岛国在线观看网站| 久久婷婷人人爽人人干人人爱| 久久久久久久精品吃奶| 国产精品久久久久久久久免 | 欧美一级毛片孕妇| 99久久九九国产精品国产免费| 在线视频色国产色| 免费观看人在逋| 三级毛片av免费| 成人欧美大片| 午夜福利在线观看免费完整高清在 | 欧美+亚洲+日韩+国产| 国产av不卡久久| 久久久色成人| 亚洲av中文字字幕乱码综合| 成人av一区二区三区在线看| 天堂√8在线中文| 最后的刺客免费高清国语| 99热这里只有精品一区| 国产视频一区二区在线看| 99久久精品热视频| 亚洲黑人精品在线| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在 | 国产成人福利小说| 在线看三级毛片| 少妇的逼水好多| 伊人久久大香线蕉亚洲五| 成年女人永久免费观看视频| 午夜激情福利司机影院| 久久精品国产亚洲av涩爱 | 亚洲精品美女久久久久99蜜臀| 午夜福利视频1000在线观看| 亚洲av中文字字幕乱码综合| 欧美av亚洲av综合av国产av| 久久精品91无色码中文字幕| 国产精品永久免费网站| 中文亚洲av片在线观看爽| 无遮挡黄片免费观看| 九九久久精品国产亚洲av麻豆| 国产一区二区三区视频了| 啦啦啦免费观看视频1| 在线观看美女被高潮喷水网站 | 日韩亚洲欧美综合| 欧美3d第一页| 色综合欧美亚洲国产小说| 午夜免费成人在线视频| 亚洲国产精品999在线| 国产精品久久久久久精品电影| 啪啪无遮挡十八禁网站| 最新美女视频免费是黄的| 99久久九九国产精品国产免费| av国产免费在线观看| 久久婷婷人人爽人人干人人爱| 国产成人系列免费观看| 免费人成视频x8x8入口观看| 久久久久性生活片| 一个人看视频在线观看www免费 | 婷婷丁香在线五月| 国产乱人伦免费视频| 欧美日本亚洲视频在线播放| 一级a爱片免费观看的视频| 国产午夜精品论理片| 波多野结衣巨乳人妻| 国产伦精品一区二区三区四那| 国产视频一区二区在线看| 久久精品国产自在天天线| 最近视频中文字幕2019在线8| 久久久久国内视频| 最新在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| netflix在线观看网站| 欧美最新免费一区二区三区 | 神马国产精品三级电影在线观看| 国产成人系列免费观看| 亚洲国产精品sss在线观看| 亚洲电影在线观看av| 一区二区三区高清视频在线| 午夜福利在线观看免费完整高清在 | 国产三级中文精品| 久久精品国产自在天天线| 九九热线精品视视频播放| e午夜精品久久久久久久| 内射极品少妇av片p| 亚洲精品日韩av片在线观看 | 一个人看视频在线观看www免费 | 久久久久免费精品人妻一区二区| 美女免费视频网站| 夜夜爽天天搞| 天堂网av新在线| 伊人久久大香线蕉亚洲五| 18禁在线播放成人免费| svipshipincom国产片| 夜夜看夜夜爽夜夜摸| 在线免费观看的www视频| 99riav亚洲国产免费| www.