• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以酚醛包覆玻璃纖維為前驅(qū)體制備廉價(jià)活性炭纖維

    2015-10-24 08:01:19韋曉群李啟漢黎海超李慧君陳水挾
    新型炭材料 2015年6期
    關(guān)鍵詞:氯化鋅酚醛糠醛

    韋曉群,李啟漢,黎海超,李慧君,陳水挾,2

    (1.中山大學(xué)化學(xué)與化學(xué)工程學(xué)院聚合物復(fù)合材料與功能材料教育部重點(diǎn)實(shí)驗(yàn)室,廣東廣州510275;2.中山大學(xué)材料科學(xué)研究所,廣東廣州510275;3.廣東進(jìn)出口檢驗(yàn)檢疫局檢驗(yàn)檢疫中心廣東廣州510623)

    以酚醛包覆玻璃纖維為前驅(qū)體制備廉價(jià)活性炭纖維

    韋曉群1,3,李啟漢1,黎海超1,李慧君1,陳水挾1,2

    (1.中山大學(xué)化學(xué)與化學(xué)工程學(xué)院聚合物復(fù)合材料與功能材料教育部重點(diǎn)實(shí)驗(yàn)室,廣東廣州510275;2.中山大學(xué)材料科學(xué)研究所,廣東廣州510275;3.廣東進(jìn)出口檢驗(yàn)檢疫局檢驗(yàn)檢疫中心廣東廣州510623)

    以酚醛樹(shù)脂、聚乙烯醇和糠醛的混合物包覆玻璃纖維,經(jīng)炭化和氯化鋅活化制備出一種廉價(jià)的纖維狀活性炭材料。表征了這種纖維狀活性炭材料的表面形態(tài)、微晶結(jié)構(gòu)、孔結(jié)構(gòu)、表面化學(xué)特征和機(jī)械強(qiáng)度,評(píng)價(jià)了該材料的吸附性能。結(jié)果表明,在炭前驅(qū)體中加入聚乙烯醇和糠醛可以有效促進(jìn)孔隙的發(fā)育,提升所制備多孔炭材料的孔隙率。當(dāng)在前驅(qū)體中加入聚乙烯醇和糠醛時(shí),所制多孔炭材料的比表面積可達(dá)2 023 m2/g,否則其比表面積則僅為404 m2/g。聚乙烯醇的加入提高了氯化鋅的溶解性,促進(jìn)了炭前驅(qū)體的活化;而糠醛與酚醛交聯(lián)結(jié)構(gòu)的形成則提高了炭前驅(qū)體的熱穩(wěn)定性,提高了炭得率。這兩方面的措施均有利于提高樣品的比表面積并降低其制備成本。該纖維狀活性炭材料具有與傳統(tǒng)活性炭纖維相似的微晶結(jié)構(gòu)和吸附性能。

    活性炭;玻璃纖維;酚醛;氯化鋅

    1 Introduction

    Activated carbons(ACs)have received intensive interest owing to their high specific surface areas and excellent adsorption capacities.As the third generation product,activated carbon fibers(ACFs)are considered to be more promising owing to their high porosity,fast adsorption kinetics and easy regenera-tion[1].Given all these merits,ACFs seem to be the alternative adsorbentmaterialsthatovercomethe drawbacks of ACs[2,3].However,there still exists a crucial disadvantage that ACFs must overcome to be utilized in various fields,which is the high production cost[4,5].To address this limitation,there are a large number of studies on new low-cost and high-yield routes to produce ACFs.A kind of ACFs devised by Economy et al.was prepared through coating the raw material onto glass fibers and then activating it in several ways[6,7].This method does cut the price of ACFs effectively.

