• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of the four rearranged hopane series in geological bodies and their geochemical significances

    2015-10-25 02:03:08HongleiLiLianJiangXiaohuiChenMinZhang
    Acta Geochimica 2015年4期

    Honglei Li·Lian Jiang·Xiaohui Chen·Min Zhang

    Identification of the four rearranged hopane series in geological bodies and their geochemical significances

    Honglei Li1,2·Lian Jiang1,2·Xiaohui Chen1,2·Min Zhang1,2

    Saturated fractions in a total of 23 oil samples and hydrocarbon source rocks from the Songliao,Tarim,and Ordos Basins have been analyzed by GC—MS and GC—MS—MS.According to the relative retention,mass spectral characteristics,and comparison with existing literature,a complete carbon number distribution ranging from C27to C35(without C28)in the 17α(H)-diahopane series and early-eluting rearranged hopane series is identified.Compounds in the 18α(H)-neohopane series(Ts and C29Ts)and 21-methyl-28-nor-hopane series(29Nsp and 30Nsp)are also noted.These four series of rearranged hopanes seem to occur in both brackish-saline lacustrine and coal measure environments.However,the coal measure and swamp environments being under an oxic condition,compared with brackish-saline lacustrines,are presumably more helpful to the formation of 30E.Diversity in the content and distribution patterns indicate that rearranged hopanes could serve as good indicators of organic facies,depositional environment and maturity in petroleum geology.

    Rearranged hopanes·Early-eluting series· 21-methyl-28-nor-hopanes·Geochemical significances

    1 Introduction

    Rearranged hopanes refer to a class of biomarkers with carbon ring framework identical to that of regular hopanes,but with methane side chain carbon position being distinct from that of regular hopanes.Multiple homologues occur in hydrocarbon source rocks and crude oils.Currently,four series of rearranged hopanes have been reported.They are the 17α(H)-diahopane series,the 18α(H)-neohopane series,theearly-elutingrearrangedhopaneseries,andthe 21-methyl-28-nor-hopane series(or 28-nor-spergulane series).18α(H)-22,29,30-trisnorneohopane(Ts),which has a rearranged methyl group at C-17,is one of the first hopanoid hydrocarbons to be rigorously characterized by X-ray(Whitehead 1974;Smith 1975).Moldowan et al.(1991)identified by nuclear magnetic resonance(NMR)spectroscopy techniques a member of the 18α(H)-neohopane series(denoted‘‘C29Ts'').They also determined(by X-ray crystallography)the structure of 17α-15α-methyl-27-norhopane(C30diahopane),a member of the 17α(H)-diahopane series.Killops and Howell(1991)and Teln?s et al.(1992)noted the occurrence of a further series of unidentified rearranged hopanes in oils.Compounds in this pseudo homologous series are notable in eluting approximately two carbon numbers earlier than the regular hopanes.Farrimond and Teln?s(1996)reported this early-eluting rearranged hopane series,which appears to extend from C27to C35(without C28member).Then,the C30member(C30earlyeluting rearranged hopane or 30E)of the series was synthesized by Nytoft(2007)in the laboratory.The C2928-norspergulane(‘‘X''in Huang et al.2003),which is a member of the 21-methyl-28-nor-hopane series,was first found in some of the lacustrine oils from the Western Pearl River Basin offshore South China.Subsequently,Nytoft et al.(2006)indentified a new series of rearranged hopanesranging from C29to at least C34as 28-nor-spergulanes(or 21-methyl-28-nor-hopanes)using NMR spectroscopy.Most commonly,29Nsp is always the dominant member of the series and seems to be particularly abundant in some oils from lacustrine source rocks in South East Asia.

    In recent years,rearranged hopanes have received increasing attention as biological markers with applications for geochemical studies of petroleum source rocks and crude oils(Huang et al.2003;Li et al.2009;Zhang et al. 2009;Cheng et al.2014).However,systematic identification of the four rearranged hopane series is not reported in the domestic and overseas literature.In this article,on the basis of previous studies,we identify the four series of rearranged hopanes.Their geochemical significances are also discussed,which provides the theoretical foundation for their applications in petroleum geology.

    2 Experimental

    2.1 Samples

    Eight hydrocarbon source rocks were collected in China from the Songliao Basin(two mudstones),Tarim Basin(two coals and a carbonaceous mudstone),and Ordos Basin(three coals).A total of fifteen oil samples were chosen from the Songliao Basin.

    2.2 GC-MS and GC-MS-MS

    All source rocks were crushed into fine powder and extracted with a dichloromethane/methanol mixture(93:7 v/v)using a Soxhlet apparatus for 72 h.The asphaltene was removed from extracts and oils by precipitation in n-hexane.The deasphaltened extracts and oils were fractionated into saturated,aromatic hydrocarbons and polar compounds using open alumina-silica gel(1:2)column chromatography.The solvents for column chromatography are petroleum ether,dichloromethane,and methanol,respectively.The saturated fractions of all the samples were analyzed using gas chromatography-mass spectrometry(GC—MS)and GC—MS—MS.

    GC—MS was carried out with a HP 5973 mass spectrometer,coupled to a HP 6890 GC equipped with a HP-5MS fused silica capillary column(30 m×0.25 mm i.d.,film thicknesses 0.25 μm).The GC temperature was programmed to start at 50°C for 1 min,increase to 100°C at a rate of 20°C/min,and from 100 to 310°C at a rate of 3°C/min with a final hold of 16 min.Helium was used as the carrier gas with a rate of 1.0 ml/min and the ionization source operated at 70 eV.

    GC—MS—MS was performed using an Agilent 6890 N gas chromatograph connected to a Waters(Micromass) Quattro Micro GC tandem quadrupole mass spectrometer. AnHP-5MS,aVarianfactorFourVF-5 mscolumn(30 m×0.25 mm i.d.,film thicknesses 0.25 μm)was used.The temperature program was 20°C/min from 50 to 100°C and 3°C/min from 100 to 310°C followed by 16 min at 310°C.

