相啟森,時(shí)國(guó)慶,馬云芳,董吉林,申瑞玲
(鄭州輕工業(yè)學(xué)院食品與生物工程學(xué)院,河南省食品生產(chǎn)與安全協(xié)同創(chuàng)新中心,河南鄭州450002)
致敏性植物幾丁質(zhì)酶研究進(jìn)展
相啟森,時(shí)國(guó)慶,馬云芳,董吉林,申瑞玲*
(鄭州輕工業(yè)學(xué)院食品與生物工程學(xué)院,河南省食品生產(chǎn)與安全協(xié)同創(chuàng)新中心,河南鄭州450002)
幾丁質(zhì)酶(EC 3.2.1.14)是一類能夠催化水解幾丁質(zhì)結(jié)構(gòu)中β-1,4糖苷鍵的水解酶,廣泛存在于植物、動(dòng)物和微生物等多種生物中。植物幾丁質(zhì)酶的高水平表達(dá)能夠增強(qiáng)植物對(duì)害蟲、病原菌和環(huán)境脅迫的抵抗能力。最近的研究表明,來(lái)源于植物性食品的幾丁質(zhì)酶是一種重要的食品過(guò)敏原,與乳膠-水果綜合癥密切相關(guān)。致敏性植物幾丁質(zhì)酶的潛在健康危害引起了廣泛的關(guān)注。本文總結(jié)了致敏性植物幾丁質(zhì)酶的分布、結(jié)構(gòu)、分類等方面的研究進(jìn)展,探討了致敏性植物幾丁質(zhì)酶對(duì)食品安全的影響,以期為食品中致敏性植物幾丁質(zhì)酶的分離、結(jié)構(gòu)鑒定、過(guò)敏原性評(píng)價(jià)和控制技術(shù)等方面的研究提供參考。
食物過(guò)敏,植物幾丁質(zhì)酶,過(guò)敏原
近年來(lái),世界范圍內(nèi)食物過(guò)敏性疾病的發(fā)病率持續(xù)上升,嚴(yán)重威脅了人類健康。研究表明,約有5%的成年人發(fā)生食物過(guò)敏,而嬰幼兒及兒童的發(fā)病率相對(duì)更高,約為8%[1-2]。食物過(guò)敏(Food allergy)主要是免疫球蛋白E(IgE)介導(dǎo)的I型超敏反應(yīng)(即過(guò)敏反應(yīng)),還有一小部分屬于非IgE介導(dǎo)的IV型超敏反應(yīng)(即遲發(fā)型超敏反應(yīng))。食物過(guò)敏反應(yīng)發(fā)生迅速,能夠損傷多種組織器官,可導(dǎo)致過(guò)敏性休克、低血壓、心律失常等癥狀,嚴(yán)重時(shí)甚至危及生命[3-4]。據(jù)估計(jì),美國(guó)每年約有100人死于食物過(guò)敏反應(yīng)[5]。目前,食物過(guò)敏已成為全球關(guān)注的食品安全問(wèn)題和公共健康問(wèn)題。
食品中能使機(jī)體產(chǎn)生過(guò)敏反應(yīng)的抗原分子即為食品過(guò)敏原,食品過(guò)敏原大部分是蛋白質(zhì)[6]。分離和鑒定食品過(guò)敏原是研究食物過(guò)敏性疾病發(fā)生機(jī)制和預(yù)防措施的重要基礎(chǔ)。植物性食品是食品過(guò)敏原的重要來(lái)源,國(guó)內(nèi)外學(xué)者對(duì)來(lái)源于蔬菜、水果、小麥、大豆等植物性食品的過(guò)敏原進(jìn)行了大量研究[7-8]。幾丁質(zhì)(Chitin)又名甲殼素,是由N-乙?;咸烟前芬驭?1,4糖苷鍵聚合而成的線型高分子聚合物,廣泛存在于自然界中。幾丁質(zhì)酶(Chitinase)能夠催化水解幾丁質(zhì)生成N-乙酰葡糖胺,廣泛存在于植物、動(dòng)物、細(xì)菌、真菌和病毒等生物中[9-10]。大量研究表明,植物幾丁質(zhì)酶是一類重要的食品過(guò)敏原,其潛在的健康危害引起了廣泛的關(guān)注[9-12]。本文總結(jié)了植物幾丁質(zhì)酶在植物中的分布及其分類、結(jié)構(gòu)和過(guò)敏原性等方面的研究進(jìn)展,并探討了植物幾丁質(zhì)酶對(duì)食品安全的影響,以期為食品中致敏性植物幾丁質(zhì)酶的分離、結(jié)構(gòu)鑒定、過(guò)敏原性評(píng)價(jià)和控制技術(shù)等方面的研究提供參考。
幾丁質(zhì)酶的分類方法主要包括以下3種。