熟女人妻精品国产| 国产精品综合久久久久久久免费| 午夜亚洲福利在线播放| 欧美中文综合在线视频| 大型黄色视频在线免费观看| 国产精品女同一区二区软件 | 桃色一区二区三区在线观看| 国产亚洲精品一区二区www| 午夜福利18| 免费观看人在逋| 校园春色视频在线观看| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女| 欧美成人免费av一区二区三区| 色老头精品视频在线观看| 久久精品国产清高在天天线| 国产淫片久久久久久久久 | 变态另类成人亚洲欧美熟女| 欧美性猛交黑人性爽| 免费看日本二区| 国产黄片美女视频| 亚洲av成人av| 国产视频内射| 成人特级黄色片久久久久久久| 99精品欧美一区二区三区四区| 国产真实乱freesex| 亚洲国产日韩欧美精品在线观看 | 久久久久久久亚洲中文字幕 | 叶爱在线成人免费视频播放| 精品人妻一区二区三区麻豆 | 18禁裸乳无遮挡免费网站照片| 天堂网av新在线| 亚洲精品在线观看二区| 色播亚洲综合网| 亚洲不卡免费看| 国产免费一级a男人的天堂| 一个人免费在线观看的高清视频| 蜜桃亚洲精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品美女久久久久99蜜臀| aaaaa片日本免费| 99久久精品国产亚洲精品| 五月玫瑰六月丁香| 婷婷精品国产亚洲av在线| 老司机深夜福利视频在线观看| 欧美成人免费av一区二区三区| 最近最新中文字幕大全电影3| 欧美日本视频| 日韩欧美国产一区二区入口| 亚洲精品久久国产高清桃花| 91在线观看av| 精品国产美女av久久久久小说| 日本一二三区视频观看| 一本综合久久免费| АⅤ资源中文在线天堂| 欧美3d第一页| 精品不卡国产一区二区三区| 淫秽高清视频在线观看| 亚洲国产中文字幕在线视频| 欧美又色又爽又黄视频| 男人的好看免费观看在线视频| 少妇的逼水好多| 精华霜和精华液先用哪个| 亚洲av免费高清在线观看| 午夜日韩欧美国产| 岛国视频午夜一区免费看| 午夜精品久久久久久毛片777| 日本熟妇午夜| 女生性感内裤真人,穿戴方法视频| 国产日本99.免费观看| 欧美最新免费一区二区三区 | 欧美黑人欧美精品刺激| 99久久综合精品五月天人人| 日韩中文字幕欧美一区二区| 最近最新中文字幕大全免费视频| 波多野结衣巨乳人妻| 美女免费视频网站| 1024手机看黄色片| 内射极品少妇av片p| 天堂动漫精品| 老司机午夜福利在线观看视频| 白带黄色成豆腐渣| 国产精品爽爽va在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| 国产乱人视频| 日韩高清综合在线| 国产欧美日韩精品一区二区| 丰满人妻一区二区三区视频av | 亚洲中文字幕日韩| 最近最新中文字幕大全免费视频| netflix在线观看网站| 他把我摸到了高潮在线观看| 中文字幕精品亚洲无线码一区| 老司机在亚洲福利影院| 亚洲精品国产精品久久久不卡| 成人亚洲精品av一区二区| 动漫黄色视频在线观看| 老鸭窝网址在线观看| 99久久精品一区二区三区| 中文字幕人成人乱码亚洲影| 精品熟女少妇八av免费久了| 午夜两性在线视频| 欧美在线一区亚洲| 韩国av一区二区三区四区| 一区福利在线观看| 欧美3d第一页| 欧美日韩黄片免| 日日干狠狠操夜夜爽| 天堂影院成人在线观看| 国产乱人视频| 亚洲最大成人手机在线| 三级男女做爰猛烈吃奶摸视频| 琪琪午夜伦伦电影理论片6080| 精品日产1卡2卡| 欧美三级亚洲精品| 成人午夜高清在线视频| 好看av亚洲va欧美ⅴa在| 精品国产美女av久久久久小说| 可以在线观看的亚洲视频| 在线十欧美十亚洲十日本专区| 有码 亚洲区| 欧美国产日韩亚洲一区| 亚洲国产精品sss在线观看| 午夜老司机福利剧场| 欧美+日韩+精品| 99精品欧美一区二区三区四区| 色综合欧美亚洲国产小说| 中文字幕av成人在线电影| 午夜老司机福利剧场| 