    3 Results and discussion

    3.1 Identification of 17α(H)-diahopanes and earlyeluting rearranged hopanes

    All samples were selected for GC—MS analysis.The pentacyclic triterpenes of oil samples and source rocks exhibit a complex composition.In order to determine the composition and carbon number distribution of these compounds,selected saturated hydrocarbon fractions were analyzed by GC—MS—MS.The use of GC—MS—MS parent ion analysis can reveal homologous series of compounds that are analytically commingled in simple GC—MS analyses.In addition to the ubiquitous regular hopanes,four series of rearranged hopanes can be distinguished:17α(H)-diahopanes,18α(H)-neohopanes,early-elutingrearranged hopanes,and 28-nor-spergulanes.The 17α(H)-diahopane series and early-eluting rearranged hopane series are identified by their relative retention times in comparison with previous literature(Killops and Howell 1991;Moldowan et al.1991;Teln?s et al.1992).

    As shown in Fig.1,the 17α(H)-diahopane series and early-eluting rearranged hopane series are apparent from tandem mass spectrometry(MS—MS)data.The 17α(H)-diahopane series was first detected in crude oil from Prudhoe Bay in Alaska(Moldowan et al.1991),ranging from C27to C35(although the C27member is not distinct),but with no C28member;the C31—C35members elute as pairs of 22S-and 22R-isomers in m/z 191 gas chromatograms.For the samples in this study,the series displays a complete carbon number range from C27,C29—C35(C1—C8in Fig.1),with possible C35member in low abundance.Because of the lack of a distinct peak for the C28member in m/z 191 gas chromatograms,the m/z 384→191 transition was not monitored in GC—MS—MS analysis.Analogously,the early-eluting rearranged hopane series(D1—D8in Fig.1)extends from C29to C35and a C27member is also apparent from the m/z 370→191 transition(retention time around 49.18 min).Doublets are resolved for members above C30.The C30member(30E)of the series is dominated and commonly high in continental oils of China.For instance,30E is abundant in oils from the Yingmaili and Yaha regions of the Tarim Basin in western China(Zhu 1997;Zhu et al.1997).Their carbon number distributions are comparable to those of the regular17α(H)-hopanes.The compounds of the 17α(H)-diahopane series and early-eluting rearranged hopane series are observed to have a linear relationship for GC retention time,indicating that their homologues differ only in the length of the side chain.Relative retention indices(based on hopane carbon numbers)of the various pseudohomologues are given in Table 1 and the series shown in Fig.2.

    Due to co-elutions and low concentrations,it is not possible to obtain mass spectra of all members of the 17α(H)-diahopanes and early-eluting rearranged hopanes. Mass spectra of the C30diahopane and 30E are largely similar(Fig.3a,b).They are all characterized by a m/z 191 base peak,a m/z 412 molecular ion and a pattern of peaks below m/z 191 separated by 14 mass units.However,in comparison with the C30diahopane,30E has a small m/z 287 fragment,which is considered to come from fragmentation through the B-ring.This ion(m/z 287)is absent or insignificant in the spectra of the other compounds.The 30E elutes from the gas chromatograph(m/z 191)behind Ts and just in front of Tm.The elutions of the other members of the series are exhibited in Fig.1.It is clear that the early-eluting rearranged hopanes elute from the gas chromatograph approximately two carbon numbers earlier than the regular hopanes.Retention times of these four series of rearranged hopanes are provided in Table 1.The very elution of the early-eluting rearranged hopane series indicates that they are more volatile than the other hopane and rearranged hopane series.These features should help in their identification.

    3.2 Identification of 18α(H)-neohopanes and 28-norspergulanes

    According to relative retention time,we also identify the 18α(H)-neohopane series(B1—B2in Fig.1).It is clear from Figs.1 and 2 that the carbon number distribution of the 18α(H)-neohopane series differs significantly from those of the 17α(H)-hopane and the other two rearranged hopane series.Compoundsinthe18α(H)-neohopaneseries includes C27and C29—C30members;the C27member(Ts)and C29member(C29Ts)are widely recognized now,while the occurrence of higher homologues(above C31)is still unclear.This observation argues for at least partly different precursor biomolecules,the 18α(H)-neohopanes could be derived from diplopterol and diploptene or a C29hopanoid(Moldowan et al.1991;Farrimond and Teln?s 1996). Usually,Ts elutes well before Tm,C29Ts is barely resolved from,and elutes after,C29regular hopane.The C30diahopane is small in comparison to the neighboring C29Ts,but crudes and hydrocarbon source rocks in our study area show a higher m/z 191 peak from the C30diahopane than from C29Ts.Using GC retention time,F(xiàn)arrimond and Teln?s(1996)tentatively identified the peak eluted after C30regular hopane as the C30member(C30Ts)of the18α(H)-neohopane series in m/z 191 mass chromatogram. However,this member was not observed at the corresponding position in the m/z 412→191 transition in our data.The mass spectrum of C29Ts displays a regular pattern of ions separated by 14 mass units below m/z 191,a m/z 191 base peak,a large m/z 177 fragment,and a m/z 398 molecular ion(Fig.3c).