    Among the raw materials selected as precursor fibers,phenolic resin is known to be able to produce ACFs with a high surface area[8].Besides,the glass fibers can overcome the drawback of phenolic resinbased ACFs,which are brittle and susceptible to wear.In that case,KOH can't be used as an activation agent because of its erosion to glass fibers.Park and Jung tried to produce glass-fibers-supported phenolic resin-based ACFs with KOH activation,and they got a product with a low specific surface area finally[9].ZnCl2is an excellent activation agent as it can activate carbon at low temperature[10-15].Yue et al.[16]also attempted to activate the glass-fibers-supported phenolic resin with ZnCl2,and they faced the same problem to increase the specific surface area.Teng and Wang found that it was“unable to produce a high porosity carbon with ZnCl2”[17].This is mainly because of the low solubility of ZnCl2in solvent(usually alcohol)used to mix the phenolic resin and ZnCl2.In this study,we tried to increase the solubility of ZnCl2in alcohol by adding surfactant PEG4000(polyethylene glycol,MW 4000),which greatly increased the specific surface area of the products.Factors that affected specific surface area and the yield of the activated products were further studied.

    2 Experimental

    2.1Preparation of porous carbons

    A mixture of novolac resin(2123,Shanghai Qinan Viscose Rayon Material Factory,4.5 g)and polyethylene glycol(Abbr.PEG,Mw 4000,Guangdong Xilong Chemical Co.,Ltd.),zinc chloride(98%,GuangzhouChemicalReagentFactory,13.5 g),and furfural(Guangzhou Chemical Reagent Factory)was dissolved in ethanol(Et-OH,100 mL)to obtain a solution.Then the glass fiber mats(R-93,Changzhou Changhai Glass Fiber Reinforced Plastic Products Co.,Ltd.)were dip-coated with the solution,dried and preheated to 200℃for 4 h in an oven under air.After that,the stabilized mats were cooled in air,transferred to another furnace,carbonized and activated at 60 min for a given time in N2atmosphere with a heating rate of 10℃/min.After being cooled in flowing N2,each sample was thoroughly washed with a diluted hydrochloric acid(1 mol/L)and distilled water,then dried in vacuum at 110℃for 24 h.The resulting Novolac-ZnCl2-based porous carbons are labeled as NZ-PC,and the furfural-Novolac-PEGZnCl2-based porous carbons are labeled as x%F-NPZPC,where x stands for the furfural mass concentration in Novolac-PEG4000 precursors.When x is equal to 0,it is labeled as NPZ-PC.The carbon layers were obtained by dissolving the glass fiber mats in the samples with hydrofluoric acid for 24 h,washing with deionized water and drying in vacuum at 110℃for 24 h.The carbon content was calculated by dividing the mass of carbon layers from the total mass of the porous carbon samples.

    2.2Thermal characterization

    The thermogravimetric(TG)behavior of the raw materials was analyzed using a NetzschTG-209 analyzer(Japan)from room temperature to 600℃at a rate of 20℃/min in nitrogen flow under atmospheric pressure.

    2.3Surface area and pore structure

    The adsorption of N2at 77 K was carried out with an accelerated surface area and porosimetry system(ASAP2010,Micromeritics Corp.).The total pore volume(Vt)of a sample was estimated from the amount of N2adsorbed at p/p0=0.95.The Brunauer-Emmett-Teller(BET)equation was employed to determine the total specific surface area(SBET).The t-plot method was employed to deduce specific surface area of micropores(<2 nm)(St-plot).Barrett-Joiner-Halenda(BJH)method was applied to get the mesopore surface area(SBJH).A method based on the density functional theory(DFT)was applied to get the pore size distributions(PSDs).

    2.4Morphology

    A thermal field emission environmental scanning electron microscope(SEM,Quanta 400F,F(xiàn)EI,Netherlands)was used to characterize the morphology of the samples.The samples were dried overnight at approximately 120℃under vacuum before SEM analysis.

    2.5Tensile properties

    The static tensile properties were determined by a H10K-S universal testing machine(Hounsfield,UK)with a crosshead speed of 5 mm/min at room temperature.The width and length of the specimens were different from each other.