1.1根據(jù)國(guó)際生物化學(xué)和分子生物學(xué)聯(lián)合會(huì)(ⅠUBMB)酶學(xué)委員會(huì)(EC)分類
由于幾丁質(zhì)酶和纖維素酶有許多相同之處,且同屬于糖基水解酶類,根據(jù)國(guó)際生物化學(xué)和分子生物學(xué)聯(lián)合會(huì)(IUBMB)酶學(xué)委員會(huì)(EC)的命名原則,幾丁質(zhì)酶被命名為EC.3.2.1.14[13]。
1.2根據(jù)催化部位氨基酸序列相似性分類
根據(jù)催化部位氨基酸序列的相似性,Henrssat將糖基水解酶分為57個(gè)家族,其中幾丁質(zhì)酶(EC.3.2.1.14)被分為18和19家族,而同樣參與幾丁質(zhì)降解的β-N-乙酰己糖胺酶(EC 3.2.1.52)被分為20家族[14-16]。18家族由病毒、真菌、昆蟲、植物、動(dòng)物等不同來(lái)源的幾丁質(zhì)酶構(gòu)成[17];而19家族幾丁質(zhì)酶幾乎全部由來(lái)源于植物,只有很少一部分來(lái)源于灰色鏈霉菌等微生物[17-18]。
1.3根據(jù)基因序列和結(jié)構(gòu)差異分類
根據(jù)基因序列和結(jié)構(gòu)差異,植物幾丁質(zhì)酶可分為5類,即I~V類。其中I、II和IV類植物幾丁質(zhì)酶屬于19家族,而III和V類植物幾丁質(zhì)酶屬于18家族[19-20]。
如圖1所示,植物幾丁質(zhì)酶前體一般含有一個(gè)N-端信號(hào)區(qū)(前導(dǎo)肽區(qū),Presequence module,PM)和一個(gè)催化區(qū)(Catalytic module,CM),I和IV類幾丁質(zhì)酶在PM區(qū)之后有富含半胱氨酸的幾丁質(zhì)結(jié)合域(Chitinbinding modules,CtBM),CtBM與CM之間由可變交聯(lián)區(qū)(Linker module,LM)連接[10,20]。
圖1 植物幾丁質(zhì)酶結(jié)構(gòu)示意圖Fig.1 Schematic representation of the structure of plant chitinase
I類植物幾丁質(zhì)酶由CtBM、CM和LM組成,且與煙草I類幾質(zhì)酶同源性大于50%;II類植物幾丁質(zhì)酶與煙草I類和II類幾丁質(zhì)酶的同源性大于50%,但缺少CtBM結(jié)構(gòu)[21-22]。III植物類幾丁質(zhì)酶與煙草III類幾丁質(zhì)酶和溶菌酶的同源性大于50%[10,23],屬于植物病程相關(guān)蛋白8(Pathogenesis-related proteins 8,PR-8)[22-23]。IV類幾丁質(zhì)酶與菜豆(Phaseolus vulgaris)PR-4蛋白在CM區(qū)的同源性大于50%,且其CM區(qū)比I類和II類植物幾丁質(zhì)酶約少50個(gè)氨基酸殘基[10]。I和II類植物幾丁質(zhì)酶在CM區(qū)含有5個(gè)環(huán)結(jié)構(gòu)(Loop),IV類植物幾丁質(zhì)酶僅含有兩個(gè)環(huán)結(jié)構(gòu),而III和V類植物幾丁質(zhì)酶結(jié)構(gòu)中均不含有環(huán)結(jié)構(gòu)[10,20]。
幾丁質(zhì)酶廣泛存在于植物的根、莖、葉、果實(shí)以及種子等組織中,在抵抗防御病原物侵染和不良環(huán)境脅迫等方面具有重要作用[24-25]。植物病程相關(guān)蛋白(PR蛋白)是植物在病理或病理相關(guān)環(huán)境下誘導(dǎo)產(chǎn)生的一類蛋白,具有抵抗真菌、細(xì)菌、病毒、昆蟲等病原物侵染和干旱、鹽漬等逆境脅迫等多重作用[25]。根據(jù)結(jié)構(gòu)特點(diǎn),PR蛋白可分為17類,其中PR-3、-4、-8和-11具有幾丁質(zhì)酶活性[26]。大量研究證實(shí),植物幾丁質(zhì)酶是一種重要的食品過(guò)敏原。此外,由于幾丁質(zhì)酶具有增強(qiáng)植物抗真菌病害的能力[22,25],幾丁質(zhì)酶基因被廣泛應(yīng)用于抗真菌病害植物的基因工程育種研究中[27-28],但經(jīng)基因工程導(dǎo)入的外源幾丁質(zhì)酶基因表達(dá)產(chǎn)物是否具有致敏性尚不清楚。