    Table 1 Hopane retention indices of selected carbon numbers of the three rearranged hopane series

    Fig.2 Retention indices(see Table 1)for different members of the hopane and rearranged hopane series,plotted versus carbon number

    By combining with previous studies(Nytoft et al.2006),two compounds in the 21-methyl-28-nor-hopane series(29Nsp and 30Nsp)are detected in individual oil samples and hydrocarbon source rocks(Fig.4).The 21-methyl-28-norhopane series is recognized later than the other three rearranged hopane series and their applications in petroleum are seldom reported.The carbon number distribution of the 21-methyl-28-nor-hopane series ranges from C27to C34;the C29member is always the dominant member of the series and can be detected in most crude oils or mature sediments using GC—MS.The 29Nsp elutes midway between C30diahopane and 17β(H),21α(H)-30-norhopane(C29moretane)in m/z 191 mass chromatogram;the 30Nsp elutes after C30diahopane(Nytoft et al.2006;Huang et al.2003).Similar to the C29member of the 18α(H)-neohopane series(C29Ts),29Nsp has a m/z 191 base peak,a m/z 398 molecular ion and a pattern of peaks of below m/z 191 separated by 14 mass units typical of hopanes.The most notable feature of the mass spectrum for 29Nsp is the greater abundance of the m/z 369 ion than recorded for C29Ts(Fig.3d).Because of the low content of 30Nsp,its mass spectrum was not obtained,and no members above C30were detected.

    3.3 Geochemical significances of rearranged hopanes

    Rearranged hopanes have been widely applied in maturity assessment of oils,oil-source rock correlation,petroleum study,etc.(Zhuetal.2007;Lietal.2009;Zhang2013;Cheng et al.2014).For instance,Horstad et al.(1990)measured C30diahopane/(C30diahopane+C30hopane)ratios,which increase with maturity in North Sea oils,and were useful to map maturity gradients in North Sea oil fields.Huang et al.(2003)distinguished the various petroleum source facies in the Western Pearl River Basin offshore South China according to the abundance of 29Nsp relative to bicadinanesW and T(m/z 369).Li et al.(2009)differentiated two petroleum systems in the Huachang field of the Fushan Depressionintermsoftherelativeconcentrationofdiahopane and other maturity parameters.However,their genetic mechanisms and influencing factors are controversial.

    Fig.3 Mass spectra of(a)the C30components of the 17α(H)-diahopane series and(b)early-eluting rearranged hopane series and(c)the C29components of the 18α(H)-neohopane series and(d)28-nor-spergulane series,all taken from the same full scan GC—MS analysis of oil sample(SW 103 well,1907.8-1915.6 m)in the Songliao Basin

    Fig.4 m/z 191 and m/z 369 mass chromatograms of a mudstone in the Songliao Basin with a high content of rearranged hopanes(Shuang 101 well,2390.15 m,mudstone).H hopane;D diahopane;Nsp 28-norspergulane

    Many scholars have explored the formation conditions and geochemical attributes of rearranged hopanes.The majority held that C30diahopane may be formed by claymediated acidic catalysis under an oxic or suboxic environment(Philip and Gilbert 1986;Moldowan et al.1991;Peters and Moldowan 1993;Farrimond and Teln?s 1996;Liu et al.2014),whereas some scholars believed that clay catalysis under moderately alkaline conditions is helpful for the formation of C30diahopane(Xiao et al.2004).Zhuet al.(2007)reported that source rocks and oils derived from marine or saline lacustrine environments,with a source dominated by aquatic organisms,contain low abundances of diahopanes and C29Ts and almost lack the early-eluting rearranged hopanes.However,these compounds are rich in lacustrine sediments with a terrestrial higher plants input.Although the precursors of rearranged hopanes are not directly derived from terrestrial higher plants,a genetic connection between them seems apparent. Zhang et al.(2009)suggested that high to extremely high C30diahopane values are indicative of sub-oxidizing environment of fresh-brackish water and shallow to semideep lake.Previous studies indicate that the Songliao Basin develops a brackish-saline lacustrine environment with a mixed input,whereas coal-measure source rocks develop well in sedimentary environments of the Tarim and Ordos Basins(Zhang and Zhu 1996;Zhang et al.2013;Cheng et al.2014).Overall,the conditions of the three basins contributed to the formation of rearranged hopanes.

    As shown in Fig.5,both mudstones in the Songliao Basin and hydrocarbon source rocks in the Tarim and Ordos Basins are found to contain variable contents of rearranged hopanes.Huang et al.(2003)and Nytoft et al.(2006)noted that 29Nsp is abundant in marine oils and lacustrine oils.We also found fairly abundant 29Nsp in coals of the Ordos Basin(Fig.5b).The complexity of geological conditions and diverse study objects result in the differencesintheinfluencingfactorsofrearranged hopanes;thus the concentrations of the other three series of rearranged hopanes differ across the three basins.Hydrocarbon source rocks in the Tarim and Ordos Basins commonly contain high abundances of C30diahopane and 30E and low concentrations of C29Ts.In contrast,the oils in the Songliao Basin are enriched in C29Ts,and the amounts of C30diahopane and 30E are relatively low (Fig.6).In comparison with a brackish-saline lacustrine environment,the coal-measure and swamp environments under an oxic condition are more helpful to the formation of 30E.It is supported by Zhu et al.(2007)and Cheng et al.(2014),who found high contents of 30E in crude oils in the Jurassic reservoirs of central Sichuan Basin and the Lower Permian coal-measure source rocks in northeastern Ordos Basin,respectively.Moreover,abundant 30E has not been reported in a lacustrine environment.The relationship of C30diahopane/C30hopane and 30E/C30hopane with C29Ts/C29hopane are also noted.It is clear from Fig.6 that C30diahopane/C30hopane and 30E/C30hopane ratios of oils in the Songliao Basin increase markedly slower than those of hydrocarbon source rocks in the Tarim and Ordos Basins with the increase of C29Ts/C29hopane ratios.