特级一级黄色大片| 欧美性感艳星| 成人精品一区二区免费| 亚洲片人在线观看| 99在线视频只有这里精品首页| 免费看光身美女| 久久精品影院6| 婷婷丁香在线五月| 男女午夜视频在线观看| 免费在线观看成人毛片| 在线观看av片永久免费下载| 男人的好看免费观看在线视频| 免费看光身美女| 亚洲无线在线观看| 最近最新中文字幕大全电影3| 91av网一区二区| 99精品久久久久人妻精品| 少妇高潮的动态图| 91在线精品国自产拍蜜月 | 69av精品久久久久久| 亚洲欧美日韩高清在线视频| 午夜a级毛片| 亚洲人成电影免费在线| 精品一区二区三区人妻视频| 久久久久九九精品影院| 亚洲无线观看免费| 中文字幕熟女人妻在线| 波多野结衣巨乳人妻| 草草在线视频免费看| 欧美丝袜亚洲另类 | 内射极品少妇av片p| 国产一区二区在线av高清观看| 老司机福利观看| 国产三级中文精品| 国产成人aa在线观看| 国产精品久久久久久久电影 | 国产一区二区三区视频了| 狠狠狠狠99中文字幕| 亚洲成av人片在线播放无| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 男人舔奶头视频| 毛片女人毛片| 亚洲 欧美 日韩 在线 免费| 日本a在线网址| 午夜免费男女啪啪视频观看 | 成人永久免费在线观看视频| 国产一区二区亚洲精品在线观看| 99热精品在线国产| 99在线人妻在线中文字幕| 久久伊人香网站| av天堂在线播放| 好男人在线观看高清免费视频| 久久国产精品影院| 夜夜爽天天搞| 99久久成人亚洲精品观看| 亚洲av成人不卡在线观看播放网| 国语自产精品视频在线第100页| 日本精品一区二区三区蜜桃| 国产在线精品亚洲第一网站| 久久这里只有精品中国| 亚洲av电影不卡..在线观看| 99国产极品粉嫩在线观看| 亚洲国产色片| 三级国产精品欧美在线观看| 一个人观看的视频www高清免费观看| 可以在线观看毛片的网站| 亚洲成人久久性| 国内精品久久久久精免费| 久久伊人香网站| 久久国产精品影院| 天堂动漫精品| 99久久精品国产亚洲精品| 日本免费一区二区三区高清不卡| 99精品久久久久人妻精品| 欧美三级亚洲精品| 成年人黄色毛片网站| 国产精品久久久久久久电影 | 两性午夜刺激爽爽歪歪视频在线观看| 欧美一区二区国产精品久久精品| 麻豆一二三区av精品| 久久精品国产清高在天天线| 国产成人啪精品午夜网站| 美女免费视频网站| 久久久国产成人精品二区| 亚洲专区中文字幕在线| 可以在线观看的亚洲视频| 国产老妇女一区| 嫩草影院入口| 三级男女做爰猛烈吃奶摸视频| 久久久久久久精品吃奶| 在线十欧美十亚洲十日本专区| 日韩欧美免费精品| 日韩国内少妇激情av| 丰满乱子伦码专区| 18+在线观看网站| 变态另类丝袜制服| 欧美一级a爱片免费观看看| 他把我摸到了高潮在线观看| 成熟少妇高潮喷水视频| 久久久久亚洲av毛片大全| 日韩亚洲欧美综合| 每晚都被弄得嗷嗷叫到高潮| 久99久视频精品免费| 亚洲人成网站在线播放欧美日韩| а√天堂www在线а√下载| 18+在线观看网站| 久久久国产精品麻豆| 亚洲av中文字字幕乱码综合| 国产精品爽爽va在线观看网站| 精品久久久久久久人妻蜜臀av| 哪里可以看免费的av片| 国产激情欧美一区二区| 久久99热这里只有精品18| 熟女少妇亚洲综合色aaa.