3.1Ⅰ類植物幾丁質(zhì)酶
絕大部分具有致敏性的植物幾丁質(zhì)酶屬于I類。I類植物幾丁質(zhì)酶存在于鱷梨(Persea americana)[29-30]、歐洲栗(Castanea sativa)[30-31]、香蕉(Musa paradisiaca)[32-33]、獼猴桃(Actidinia chinensis)[34]等植物果實(shí)中。Sowka等從鱷梨中果皮分離得到一種分子量為32ku的蛋白質(zhì)(Prs a 1)。該蛋白能與20份乳膠過(guò)敏患者(其中7人對(duì)鱷梨過(guò)敏)血清中的15份發(fā)生免疫反應(yīng),表明該蛋白能夠與乳膠過(guò)敏原發(fā)生交叉反應(yīng)。cDNA序列分析結(jié)果表明,Prs a 1的cDNA能夠編碼326個(gè)氨基酸組成的內(nèi)切幾丁質(zhì)酶。采用畢赤酵母(Pichia pastoris)重組表達(dá)的Prs a 1蛋白具有內(nèi)切幾丁質(zhì)酶活性并與IgE發(fā)生結(jié)合。氨基酸序列分析表明,Prs a 1與主要乳膠過(guò)敏原-橡膠蛋白的前體(Prohevein)在CtBM區(qū)的氨基酸序列相似度為70%[29]。Mikkola等從香蕉中分離得到的I類幾丁質(zhì)酶(分子量分別為32ku和33ku)均能與15份來(lái)自對(duì)天然乳膠過(guò)敏患者血清中的9份發(fā)生免疫反應(yīng),其N-末端序列與橡膠蛋白(Hevein)氨基酸序列相似度約為80%,其中33 ku蛋白中內(nèi)含肽(20個(gè)氨基酸)與水稻(Oryza sativa)內(nèi)切性幾丁質(zhì)酶的相似度為95%[32-33]。I類致敏性植物幾丁質(zhì)酶的來(lái)源和特點(diǎn)見(jiàn)表1。
3.2Ⅰ類植物幾丁質(zhì)酶
與I類植物幾丁質(zhì)酶相比,II類植物幾丁質(zhì)酶僅缺乏CtBM結(jié)構(gòu)。但由于早期研究認(rèn)為幾丁質(zhì)酶的致敏性與CtBM結(jié)構(gòu)有關(guān),因此在早期研究中,II類幾丁質(zhì)酶并未被歸為食品過(guò)敏原。例如,Diaz-Perales等的研究表明,鱷梨和歐洲栗中II類幾丁質(zhì)酶因缺乏CtBM而不能與患者血清發(fā)生IgE結(jié)合反應(yīng)[30]。但最新研究表明,存在于小麥粉中的II類幾丁質(zhì)酶(分子量約為26ku)能與過(guò)敏性皮膚炎患者血清IgE發(fā)生結(jié)合反應(yīng)[38]。此外,從大麥[39]、番木瓜[40]、黑麥[41]、感染晚疫病的馬鈴薯[42]等樣品中分離得到了多種II類幾丁質(zhì)酶,但目前尚不能確定上述II類幾丁質(zhì)酶是否具有致敏性。
3.3ⅠⅠ類植物幾丁質(zhì)酶
大量研究表明,來(lái)源于滇刺棗(Zizyphusmauritiana)[43-44]、橡膠(Hevea brasiliensis)[45]、樹莓(Rubus ideaus)[46]和小果咖啡(Coffea arabica)[47]的III類幾丁質(zhì)酶可能具有致敏性。滇刺棗又名毛葉棗、印度棗和臺(tái)灣青棗等,是一種主產(chǎn)于印度、泰國(guó)和中國(guó)臺(tái)灣的新興熱帶水果[48]。Lee等先后從滇刺棗中分離得到分子量分別為42ku和30ku的兩種蛋白質(zhì),均能與滇刺棗過(guò)敏者血清IgE發(fā)生結(jié)合反應(yīng)[43-44]。30ku蛋白(被命名為Ziz m 1)的cDNA克隆能夠編碼330個(gè)氨基酸,分子量為33.86ku,并推測(cè)含有25個(gè)氨基酸組成的前導(dǎo)肽。重組表達(dá)的Ziz m 1蛋白具有幾丁質(zhì)酶活力,其皮膚過(guò)敏測(cè)試陽(yáng)性率為87.5%。