    Fig.5 m/z 191 mass chromatograms of saturated fractions in representative source rocks from(a)SN 65 well in the Songliao Basin and(b)Su 27-5 well in the Ordos Basin and(c)KP 33 well in the Tarim Basin.H hopane;D diahopane;G gammacerane;E early-eluting rearranged hopane;Nsp 28-nor-spergulane;Ro vitrinite reflectance

    Fig.6 The cross-plots of C30diahopane/C30hopane and 30E/C30hopane versus C29Ts/C29hopane

    As mentioned above,different depositional environments exhibit diverse distributions of rearranged hopanes. It should be noted that rearranged hopanes in many oils and hydrocarbon source rocks from other Chinese sedimentary basins are much less abundant,even though their depositional setting,organic type and maturity level are comparable to those described above.This phenomenon is presumably related to a peculiar environment where a certain biological group highly enriched in precursors of these compounds thrived,or trace elements that cause a marked catalytic effect on the formation of the rearranged hopanes(Zhu et al.2007).Although the precursors of these compounds and genetic mechanisms remain to be determined,the occurrence and distribution of these series of rearranged hopanes indicate that they may serve as good indicators of organic facies,depositional environment and maturity.The wide applications of geochemical parameters of rearranged hopanes in petroleum geology also confirm this(Huang et al.2003;Li et al.2009;Zhang 2013).

    4 Conclusions

    Twenty-three oil samples and hydrocarbon source rocks from the Songliao,Tarim,and Ordos Basins have been analyzed by GC—MS and GC—MS—MS.Based on retention time,mass spectral characteristics and comparison with other studies,four series of rearranged hopanes are systematically identified in oils and hydrocarbon source rocks in the Songliao,Tarim,and Ordos Basins:the 17α(H)-diahopane series(C27,C29—C35),the 18α(H)-neohopane series(C27,C29—C35),the early-eluting rearranged hopane series(Ts and C29Ts),and the 21-methyl-28-nor-hopane series(29Nspand30Nsp).Thesefourseries ofrearrangedhopanes develop well in both brackish-saline lacustrine environments and coal-measure environments.However,the coalmeasure and swamp environments under an oxic condition are presumably more helpful to the formation of 30E.Even though their genetic mechanisms and influencing factors are controversial,thewideapplicationsofgeochemical parameters of rearranged hopanes in petroleum geology indicate that they could serve as good indicators of organic facies,depositional environment,and maturity.

    AcknowledgmentsThis study was financially supported by the National Natural Science Foundation of China(Grant No.41272170)and Nature Science Foundation of Hubei Province(Grant No. 2013CFB97).We are grateful to the editor Binbin Wang and an anonymous reviewer for their helpful comments,suggestions,scientific,and linguistic revisions of the manuscript.

    Cheng X,Chen X,Zhang M(2014)Origin of the 17α(H)-rearranged hopanes in Upper-Palaeozoic coal-bearing source rocks in the Northeast Ordos Basin.Acta Sedimentol Sin 32:790—796(in Chinese with English abstract)

    Farrimond P,Teln?s N(1996)Three series of rearranged hopanes in Toarcian sediments(northern Italy).Org Geochem 25:165—177

    Horstad I,Larter SR,Dypvik H,Aagaard P,Bj?rnvik AM,Johansen PE,Eriksen S(1990)Degradation and maturity controls on oil field petroleum column heterogeneity in the Gullfaks Field Norwegian North Sea.Org Geochem 16:497—510

    Huang B,Xiao X,Zhang M (2003)Geochemistry,grouping and origins of crude oils in the Western Pearl River Mouth Basin,offshore South China Sea.Org Geochem 34:993—1008

    Killops SD,Howell VJ(1991)Complex series of pentacyclic triterpanes in a lacustrine sourced oil from Korea Bay Basin. Chem Geol 91:65—79

    Li M,Wang T,Liu J,Zhang M,Lu H,Ma Q,Gao L(2009)Biomarker 17α(H)-diahopane:a geochemical tool to study the petroleum system of a Tertiary lacustrine basin,Northern South China Sea.Appl Geochem 24:172—183

    Liu H,Zhang M,Li X(2014)Genesis study of high abundant 17α(H)-diahopanes in Lower Cretaceous lacustrine source rocks of the Lishu fault depression,Songliao Basin Northeast China.Chin J Geochem 33:201—206

    Moldowan JM,F(xiàn)ago FJ,Carlson RMK,Young DC,van Duyne G,Clardy J,Schoell M,Pillinger CT,Watt DS(1991)Rearranged hopanes in sediments and petroleum.Geochim Cosmochim Acta 55:3333—3353

    Nytoft HP,Lutn?s BF,Johansen JE(2006)28-Nor-spergulanes,a novel series of rearranged hopanes.Org Geochem 37:772—786

    Nytoft HP,Lund K,Corleone′J?rgensen TK,Thomsen JV,Wendel S?rensen S,Lutn?s B F,Kildahl-Andersen G,Johansen JE(2007).Identification of an early-eluting rearranged hopaneseries.Synthesis from hop-17(21)-enes and detection of intermediates in sediments.The 23rd International Meeting on Organic Geochemistry

    Peters KE,Moldowan JM(1993)The Biomarker Guide:interpreting molecular fossils in petroleum and ancient sediments.Prentice Hall,Englewood Cliffs

    Philip RP,Gilbert TD(1986)Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Org Geochem 10:73—84

    Smith GW(1975)The crystal and molecular structure of 22,29,30-trisnorhopaneII,C27H46.Acta Cryst B31:522—526

    Teln?s N,Isaksen GH,F(xiàn)arrimond P(1992)Unusual triterpane distributions in lacustrine oils.Org Geochem 18:785—789

    Whitehead EV(1974)The structure of petroleum pentacyclanes.In:Tissot B,Bienner F(eds)Advances in organic geochemistry 1973.Editions Technip,Paris,pp 225—243