| 丁香欧美五月| 成人鲁丝片一二三区免费| 午夜影院日韩av| 国产美女午夜福利| 国产av在哪里看| 国产麻豆成人av免费视频| 色哟哟哟哟哟哟| 国模一区二区三区四区视频| 又紧又爽又黄一区二区| 桃红色精品国产亚洲av| 国产精品久久久久久久电影 | 午夜免费成人在线视频| 色视频www国产| 国产男靠女视频免费网站| 可以在线观看的亚洲视频| 麻豆久久精品国产亚洲av| 在线观看午夜福利视频| 在线观看66精品国产| 女人十人毛片免费观看3o分钟| www日本在线高清视频| 岛国在线免费视频观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av熟女| 国产精品亚洲美女久久久| 亚洲国产欧美人成| 欧美日本视频| 欧美性猛交╳xxx乱大交人| 日韩欧美在线乱码| 亚洲av一区综合| 欧美绝顶高潮抽搐喷水| 亚洲av一区综合| 伊人久久精品亚洲午夜| а√天堂www在线а√下载| 搡老熟女国产l中国老女人| 最近视频中文字幕2019在线8| 国产熟女xx| 久久久久久大精品| 99精品在免费线老司机午夜| 哪里可以看免费的av片| 中文字幕高清在线视频| 18禁在线播放成人免费| 少妇高潮的动态图| 十八禁人妻一区二区| 国产视频一区二区在线看| a在线观看视频网站| 国产亚洲精品久久久久久毛片| 偷拍熟女少妇极品色| 99热这里只有是精品50| 国产av不卡久久| 日日夜夜操网爽| 国产精品三级大全| 国产亚洲精品综合一区在线观看| 在线观看美女被高潮喷水网站 | 久久精品91蜜桃| 最后的刺客免费高清国语| 久久精品91蜜桃| 久久久久九九精品影院| 国产老妇女一区| 禁无遮挡网站| 夜夜看夜夜爽夜夜摸| 性色avwww在线观看| 精品一区二区三区人妻视频| 精品无人区乱码1区二区| 国内少妇人妻偷人精品xxx网站| 女警被强在线播放| 在线视频色国产色| 精品日产1卡2卡| www日本黄色视频网| 久久伊人香网站| 久久精品国产清高在天天线| 午夜精品一区二区三区免费看| 国产欧美日韩精品亚洲av| 黄片小视频在线播放| 中文在线观看免费www的网站| 亚洲av免费在线观看| 免费人成在线观看视频色| 淫秽高清视频在线观看| 亚洲午夜理论影院| 九九热线精品视视频播放| 内射极品少妇av片p| 99久久无色码亚洲精品果冻| 亚洲人成网站在线播放欧美日韩| 青草久久国产| 男人舔奶头视频| 狂野欧美激情性xxxx| 国内揄拍国产精品人妻在线| 久久久精品大字幕| 噜噜噜噜噜久久久久久91| 熟妇人妻久久中文字幕3abv| 黄色视频,在线免费观看| 成人高潮视频无遮挡免费网站| 欧美xxxx黑人xx丫x性爽| 亚洲成人免费电影在线观看| 在线免费观看不下载黄p国产 | 亚洲专区中文字幕在线| 成年女人毛片免费观看观看9| 丁香欧美五月| 国产精品久久电影中文字幕| 久久这里只有精品中国| 免费人成在线观看视频色| 国产精品精品国产色婷婷| 成人精品一区二区免费| 亚洲性夜色夜夜综合| 亚洲av五月六月丁香网| 久久久久国内视频| 一进一出抽搐gif免费好疼| 非洲黑人性xxxx精品又粗又长| 午夜免费成人在线视频| 亚洲男人的天堂狠狠| 草草在线视频免费看| 天堂网av新在线| 舔av片在线| 欧美绝顶高潮抽搐喷水| 18禁在线播放成人免费| 欧美一区二区亚洲| 国产又黄又爽又无遮挡在线| 久久精品国产亚洲av香蕉五月| 国产亚洲精品久久久com| 在线十欧美十亚洲十日本专区| 51午夜福利影视在线观看| 91九色精品人成在线观看| 成人特级av手机在线观看| 国产欧美日韩精品一区二区| 亚洲av免费在线观看| 中文字幕人妻熟人妻熟丝袜美 | 