Ziz m 1蛋白與來(lái)源于橡膠(Hevea brasiliensis)、紅豆(Vigna angularis)、辣椒(Capsicum annuum)、水稻(Oryza sativa)的III類幾丁質(zhì)酶的氨基酸序列相似度分別為45.2%、45.3%、44.7%和41.2%[44]。此外,Marzban等從樹莓(Rubus ideaus)分離得到的III類幾丁質(zhì)酶與血清IgE結(jié)合率超過(guò)80%[46]。Manavski等從小果咖啡分離得到一種III類幾丁質(zhì)酶(Cof a1),發(fā)現(xiàn)重組表達(dá)的Cof a 1能與2名咖啡過(guò)敏患者的血清發(fā)生免疫反應(yīng),并在兩人血清中均發(fā)現(xiàn)了抗Cof a1的IgE抗體[47]。
表1 I類致敏性植物幾丁質(zhì)酶的來(lái)源和特點(diǎn)Table 1 Sources and characteristics of class I allergenic plant chitinases
3.4ⅠV類植物幾丁質(zhì)酶
來(lái)源于日本柳杉(Cryptomeria japonica)的IV類植物幾丁質(zhì)酶被證實(shí)具有過(guò)敏原性[49]。日本柳杉是導(dǎo)致日本國(guó)內(nèi)超過(guò)13%的人口出現(xiàn)花粉癥的主要原因[50-51]。Fujimura等從日本柳杉花粉中分離得到一種具有高IgE結(jié)合能力的蛋白(CJP-4),其cDNA克隆能夠編碼281個(gè)氨基酸,天然狀態(tài)下能與31名患者血清中的IgE全部結(jié)合,并能與乳膠過(guò)敏原發(fā)生交叉反應(yīng)[49]。同時(shí),CJP-4蛋白具有內(nèi)切性幾丁質(zhì)酶活性,與IV類幾丁質(zhì)酶具有很高的同源性,序列相似度可以達(dá)到43.1%~65.6%[49]。此外,從釀酒葡萄(Vitis vinifera)、美洲葡萄(Vitis labrusca)及其所制葡萄酒[52]、玉米粉[53-54]等樣品中分離鑒定了具致敏性的IV類幾丁質(zhì)酶,但尚未確定其結(jié)構(gòu)。同時(shí),Ubhayasekera等分析了一種挪威云杉IV類幾丁質(zhì)酶的x-射線晶體結(jié)構(gòu)但未報(bào)到其是否具有致敏性[20]。針對(duì)上述IV類幾丁質(zhì)酶,應(yīng)繼續(xù)開展其結(jié)構(gòu)和過(guò)敏原性評(píng)價(jià)等方面的研究。
3.5V類植物幾丁質(zhì)酶
目前,從蘇鐵(Cycas revoluta)、擬南芥(Arabidopsis thaliana)和煙草(Nicotiana tabacum)中分離鑒定了多種V型幾丁質(zhì)酶,但尚未證實(shí)其是否具有過(guò)敏原性[55-57]。Taira等從蘇鐵中分離得到一種分子量為40ku、等電點(diǎn)為5.6的V型幾丁質(zhì)酶[55]。Ohnuma等先后從擬南芥和煙草中分離得到兩種V型幾丁質(zhì)酶并測(cè)定了其晶體結(jié)構(gòu)[56-57]。因此,針對(duì)V類植物幾丁質(zhì)酶,研究工作的重點(diǎn)應(yīng)為采用IgE檢測(cè)技術(shù)、皮膚過(guò)敏測(cè)試等方法評(píng)價(jià)其過(guò)敏原性。
與植物幾丁質(zhì)酶結(jié)構(gòu)類似的一些蛋白質(zhì)也具有致敏性,其中最常見(jiàn)的是橡膠蛋白(Hevein)。橡膠蛋白是由巴西橡膠樹(Hevea brasilensis)乳管細(xì)胞特化的液泡-黃色體分泌的小分子酸性凝集素[58]。橡膠蛋白(Hev b 6.02)是主要的乳膠過(guò)敏原,能與80%以上的乳膠過(guò)敏患者血清中的IgE發(fā)生結(jié)合反應(yīng)[59]。橡膠蛋白由43個(gè)氨基酸殘基組成,分子量為4.7ku。橡膠蛋白的氨基酸序列與I類和IV類幾丁質(zhì)酶的CtBM區(qū)、小麥胚凝集素(Wheat germ agglutinin,WGA)等具有高度的同源性,說(shuō)明橡膠蛋白與它們有著極其相似的生理功能[59]。