    Xiao Z,Huang G,Lu Y,Wu Y,Zhang Q(2004)Rearranged hopanes in oils from the Quele 1 Well,Tarim Basin,and the significance for oil correlation.Pet Explor Dev 31:35—37(in Chinese with English abstract)

    Zhang M(2013)Progress in genesis research on abundant rearranged hopanes in geological bodies.J Oil Gas Technol 9:1—5(in Chinese with English abstract)

    Zhang M,Zhu Y(1996)Geochemical characteristics of crude oils of the Kuche petroleum system in the Tarim Basin.Geol Rev. 3:229—234(in Chinese with English abstract)

    Zhang W,Yang H,Hou L,Liu F(2009)Distribution and geological significance of the 17α(H)-rearranged hopanes from different source rocks in Yanchang Formation of Ordos Basin.Sci China(Ser D)39:1438—1445(in Chinese)

    Zhang M,Li H,Wang X (2013)Geochemical characteristics and an grouping of the crude oils in the Lishu fault depression,Songliao basin,NE China.J Pet Sci Eng 110:32—39

    Zhu Y(1997)Geochemical characteristics of Terrestrial oils in the Tarim Basin.Acta Sedimentol Sin 15:26—30(in Chinese with English abstract)

    Zhu Y,Mei B,F(xiàn)u J,Sheng G(1997)Distribution characteristics of saturated hydrocarbon biomarkers in oils from Tarim Basin. J Jianghan Pet Inst 19:24—29(in Chinese with English abstract)

    Zhu Y,Zhong R,Cai X,Luo Y(2007)Composition and origin approach of rearranged hopanes in Jurassic oils of central Sichuan Basin.Geochimica 36:253—260(in Chinese with English abstract)

    10.1007/s11631-015-0065-3

    2 February 2015/Revised:21 April 2015/Accepted:6 July 2015/Published online:30 August 2015

    ? Min Zhang

    zmipu@163.com

    1Key Laboratory of Exploration Technology for Oil and Gas Research(Yangtze University),Ministry of Education,Wuhan 430100,China

    2School of Earth Environment and Water Resources,Yangtze University,Wuhan 430100,China