国产精品美女特级片免费视频播放器| 三级国产精品欧美在线观看| 毛片女人毛片| 日本黄色视频三级网站网址| 观看美女的网站| 国产精品亚洲美女久久久| 国产欧美日韩精品亚洲av| 色综合婷婷激情| а√天堂www在线а√下载| 变态另类成人亚洲欧美熟女| 一进一出抽搐动态| 97人妻精品一区二区三区麻豆| 真实男女啪啪啪动态图| or卡值多少钱| 久久久久国产精品人妻aⅴ院| 国产成人影院久久av| 日韩精品青青久久久久久| 久久久国产成人精品二区| 国产高清激情床上av| 国产 一区 欧美 日韩| 天堂动漫精品| 亚洲成av人片在线播放无| 国产精品 国内视频| 大型黄色视频在线免费观看| 国产单亲对白刺激| 九九久久精品国产亚洲av麻豆| 一级毛片女人18水好多| 免费大片18禁| av天堂中文字幕网| 99热6这里只有精品| 99久久精品热视频| 波多野结衣巨乳人妻| 俄罗斯特黄特色一大片| 黄色日韩在线| 日韩有码中文字幕| 日韩成人在线观看一区二区三区| 亚洲av电影不卡..在线观看| 亚洲精品色激情综合| 中文字幕av在线有码专区| 久久亚洲真实| 身体一侧抽搐| 国产97色在线日韩免费| 午夜免费观看网址| 国产精品电影一区二区三区| 极品教师在线免费播放| 国产精品国产高清国产av| 十八禁人妻一区二区| 人人妻人人澡欧美一区二区| 国产高清三级在线| 乱人视频在线观看| 麻豆成人av在线观看| 国产真实乱freesex| 美女免费视频网站| 亚洲不卡免费看| 19禁男女啪啪无遮挡网站| 亚洲国产精品合色在线| 黄片大片在线免费观看| 色在线成人网| 日本在线视频免费播放| 久久久久久国产a免费观看| 中文资源天堂在线| 一边摸一边抽搐一进一小说| 一区二区三区高清视频在线| 亚洲人成伊人成综合网2020| 村上凉子中文字幕在线| 国内久久婷婷六月综合欲色啪| 波多野结衣高清作品| 熟妇人妻久久中文字幕3abv| 色精品久久人妻99蜜桃| 亚洲av成人不卡在线观看播放网| 欧美日韩亚洲国产一区二区在线观看| 88av欧美| 亚洲国产欧美网| 最后的刺客免费高清国语| 欧美日本亚洲视频在线播放| 熟女少妇亚洲综合色aaa.| 九色成人免费人妻av| 国内精品一区二区在线观看| 久久久国产成人免费| 国产不卡一卡二| 午夜精品一区二区三区免费看| av视频在线观看入口| 成人特级黄色片久久久久久久| 别揉我奶头~嗯~啊~动态视频| 99国产极品粉嫩在线观看| 最近最新中文字幕大全电影3| 欧美日韩乱码在线| 亚洲专区国产一区二区| 免费在线观看亚洲国产| 男人舔女人下体高潮全视频| 啦啦啦观看免费观看视频高清| 国产高清有码在线观看视频| 精品电影一区二区在线| 成熟少妇高潮喷水视频| 国产黄a三级三级三级人| 又黄又粗又硬又大视频| 嫁个100分男人电影在线观看| 人人妻,人人澡人人爽秒播| 日韩欧美国产在线观看| 国产黄a三级三级三级人| 日韩国内少妇激情av| 亚洲五月婷婷丁香| 美女大奶头视频| 九色国产91popny在线| 一个人免费在线观看的高清视频| h日本视频在线播放| 日韩有码中文字幕| 国产精品,欧美在线| 人人妻人人看人人澡| 欧美成人一区二区免费高清观看| 国产午夜精品久久久久久一区二区三区 | 韩国av一区二区三区四区| 母亲3免费完整高清在线观看| 女人高潮潮喷娇喘18禁视频| 日韩欧美国产在线观看| 黄色视频,在线免费观看| 亚洲成人久久性| 亚洲人成网站在线播| 黄色视频,在线免费观看| 人妻夜夜爽99麻豆av| 国产久久久一区二区三区| 欧美日韩乱码在线|