    2.6Raman spectroscopy

    The Raman spectra of the carbonized layers ofNPZ-PC and 13%F-NPZ-PC were obtained using an Ar+laser beam at λex=514.5 nm(Laser Micro-Raman Spectrometer,Renishaw inVia,UK).The average domain size Lawas calculated using the equations proposed by Tuinstra and Koening[18]from the intensities of D and G peaks:

    The fraction“f”of the amount of disordered(amorphous)carbon was estimated using the intensity of the two peaks(IDand IG):

    2.7X-ray diffraction(XRD)

    Powder XRD profiles were collected in the 2θ angle between 10°and 70°with a X-ray Diffract meter(D8 ADVANCE,BRüCKNER Textile Technologies GmbH&Co.KG),which was equipped with a copper-monochromatized CuKα radiation(λ= 0.154 059 8 nm)under the accelerating voltage of 40 kV and the current of 40 mA.Estimates of mean crystallite dimensions such as the interlayer spacing(d002),the crystallite size along c-axis(Lc),the size of the layer planes(La),and the number of layers(n)were calculated from powder XRD data by application of Bragg equation,Scherrer equation,and Warren equation.

    Where β is the half-peak width,λ is the X-ray wavelength and θ is the Bragg angle.

    2.8Fourier transform infrared spectroscopy(FT-IR)

    After dried in vacuum at 110℃for over 6 h,samples were mixed with 5 wt.%KBr.A FT-IR instrument(TENSOR27,BRUKER,USA)was used to analyze the surface chemical properties by FT-IR.

    2.9Adsorption experiments

    Both static and dynamic adsorption methods were utilized to determine the adsorption ability of the carbon samples.Methylene blue(MB)was used as the adsorbate.Commercialgranularactivatedcarbon(GAC)and commercial ACF were chosen as references.

    In the static adsorption experiments,proper mass of ACF(SBET=1 350 m2/g),13%F-NPZ-PC(SBET=1 193 m2/g)or GAC(SBET=880 m2/g)was added to 200 mL MB solution with a concentration of 400 mg/L in a 1 000 mL conical flask.The mixture was stirred in a rotary shaker at a speed of 140 r/min at 25±1℃.The residual MB concentration was determined at a regular interval using an ultraviolet-visible spectrophotometer.

    Fordynamicadsorptionexperimentsproper amount of ACF,13%F-NPZ-PC or GAC were packed into a glass column(1.2 cm in inner diameter)with a bed depth of around 10 cm.Mass of three samples in the columns were adjusted to make their total surface area of samples filled in the column equal.The MB solution was pumped through the fixed bed from top to bottom with a specified flow rate of 1.5 mL/min with a peristaltic pump at 25℃.Samples were collected at a regular interval during all the adsorptive process.

    3 Results and discussion

    3.1Morphology of the porous carbon

    The morphology of the NPZ-PC under SEM is shown in Fig.1.The NPZ-PC exhibits a fibrous structure.Most of the glass fibers are wrapped by carbon,but in some parts,carbon layer is peeled off and the glass fiber is naked.Carbon materials also exist between the glass fibers.The thickness of the carbon layers is from several nanometers to 2 μm.The diameter of the NPZ-PC fibers is about 10 μm,which is similar to that of the ACFs.

    3.2Microcrystalline structure of porous carbons

    XRD was employed to study the graphitic degree of the NPZ-PC and 13%F-NPZ-PC.As shown in Fig.2,two broad peaks,around 2θ=24°and 2θ= 42°,corresponding to the disordered graphitic 002 plane and the 110 plane reflection of graphite crystallite[19]are found.The calculated values of the crystalline parameters,including interlayer spacing(d002)and the crystallite size(La,Lc)within 5%error are presented in Table 1.The value of d002is 0.375 nm for NPZ-PC,and 0.360 nm for 13%F-NPZ-PC;the value of graphite layers is 5.3 for NPZ-PC,and 5.5 for 13%F-NPZ-PC.It is concluded that the graphitization degree of 13%F-NPZ-PC is higher than that of NPZ-PC.

    The same conclusion could be achieved from micro laser Raman spectroscopy.In Fig.3,the Raman spectra are similar to the report elsewhere[20-23].The D(disorder peak),D'(defect peak[24])and G(graphic peak)peaks are found at 1 350,1 500 and 1 600 cm-1,respectively.The calculated Laand“f”values estimated by equation(5)and(2)are listedin Table 1.Lavalues of the samples are 4.49 and 4.98 nm,the“f”of them are 49 and 47%,respectively,for the NPZ-PC and 13%F-NPZ-PC.The results also showed that both of them are semi-carbonized polymers,and the graphic degree of 13%F-NPZPC is higher than that of NPZ-PC.