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    又大又黄又爽视频免费| 直男gayav资源| 免费观看a级毛片全部| 亚洲激情五月婷婷啪啪| 久久久久久九九精品二区国产| 欧美+日韩+精品| 国产成人精品一,二区| tube8黄色片| 亚洲国产成人一精品久久久| 亚洲成人一二三区av| 久久久a久久爽久久v久久| 亚洲精品日韩在线中文字幕| 中国美白少妇内射xxxbb| 菩萨蛮人人尽说江南好唐韦庄| 日本vs欧美在线观看视频 | 中文字幕免费在线视频6| 国产精品三级大全| 久久人妻熟女aⅴ| 免费在线观看成人毛片| av播播在线观看一区| 少妇精品久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 天堂中文最新版在线下载| 国产91av在线免费观看| 欧美一区二区亚洲| 91午夜精品亚洲一区二区三区| 少妇猛男粗大的猛烈进出视频| 久久热精品热| 涩涩av久久男人的天堂| 日本wwww免费看| 国产亚洲一区二区精品| 欧美bdsm另类| 久久久久久人妻| 亚洲综合色惰| 日韩一区二区视频免费看| av国产久精品久网站免费入址| 亚洲av中文字字幕乱码综合| 久久青草综合色| 欧美+日韩+精品| 日韩欧美精品免费久久| 亚洲精品视频女| 久久久久久久久久成人| 香蕉精品网在线| 国模一区二区三区四区视频| 一个人看视频在线观看www免费| 亚洲欧美日韩卡通动漫| 欧美日韩精品成人综合77777| 免费av不卡在线播放| 国产毛片在线视频| 欧美3d第一页| 91久久精品国产一区二区成人| 成人毛片a级毛片在线播放| 97在线人人人人妻| 少妇猛男粗大的猛烈进出视频| 我的老师免费观看完整版| 人人妻人人爽人人添夜夜欢视频 | 六月丁香七月| 色婷婷av一区二区三区视频| 亚洲四区av| 国产一区有黄有色的免费视频| 看非洲黑人一级黄片| 熟女av电影| 精品人妻一区二区三区麻豆| 天美传媒精品一区二区| 99热网站在线观看| 夜夜爽夜夜爽视频| 婷婷色综合www| 亚洲欧洲日产国产| 国产亚洲5aaaaa淫片| 国产精品福利在线免费观看| 精品少妇黑人巨大在线播放| 国产欧美日韩一区二区三区在线 | 欧美3d第一页| 中文字幕精品免费在线观看视频 | 亚洲国产精品999| 青春草亚洲视频在线观看| 久久精品人妻少妇| 国产黄片美女视频| 男人添女人高潮全过程视频| 成人综合一区亚洲| 亚洲美女搞黄在线观看| 国产91av在线免费观看| 亚洲四区av| 狂野欧美白嫩少妇大欣赏| 99热全是精品| 国产精品久久久久久精品古装| 男人爽女人下面视频在线观看| 美女cb高潮喷水在线观看| 欧美日韩国产mv在线观看视频 | 国产亚洲av片在线观看秒播厂| 国产久久久一区二区三区| 中文字幕免费在线视频6| 亚洲图色成人| 一级黄片播放器| 国语对白做爰xxxⅹ性视频网站| 精品久久久精品久久久| 老司机影院成人| 国产亚洲精品久久久com| 99久久精品国产国产毛片| 国产淫片久久久久久久久| 女人久久www免费人成看片| 99国产精品免费福利视频| 老女人水多毛片| 在线亚洲精品国产二区图片欧美 | av.在线天堂| 亚洲最大成人中文| 中文字幕免费在线视频6| 日韩制服骚丝袜av| 亚洲欧美一区二区三区黑人 | 亚洲精品456在线播放app| 一级毛片我不卡| 国产高清有码在线观看视频| 99久久中文字幕三级久久日本| 美女脱内裤让男人舔精品视频| 亚洲av在线观看美女高潮| 中文乱码字字幕精品一区二区三区| 少妇精品久久久久久久| 一区二区三区乱码不卡18| 国产精品三级大全| 男女下面进入的视频免费午夜| 午夜福利高清视频| 一个人看视频在线观看www免费| 国产一区有黄有色的免费视频| 欧美高清性xxxxhd video| 久久精品国产亚洲网站| 国产成人a∨麻豆精品| 国产成人91sexporn| 精品视频人人做人人爽| 麻豆乱淫一区二区| 在线观看国产h片| 日韩av在线免费看完整版不卡| 22中文网久久字幕| 国产成人一区二区在线| 最近2019中文字幕mv第一页| 久久午夜福利片| 啦啦啦在线观看免费高清www| 人妻制服诱惑在线中文字幕| 极品教师在线视频| 97超视频在线观看视频| 在线观看一区二区三区| 亚洲精品,欧美精品| 日韩,欧美,国产一区二区三区| 亚洲国产毛片av蜜桃av| 久久精品熟女亚洲av麻豆精品| 国产成人精品一,二区| 亚洲不卡免费看| 男人狂女人下面高潮的视频| 精品人妻一区二区三区麻豆| 青春草视频在线免费观看| av在线app专区| 中文字幕亚洲精品专区| 亚洲国产精品一区三区| 国产一区亚洲一区在线观看| 搡女人真爽免费视频火全软件| 欧美日韩视频精品一区| 久久久久久九九精品二区国产| 精品熟女少妇av免费看| 国产男女超爽视频在线观看| 麻豆成人av视频| 小蜜桃在线观看免费完整版高清| 在线观看人妻少妇| 老熟女久久久| 少妇人妻精品综合一区二区| 能在线免费看毛片的网站| 亚洲精品国产成人久久av| 夫妻性生交免费视频一级片| 久久精品国产亚洲av涩爱| 免费看av在线观看网站| 视频中文字幕在线观看| 亚洲av电影在线观看一区二区三区| 26uuu在线亚洲综合色| 国产 一区精品| 亚洲av欧美aⅴ国产| 久久久a久久爽久久v久久| 欧美成人精品欧美一级黄| 简卡轻食公司| 亚洲欧美日韩卡通动漫| 日韩av免费高清视频| 3wmmmm亚洲av在线观看| 国产欧美亚洲国产| 女人久久www免费人成看片| 女性生殖器流出的白浆| 一个人看的www免费观看视频| 人人妻人人爽人人添夜夜欢视频 | 欧美97在线视频| 妹子高潮喷水视频| 久久久久网色| 性色avwww在线观看| 欧美另类一区| 五月玫瑰六月丁香| 亚州av有码| 日韩av在线免费看完整版不卡| 国产女主播在线喷水免费视频网站| 99精国产麻豆久久婷婷| 全区人妻精品视频| 99视频精品全部免费 在线| 亚洲欧美日韩东京热| 99热这里只有是精品50| 