Diaz-Perales等的研究表明,來(lái)源于鱷梨和歐洲栗的I類幾丁質(zhì)酶與橡膠蛋白N-末端氨基酸序列相似度很高,均能與患者血清IgE發(fā)生結(jié)合反應(yīng),這與其CtBM氨基酸序列與橡膠蛋白類似有關(guān)[30]。Broekaert等獲得了橡膠蛋白的cDNA克?。℉EV1)。HEV1包括編碼204個(gè)氨基酸的開放閱讀框架,其中分為由17個(gè)氨基酸組成的信號(hào)序列、C-端區(qū)域(144個(gè)氨基酸殘基)和高度保守的N-端區(qū)域(Hevein,43個(gè)氨基酸殘基)三個(gè)組成部分[60]。橡膠蛋白與幾丁質(zhì)酶、小麥胚凝集素的結(jié)構(gòu)比較見(jiàn)圖2[61]。
圖2 橡膠蛋白,幾丁質(zhì)酶和小麥胚凝集素結(jié)構(gòu)比較Fig.2 Comparison of structures among hevein,chitinases,and wheat germ agglutinin
食物過(guò)敏已成為全球關(guān)注的食品安全問(wèn)題和公共健康問(wèn)題。作為一類重要的食品過(guò)敏原,植物幾丁質(zhì)酶廣泛存在于香蕉、獼猴桃、滇刺棗、四季豆、小麥、玉米等蔬菜、水果和食品原料中,其潛在的健康危害引起了廣泛的關(guān)注。國(guó)外學(xué)者對(duì)致敏性植物幾丁質(zhì)酶進(jìn)行了分離純化、結(jié)構(gòu)鑒定和過(guò)敏原性評(píng)價(jià)等諸多方面的研究。然而,國(guó)內(nèi)針對(duì)食品中致敏性植物幾丁質(zhì)酶的研究尚處于起步階段。鑒于植物幾丁質(zhì)酶在蔬菜水果、食品原料中的廣泛分布和潛在的健康危害,國(guó)內(nèi)研究機(jī)構(gòu)非常有必要加強(qiáng)該領(lǐng)域的研究工作。首先應(yīng)加強(qiáng)基礎(chǔ)研究工作,開展食品中幾丁質(zhì)酶過(guò)敏原性評(píng)價(jià)方面的研究,并對(duì)食品中致敏性植物幾丁質(zhì)酶進(jìn)行分離、純化和結(jié)構(gòu)鑒定。針對(duì)目前多采用血清IgE檢測(cè)食品中致敏性植物幾丁質(zhì)酶檢測(cè)的現(xiàn)狀,還應(yīng)建立快速、高效、高通量、高靈敏度的食品中致敏性植物幾丁質(zhì)酶檢測(cè)方法。此外,還應(yīng)系統(tǒng)研究熱加工、輻照、高壓、高壓脈沖電場(chǎng)、超聲波等食品物理加工方式對(duì)幾丁質(zhì)酶過(guò)敏原結(jié)構(gòu)和致敏性的影響,開發(fā)降低或脫除食品中致敏性植物幾丁質(zhì)酶過(guò)敏原的新型加工技術(shù),以期保障消費(fèi)者的飲食安全和身體健康。
[1]Sicherer SH,Sampson HA.Food allergy:Epidemiology,pathogenesis,diagnosis,and treatment[J].J Allergy Clin Immunol,2014,133(2):291-307.
[2]Van Hengel AJ.Food allergen detection methods and the challenge to protect food-allergic consumers[J].Anal Bioanal Chem,2007,389(1):111-118.
[3]Ho MHK,Wong WHS,Chang C.Clinical spectrum of food allergies:a comprehensive review[J].Clin Rev Allergy Immunol,2014,46(3):198-210.
[4]Ebo DG,Stevens WJ.IgE-mediated food allergy-extensive review of the literature[J].Acta Clin Belg,2001,56(4):234-247.