    Fig.1 SEM images of NPZ-PC,activated at 400℃for 60 min.(a)Coating on glass fibers;(b)Cross-section of a single glass fiber coated with a carbon layer.

    Fig.2 XRD patterns of NPZ-PC and 13%F-NPZ-PC.

    3.3Pore structure of the porous carbons

    The pore structures of the NZ-PC,NPZ-PC,1 3%F-NPZ-PCand20%F-NPZ-PC(activatedat 400℃)were analyzed using N2adsorption at 77 K.The results are listed in Table 2.Since the solubility of ZnCl2is low in Et-OH,the mass ratio of ZnCl2to novolac is limited to 0.44 without PEG in the precursor.Accordingly,the SBETand Vtotalof carbon layers of the NZ-PC are 404 m2/g and 0.223 cm3/g,respectively.Adding proper amount of PEG until the mass ratio of ZnCl2to novolac increases to 3.0 results in an increase in SBETand Vtotalof the NPZ-PC to 1 257 m2/g and 0.759 cm3/g,respectively.The samples when furfural is added(13%F-NPZ-PC and 20% F-NPZ-PC)exhibit higher specific surface areas and Vtotalthan the sample without furfural.It is noteworthy that the Smicro/SBETand Vmicro/Vtotalof 13%F-NPZ-PC are only 18.0%and 12.5%,indicating that the 13% F-NPZ-PC has essentially a mesoporous structure.

    Table1 The estimated crystallite parameters from Raman spectra and XRDpatterns of the NPZ-PC and 13%F-NPZ-PC,activated at 400℃for 60 min.

    Fig.3 Raman spectra of(a)NPZ-PC and(b)13%F-NPZ-PC activated at 400℃for 60 min.

    Fig.4 displays the pore size distributions of carbon layers of the samples.These four samples present a similar micropore size distribution,which was caused by the same ZnCl2activation.Obvious mesopores centered at over 2 nm can be observed in the NPZ-PC and the x%F-NPZ-PC samples,while the NZ-PC sample has little mesopores.These data illustrate that addition of PEG in the precursor increases the solubility of ZnCl2,so that the activation of carbon precursor is facilitated.

    The effects of activation temperature on the specific surface area of porous carbons are shown in Fig.5.It can be seen that the specific surface area of the x%FNPZ-PC reaches a maximum value of 1 200 m2/g at about 450℃with activation temperature.

    Table2 Pore structure parameters of porous carbons activated at 400℃for 60 min.

    Fig.4 Pore size distributions of carbon layers of the samples activated at 400℃for 60 min.

    Fig.5 Effects of activation temperature on the surface area of the three samples.

    3.4Surface chemical structure

    FT-IR spectra were employed to evaluate the surface groups of the samples prepared at different activated temperatures(Fig.6).The bending vibration appeared at 1 055 cm-1is assigned to aliphatic ether,1 092 cm-1to aromatic ether,1 441 cm-1to methylene,1 510 cm-1tolargearomaticringand 1 595 cm-1to benzene ring.For NPZ-PC,the benzene ring turns to aromatic ring with activation temperature as manifested by the wave number change from 1 595 to 1 510 cm-1,but the methylene disappears and aromatic ether is kept.On the other hand,for the 13%F-NPZ-PC,both of benzene ring and methylene are kept below activation temperature of 500℃,aromatic ether is kept even at high activation temperature,but aliphatic ether disappears.It can be concluded from the differences between the FT-IR spectra of the NPZ-PC and 13%F-NPZ-PC that a large amount of methylene and aromatic rings connected by aliphatic ether are formed because of the crosslinking by furfural.These structures would decompose over 500℃.That's why the specific surface area reaches a maximum between 400and 500℃.

    Fig.6 FT-IR spectra of coated layers activated at different temperatures for(a)NPZ-PC and(b)13%F-NPZ-PC.