国产精品伦人一区二区| 久久久色成人| 久久久色成人| 久久 成人 亚洲| 国产亚洲欧美精品永久| 久久99热这里只有精品18| 又粗又硬又长又爽又黄的视频| 久久久成人免费电影| 国产免费一级a男人的天堂| 亚洲欧美一区二区三区黑人 | 丰满迷人的少妇在线观看| 五月玫瑰六月丁香| 久久久久久久久大av| 国产 一区精品| 最近中文字幕2019免费版| 一个人看视频在线观看www免费| 日韩欧美一区视频在线观看 | 九九久久精品国产亚洲av麻豆| 欧美亚洲 丝袜 人妻 在线| 91午夜精品亚洲一区二区三区| 免费观看av网站的网址| 九九在线视频观看精品| 亚洲色图av天堂| 不卡视频在线观看欧美| 伦精品一区二区三区| 成人免费观看视频高清| 免费人成在线观看视频色| 精品视频人人做人人爽| tube8黄色片| 国产精品一二三区在线看| 亚洲欧美日韩另类电影网站 | 黑人猛操日本美女一级片| 一边亲一边摸免费视频| 爱豆传媒免费全集在线观看| 深夜a级毛片| 国内揄拍国产精品人妻在线| av免费观看日本| 国产精品福利在线免费观看| 亚洲精品视频女| 永久免费av网站大全| 国产精品久久久久久久电影| 99精国产麻豆久久婷婷| 国产白丝娇喘喷水9色精品| 岛国毛片在线播放| 久久鲁丝午夜福利片| 精品酒店卫生间| 夫妻性生交免费视频一级片| 你懂的网址亚洲精品在线观看| 国产欧美亚洲国产| 你懂的网址亚洲精品在线观看| 日韩伦理黄色片| 99九九线精品视频在线观看视频| 亚洲va在线va天堂va国产| 如何舔出高潮| 久久久欧美国产精品| 午夜视频国产福利| 熟女av电影| 大香蕉久久网| 另类亚洲欧美激情| 日韩在线高清观看一区二区三区| 欧美激情国产日韩精品一区| 国产成人精品福利久久| 人妻制服诱惑在线中文字幕| 大陆偷拍与自拍| 国产成人精品久久久久久| 国产av码专区亚洲av| 大香蕉久久网| 人人妻人人澡人人爽人人夜夜| 色网站视频免费| 在线看a的网站| 国产欧美亚洲国产| 欧美高清成人免费视频www| 在线播放无遮挡| 极品少妇高潮喷水抽搐| 中文字幕人妻熟人妻熟丝袜美| 亚洲人成网站高清观看| 亚洲国产精品999| 女人久久www免费人成看片| 国产高清不卡午夜福利| 国产成人精品久久久久久| 久久精品人妻少妇| 免费高清在线观看视频在线观看| av国产免费在线观看| 国产伦精品一区二区三区视频9| 精品午夜福利在线看| 美女xxoo啪啪120秒动态图| 舔av片在线| 夫妻午夜视频| 国产精品精品国产色婷婷| 少妇裸体淫交视频免费看高清| 天天躁日日操中文字幕| 黄色怎么调成土黄色| 午夜老司机福利剧场| 日本欧美国产在线视频| 狂野欧美白嫩少妇大欣赏| 婷婷色av中文字幕| 欧美高清性xxxxhd video| 国产成人精品一,二区| 联通29元200g的流量卡| 岛国毛片在线播放| 国产亚洲午夜精品一区二区久久| 天美传媒精品一区二区| 久久午夜福利片| 下体分泌物呈黄色| 亚洲精品456在线播放app| av黄色大香蕉| 免费少妇av软件| 日日摸夜夜添夜夜添av毛片| 少妇高潮的动态图| 亚洲欧美日韩东京热| 精品酒店卫生间| 看免费成人av毛片| 高清黄色对白视频在线免费看 | 97热精品久久久久久| 王馨瑶露胸无遮挡在线观看| 日本一二三区视频观看| 免费黄色在线免费观看| 久久久久久久国产电影| 天堂俺去俺来也www色官网| 精品99又大又爽又粗少妇毛片| 精品人妻一区二区三区麻豆| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久精品古装| 久久久久久久久久久丰满| 在线亚洲精品国产二区图片欧美 | 久久精品夜色国产| 国产亚洲一区二区精品| 狂野欧美白嫩少妇大欣赏| 99热这里只有是精品在线观看| 久久久久久久久久久丰满| 日韩欧美一区视频在线观看 | 国产视频首页在线观看| 日韩成人av中文字幕在线观看| 97热精品久久久久久| 97热精品久久久久久| 丰满迷人的少妇在线观看| 日韩av免费高清视频| 综合色丁香网| 一级二级三级毛片免费看| 免费观看无遮挡的男女| 性色avwww在线观看| 一区二区三区四区激情视频| 丰满少妇做爰视频| 欧美日韩视频高清一区二区三区二| 最近中文字幕高清免费大全6| 男人和女人高潮做爰伦理| 最近的中文字幕免费完整| 国产欧美日韩一区二区三区在线 | 国产大屁股一区二区在线视频| 九九爱精品视频在线观看| 观看免费一级毛片| 久久久欧美国产精品| 欧美变态另类bdsm刘玥| 国产午夜精品一二区理论片| 亚洲性久久影院| 内射极品少妇av片p| 麻豆成人av视频| 成人免费观看视频高清| 男女啪啪激烈高潮av片| 亚洲精品日韩在线中文字幕| 亚洲精品,欧美精品| 日韩不卡一区二区三区视频在线| 亚洲精品视频女| 99热网站在线观看| 免费av中文字幕在线| 男男h啪啪无遮挡| 国产精品久久久久成人av| 日韩 亚洲 欧美在线| 亚洲精品中文字幕在线视频 | 国产亚洲av片在线观看秒播厂| 亚洲av中文字字幕乱码综合| 在线观看免费视频网站a站| 伦理电影大哥的女人| 亚洲国产高清在线一区二区三| 久久99蜜桃精品久久| av又黄又爽大尺度在线免费看| 成人影院久久| 99九九线精品视频在线观看视频| av卡一久久| 国产黄色视频一区二区在线观看| 最近的中文字幕免费完整| 成年人午夜在线观看视频| 91精品国产九色| 午夜视频国产福利| 国产精品一区二区三区四区免费观看| 国产精品久久久久久久电影| 国产亚洲欧美精品永久| 国产黄色视频一区二区在线观看| 国产成人freesex在线| 久久久久久久久大av| 麻豆成人午夜福利视频| 伦精品一区二区三区| 26uuu在线亚洲综合色| 亚洲av免费高清在线观看| 91精品一卡2卡3卡4卡| 草草在线视频免费看| 国产精品爽爽va在线观看网站| av不卡在线播放| 五月天丁香电影| 热re99久久精品国产66热6| 日韩电影二区| 黑丝袜美女国产一区| 亚洲国产日韩一区二区| 