[5]Sampson HA,Mendelson L,Rosen JP.Fatal and near-fatal anaphylactic reactions to food in children and adolescents[J].N Engl J Med,1992,327(6):380-384.
[6]金瑩,房保海.食品過(guò)敏原的分類及安全管理[J].食品安全質(zhì)量檢測(cè)學(xué)報(bào),2012,3(4):240-244.
[7]Breiteneder H,Radauer C.A classification of plant food allergens[J].J Allergy Clin Immunol,2004,113(5):821-830.
[8]Zuidmeer L,Goldhahn K,Rona RJ,et al.The prevalence of plant food allergies:a systematic review[J].J Allergy Clin Immuno,2008,121(5):1210-1218.
[9]Hamid R,Khan MA,Ahmad M,et al.Chitinases:an update[J].J Pharm Bioallied Sci,2013,5(1):21-29.
[10]Volpicella M,Leoni C,F(xiàn)anizza I,et al.Overview of plant chitinases identified as food allergens[J].J Agric Food Chem,2014,62(25):5734-5742.
[11]Lee CG,Da Silva CA,Dela Cruz CS,et al.Role of chitin and chitinase/chitinase-like proteins in inflammation,tissue remodeling,and injury[J].Annu Rev Physiol,2011,73:479-501.
[12]Duru S,Yüceege M,Ard?? S.Chitinases and lung diseases[J].Tuberk Toraks,2013,61(1):71-75.
[13]趙曉琴,李冠.幾丁質(zhì)酶研究進(jìn)展[J].新疆大學(xué)學(xué)報(bào):自然科學(xué)版,2003,20(4):1210-1218.
[14]Henrissat B.A classification of glycosyl hydrolases based on amino acid sequence similarities[J].Biochem J,1991,280(2):309-316.
[15]Henrissat B,Bairoch A.New families in the classification of glycosyl hydrolases based on amino acid sequence similarities[J]. Biochem J,1993,293(3):781-788.
[16]Henrissat B,Bairoch A.Updating the sequenee-based classification of glycosyl hydrolases[J].Bioehem J,1996,316(2):695-696.
[17]Passarinho PA,de Vries SC.Arabidopsis chitinases:a genomic survey[J].Arabidopsis Book,2002,1:e0023.
[18]Watanabe T,Kanai R,Kawase T,et al.Family 19 chitinases of Streptomyces species:characterization and distribution[J]. Microbiology,1999,1451(1):3353-3363.
[19]Neuhaus JM,F(xiàn)ritig B,Linthorst HJM,et al.A revised nomenclature for chitinase genes[J].Plant Mol Biol Rep,1996,141(1):102-104.
[20]Ubhayasekera W,Rawat R,Ho SW,et al.The first crystal structures of a family 19 class IV chitinase:the enzyme from Norway spruce[J].Plant Mol Biol,2009,71(3):277-289.
[21]Raikhel NV,Lee HI,Broekaert WF.Structure and function of chitin-binding proteins[J].Ann Rev of Plant Physiol Plant Mol Biol,1993,44:591-615.
[22]歐陽(yáng)石文,趙開軍,馮蘭香,等.植物幾丁質(zhì)酶的研究進(jìn)展[J].生物工程進(jìn)展,2001,21(4):30-34.
[24]Herrera-Estrella A,Chet I.Chitinases in biological control[J].EXS,1999,87:171-184.
[23]Collinge DB,Kragh KM,Mikkelsen JD,et al.Plant chitinases[J].Plant J,1993,3(1):31-40.
[25]Adrangi S,F(xiàn)aramarzi MA.From bacteria to human:a journey into the world of chitinases[J].Biotechnol Adv,2013,31(8):1786-1795.
[26]Sels J,Mathys J,De Coninck BM,et al.Plant pathogenesisrelated(PR)proteins:a focus on PR peptides[J].Plant PhysiolBiochem,2008,46(11):941-950.
[27]Sharma N,Sharma KP,Gaur RK,et al.Role of Chitinase in Plant Defense[J].Asian J Biochem,2011,6(1):29-37.
[28]Cletus J,Balasubramanian V,Vashisht D,et al.Transgenic expression of plant chitinases to enhance disease resistance[J]. Biotechnol Lett,2013,35(11):1719-1732.
[29]Sowka S,Hsieh LS,Krebitz M,et al.Identification and cloning of prs a 1,a 32-kua endochitinase and major allergen of avocado,and its expression in the yeast Pichia pastoris[J].J Biol Chem,1998,273(43):28091-28097.
[30]Díaz-Perales A,Collada C,Blanco C,et al.Class I chitinases with hevein-like domain,but not class II enzymes,are relevant chestnut and avocado allergens[J].J Allergy Clin Immunol,1998,102(1):127-133.
[31]Allona I,Collada C,Casado R,et al.Bacterial expression of an active class Ib chitinase from Castanea sativa cotyledons. Plant Mol Biol,1996,32(6):1171-1176.
[32]Sánchez-Monge R,Blanco C,Díaz-Perales A,et al.Isolation and characterization of major banana allergens:identification as fruit class I chitinases[J].Clin Exp Allergy,1999,29(5):673-680.
[33]Mikkola JH,Alenius H,Kalkkinen N,et al.Hevein-like protein domains as a possible cause for allergen cross-reactivity between latex and banana[J].J Allergy Clin Immunol,1998,102(6):1005-1012.
[34]Bublin M,Mari A,Ebner C,et al.IgE sensitization profiles toward green and gold kiwifruits differ among patients allergic to kiwifruit from 3 European countries[J].J Allergy Clin Immunol,2004,114(5):1169-1175.
[35]Hanninen AR,Mikkola JH,Kalkkinen N,et al.Increased allergen production in turnip(Brassica rapa) by treatments activating defense mechanisms[J].J Allergy Clin Immunol,1999,104(1):194-201.
[36]Díaz-Perales A,Collada C,Blanco C,et al.Cross-reactions in the latex-fruit syndrome:A relevant role of chitinases but not of complex asparagine-linkedglycans[J].J Allergy Clin Immunol,1999,104(3):681-687.
[37]Sánchez-Monge R,Blanco C,Perales AD,et al.Class I chitinases,the panallergens responsible for the latex-fruit syndrome,are induced by ethylene treatment and inactivated by heating[J].J Allergy Clin Immunol,2000,106(1 Pt 1):190-195.
[38]Sotkovsky P,SklenárˇJ,Halada P,et al.A new approach to the isolation and characterization of wheat flour allergens[J].Clin Exp Allergy,2011,41(7):1031-1043.
[39]Hart PJ,Monzingo AF,Ready MP,et al.Crystal structure of an endochitinase from Hordeum vulgare L.seeds[J].J Mol Biol,1993,229(1):189-193.
[40]Huet J,Rucktooa P,Clantin B,et al.X-ray structure of papaya chitinase reveals the substrate binding mode of glycosyl hydrolase family 19 chitinases[J].Biochemistry,2008,47(32):8283-8291.
[41]Ohnuma T,Numata T,Osawa T,et al.Crystal structure and chitin oligosaccharide-binding mode of a‘loopful’family GH19 chitinase from rye,Secale cereale,seeds[J].FEBS J,2012,279(19):3639-3651.
[42]Büchter R,Str?mberg A,Schmelzer E,et al.Primary structure and expression of acidic(class II)chitinase in potato[J].Plant Mol Biol,1997,35(6):749-761.
[43]Lee MF,Hwang GY,Chen YH,et al.Molecular cloning of Indian jujube(Zizyphus mauritiana)allergen Ziz m 1 with sequence similarity to plant class III chitinases[J].Mol Immunol,2006,43(8):1144-1151.
[44]Lee MF,Chen YH,Lan JL,et al.Allergenic components of Indian jujube(Zizyphus mauritiana)show IgE cross-reactivity with latex allergen[J].Int Arch Allergy Immunol,2004,133(3):211-216.
[45]Alenius H,Kalkkinen N,Lukka M,et al.Prohevein from the rubber tree(Hevea brasiliensis)is a major latex allergen[J].Clin Exp Allergy,1995,25(7):659-665.
[46]Marzban G,Herndl A,Kolarich D,et al.Identification of four IgE-reactive proteins in raspberry(Rubus ideaeus L.)[J]. Mol Nutr Food Res,2008,52(2):1497-1506.
[47]Manavski N,Peters U,Brettschneider R,et al.Cof a 1:identification,expression and immunoreactivity of the first coffee allergen[J].Int Arch Allergy Immunol,2012,159(3):235-242.
[48]何秋香,潘琪,陳新來(lái),等.浸鈣、殼聚糖浸泡和溫燙處理對(duì)臺(tái)灣青棗果皮褐變的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2013,29(19):120-124.