国产精品一区二区性色av| 久久久成人免费电影| 欧美zozozo另类| 国产亚洲精品久久久com| 欧美3d第一页| 国产色爽女视频免费观看| 看免费成人av毛片| 色综合色国产| 欧美精品一区二区免费开放| 2018国产大陆天天弄谢| 久久6这里有精品| 欧美xxxx性猛交bbbb| 亚洲国产精品国产精品| 不卡视频在线观看欧美| 国产精品偷伦视频观看了| 激情五月婷婷亚洲| 亚洲精品日本国产第一区| 久久久a久久爽久久v久久| av线在线观看网站| 国产伦在线观看视频一区| 亚洲精品视频女| 国产精品无大码| 亚洲精品国产色婷婷电影| 亚洲综合精品二区| 男人狂女人下面高潮的视频| 中文资源天堂在线| 亚洲激情五月婷婷啪啪| 国产国拍精品亚洲av在线观看| 国精品久久久久久国模美| 人人妻人人添人人爽欧美一区卜 | 亚洲中文av在线| 22中文网久久字幕| 五月玫瑰六月丁香| 日日摸夜夜添夜夜爱| 国产精品国产三级国产专区5o| 国产日韩欧美亚洲二区| 精品国产露脸久久av麻豆| 久久精品国产自在天天线| 国产黄片视频在线免费观看| 性色av一级| 秋霞伦理黄片| 国产永久视频网站| 97超视频在线观看视频| 狂野欧美激情性xxxx在线观看| 最近手机中文字幕大全| 色视频www国产| 欧美高清成人免费视频www| 波野结衣二区三区在线| 日本午夜av视频| 久久综合国产亚洲精品| 少妇 在线观看| 日韩视频在线欧美| 日韩,欧美,国产一区二区三区| freevideosex欧美| 亚洲国产av新网站| 国产欧美日韩精品一区二区| 亚洲美女搞黄在线观看| 啦啦啦视频在线资源免费观看| 亚洲人与动物交配视频| 国产无遮挡羞羞视频在线观看| 一级毛片aaaaaa免费看小| 久久鲁丝午夜福利片| 欧美精品一区二区大全| 交换朋友夫妻互换小说| 人妻一区二区av| 黄片wwwwww| 久久人人爽av亚洲精品天堂 | 久久6这里有精品| 成人美女网站在线观看视频| 亚洲一区二区三区欧美精品| 国产精品国产三级国产av玫瑰| 91精品伊人久久大香线蕉| 免费观看性生交大片5| 久久99热6这里只有精品| 中国美白少妇内射xxxbb| 精品人妻偷拍中文字幕| 欧美国产精品一级二级三级 | 亚洲精品aⅴ在线观看| 两个人的视频大全免费| 一级片'在线观看视频| 五月天丁香电影| 免费人成在线观看视频色| 亚洲欧美精品自产自拍| 又大又黄又爽视频免费| 亚洲欧美日韩卡通动漫| 欧美日韩亚洲高清精品| 99国产精品免费福利视频| 日产精品乱码卡一卡2卡三| 色哟哟·www| 欧美xxxx性猛交bbbb| 日韩欧美一区视频在线观看 | 色网站视频免费| 在线免费十八禁| 日韩精品有码人妻一区| 亚洲一级一片aⅴ在线观看| 精品少妇久久久久久888优播| 国产淫片久久久久久久久| 国产一级毛片在线| 国产精品.久久久| 亚洲av成人精品一二三区| 一区二区三区四区激情视频| 欧美3d第一页| 欧美最新免费一区二区三区| 久久久久视频综合| 亚洲欧美日韩另类电影网站 | 亚洲欧美日韩另类电影网站 | 亚洲中文av在线| 搡女人真爽免费视频火全软件| 91在线精品国自产拍蜜月| 亚洲精品一区蜜桃| 身体一侧抽搐| 久久青草综合色| 观看免费一级毛片| 国产高清不卡午夜福利| av又黄又爽大尺度在线免费看| 国产 精品1| 不卡视频在线观看欧美| 久久久成人免费电影| 毛片一级片免费看久久久久| 久久久久久久亚洲中文字幕| 永久免费av网站大全| 精品久久久久久久久av| 国产69精品久久久久777片| 亚洲色图av天堂| 多毛熟女@视频| 干丝袜人妻中文字幕| 精品酒店卫生间| 97超视频在线观看视频| 水蜜桃什么品种好| 国产探花极品一区二区| 久久久久视频综合| 美女高潮的动态| 99视频精品全部免费 在线| 国产精品爽爽va在线观看网站| 涩涩av久久男人的天堂| 自拍偷自拍亚洲精品老妇| 精品久久久精品久久久| 国产精品国产av在线观看| 亚洲美女视频黄频| 亚洲成人一二三区av| 男人舔奶头视频| 欧美精品亚洲一区二区| 夜夜看夜夜爽夜夜摸| 久久6这里有精品| 人人妻人人爽人人添夜夜欢视频 | 国产有黄有色有爽视频| 亚洲色图综合在线观看| 国产精品99久久久久久久久| 久久久国产一区二区| 久久久久久久久久久丰满| 亚洲天堂av无毛| 人妻系列 视频| 国产精品一区二区性色av| 婷婷色综合www| 国产精品.久久久| 久久99热这里只频精品6学生| 亚洲人成网站高清观看| 日本与韩国留学比较| 亚洲欧美中文字幕日韩二区| 免费观看在线日韩| 六月丁香七月| 免费看光身美女| 日本猛色少妇xxxxx猛交久久| 蜜桃久久精品国产亚洲av| 日本与韩国留学比较| 久久久久性生活片| 2022亚洲国产成人精品| 99热全是精品| 国产黄频视频在线观看| 国产中年淑女户外野战色| 日本-黄色视频高清免费观看| 亚洲色图综合在线观看| 赤兔流量卡办理| 国产精品精品国产色婷婷| 人人妻人人看人人澡| 免费av中文字幕在线| 精品一区二区三卡| 十分钟在线观看高清视频www | 观看美女的网站| kizo精华| 伦理电影免费视频| 18+在线观看网站| 大片电影免费在线观看免费| 乱码一卡2卡4卡精品| 亚洲国产精品专区欧美| 国产日韩欧美亚洲二区| 3wmmmm亚洲av在线观看| 晚上一个人看的免费电影| 国产黄色免费在线视频| 亚洲av免费高清在线观看| 制服丝袜香蕉在线| 最后的刺客免费高清国语| 人人妻人人澡人人爽人人夜夜| 校园人妻丝袜中文字幕| 久久av网站| 精品久久国产蜜桃| 欧美变态另类bdsm刘玥| 国产男人的电影天堂91| 观看免费一级毛片| 国产精品一及| 观看免费一级毛片| 亚洲精品自拍成人| 激情 狠狠 欧美| 如何舔出高潮| 伦理电影大哥的女人| 在线观看一区二区三区| 美女福利国产在线 | 99久久精品国产国产毛片| 亚洲av不卡在线观看| 直男gayav资源| 亚洲精品乱码久久久v下载方式| 乱码一卡2卡4卡精品| 国产亚洲av片在线观看秒播厂| 国产成人精品福利久久|