[49]Fujimura T,Shigeta S,Suwa T,et al.Molecular cloning of a class IV chitinase allergen from Japanese cedar(Cryptomeria japonica)pollenandcompetitiveinhibitionofits immunoglobulin E-binding capacity by latex C-serum[J]. Clin Exp Allergy,2005,35(2):234-243.
[50]Wang Q,Gong X,Suzuki M,et al.Size-segregated allergenic particles released from airborne Cryptomeria japonica pollen grains during the Yellow Sand Events within the pollen scattering seasons[J].Asian J Atmos Environ,2013,7(4):191-198.
[51]李文靜,劉光輝.日本柳杉花粉變應(yīng)原致敏蛋白組分[J].中華臨床免疫和變態(tài)反應(yīng)雜志,2013,7(3):93-98.
[52]Pastorello EA,F(xiàn)arioli L,Pravettoni V,et al.Identification of grape and wine allergens as an endochitinase 4,a lipid-transfer protein,and a thaumatin[J].J Allergy Clin Immunol,2003,111(2):350-359.
[53]Pastorello EA,F(xiàn)arioli L,Pravettoni V,et al.Maize food allergy:lipid-transfer proteins,endochitinases,and alpha-zein precursor are relevant maize allergens in double-blind placebocontrolled maize-challenge-positive patients[J].Anal Bioanal Chem,2009,395(1):93-102.
[54]Fasoli E,Pastorello EA,F(xiàn)arioli L,et al.Searching for allergens in maize kernels via proteomic tools[J].J Proteomics,2009,72(3):501-510.
[55]Taira T,Hayashi H,Tajiri Y,et al.A plant class V chitinase from a cycad(Cycas revoluta):biochemical characterization,cDNA isolation,and posttranslational modification[J].Glycobiology,2009,19(12):1452-1461.
[56]Ohnuma T,Numata T,Osawa T,et al.A class V chitinase from Arabidopsis thaliana:gene responses,enzymatic properties,and crystallographic analysis[J].Planta,2011,234(1):123-137.
[57]Ohnuma T,Numata T,Osawa T,et al.Crystal structure and mode of action of a class V chitinase from Nicotiana tabacum[J]. Plant Mol Biol,2011,75(3):291-304.
[58]Van Parijs J,Broekaert WF,Goldstein IJ,et al.Hevein:an antifungal protein from rubber-tree(Hevea brasiliensis)latex[J]. Planta,1991,183(2):258-264.
[59]Sánchez-Monge R,Díaz-Perales A,Blanco C,et al.Class I chitinases and the latex-fruit syndrome[J].Internet Symposium on Food Allergens,2000,2(3):137-144.
[60]Broekaert I,Lee HI,Kush A,et al.Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree(Hevea brasiliensis)[J].Proc Natl Acad Sci USA,1990,87(19):7633-7637.
[61]Division of Medical Devices,National Institute of Health Sciences.Latex-fruit syndrome and class 2 food allergy[EB/OL]. http://dmd.nihs.go.jp/latex/cross-e.html.
Research progress on allergenic plant chitinases
XIANG Qi-sen,SHI Guo-qing,MA Yun-fang,DONG Ji-lin,SHEN Rui-ling*
(College of Food and Biological Engineering,Zhengzhou University of Light Industry,Henan Collaborative Innovation Center for Food Production and Safety,Zhengzhou 450002,China)
Chitinases(EC 3.2.1.14)are hydrolytic enzymes that catalyse the random cleavage of internal β-1,4 glycosidic linkages in the chitin polymer,and they occur in a wide range of organisms including plants,animals,and microorganisms.High-level expression of chitinases could enhance the resistance of plants to pest infestation,pathogens,and other environmental challenges.Recent studies have revealed that chitinases isolated from many common plant foods were allergens involved in the latex-fruit syndrome.The potential adverse health effects of allergenic plant chitinases have attracted much attention.Advances in researches on the distributions,structures,classifications of allergenic plant chitinases and their influence on food safety were summarized in this paper to provide guidelines for the isolation,structural identification,allergenicity assessment,and control of allergenic plant chitinases in foods.
food allergy;plant chitinases;allergens
TS201.6
A
1002-0306(2015)10-0389-06
10.13386/j.issn1002-0306.2015.10.074
2014-08-04
相啟森(1984-),博士,講師,研究方向:食品化學(xué)與營(yíng)養(yǎng)。
申瑞玲(1967-),博士,教授,研究方向:食品化學(xué)與營(yíng)養(yǎng)。
鄭州輕工業(yè)學(xué)院博士科研基金資助項(xiàng)目(2013BSJJ079)。