    3.5Mechanical properties

    The mechanical properties are important for practical application of porous carbons.It is found that addition of furfural in the precursor greatly improvesthe tensile strength of the products.The effect of mass percentage of furfural on the mechanical properties of the porous carbon activated at 400℃is shown in Table 3.The porous carbons have higher failure strains than glass fiber mat.With an increasing of the furfural content from 0 to 20 wt%,the tensile stresses oftheporouscarbonsincreasefrom14.55to 43.52 N.The Youngs modulus exhibits a maximum of 330.54 MPa with the furfural content.

    Table3 The tensile stress,youngs modulus of glass fiber mats and porous carbons activated at 400℃for 60 min.

    3.6Adsorption properties

    Adsorption behavior of the 13%F-NPZ-PC is compared with a commercial GAC and ACF.Table 4 shows the pore structure parameters of the three samples.ACF sample exhibits the largest specific and micropore surface area of 1 354 and 830 m2/g,respectively,and GAC sample shows the lowest specific surface area among the three samples.13%F-NPZPC has a fair high total specific surface area and the highest percentage of mesopore.

    The MB adsorption capacities of the three samples are in good agreement with their specific surface area.ACF shows a highest MB adsorption amount among the three samples(Fig.7)because of its highest specific surface area.The adsorption of MB on ACF and 13%F-NPZ-PC can reach adsorption equilibrium at about 150 min.

    Table4 Pore structure parameters of the three samples.

    The breakthrough curves of MB adsorption on the three carbon materials are shown in Fig.8.ACF shows the most excellent MB adsorption ability.It can completely adsorb all MB in the first phase,and the effluent MB concentration can be kept at 0 before 60 min.13%F-NPZ-PC shows a similar dynamic adsorption behavior with ACF,which could be ascribed to its fibrous structure.However,under the same condition,13%F-NPZ-PC can completely adsorb all MB and keep the effluent concentration at 0 below 20 min.GAC shows a different breakthrough curve.MB breaks through at the very beginning and the effluent concentration of MB gradually increases with time till saturation.

    Fig.7 The static MB adsorption versus time for the three samples.

    Fig.8 The dynamic MB adsorption curves for the three samples.

    3.7Analysis of carbonization mechanism

    Fig.9 depicts thermogravimetric(TG)and differential thermogravimetric(DTG)curves of carbon precursors.Two major weight loss peaks in each line can be observed.The first one with a minimum at around 310 to 340℃corresponds to a mass loss(about 20%)that may be due to water desorption and the second one with a minimum at about 520℃to a mass loss(about 20%to 40%)that may be due to ZnCl2volatilization.For the precursors containing PEG,PEG would decompose at about 320℃,so the first peak also includes the decomposition of PEG for the NPZ-PC and x%F-NPZ-PC samples.The percentage of weight loss increased from 48%to 66%at 600℃,respectively for the NPZ-PC and NZ-PC because of the decomposition of PEG.Some tar solid is found on the surface of the NPZ-PC sample.For the 13%F-NPZ-PC,the precursors loses only 48%of itsweight at 600℃and exhibits a weight loss peak at 506℃,and there is no tar observed after carbonization.The phenomenon indicates that furfural can improve the thermal stability of the precursor.When the precursor was preoxidized in air,oxygen would facilitate the crosslinking reaction on the surface of the precursor.The as-formed cross-linked structure would inhibit the oxygen from further penetrating into the precursor,thus forming the stable structure in the inner part of the precursor.When furfural was added into the precursor,it could cause crosslinking reaction both inside and outside the precursor,so that the thermal stability of precursor is improved.For the precursor without furfural,the structure in the precursor would be destroyed at high temperature,and is released in the form of tar.As the activation temperature increases,the pore structures formed would collapse as the unstable structure is decomposed.For the precursor with furfural,furfural and phenolic would form a lot of aromatic rings and aliphatic ether.All of these structures could be kept stable till 500℃.The thermal stable precursor will be beneficial to the development of pores.

    Fig.9 TG curves of the carbon precursors for various samples.

    4 Conclusions

    Fibrous activated carbons with a high porosity could be prepared through activating a mixture of phenolic resin,PEG and furfural coated on glass fibers using ZnCl2as an activation agent.The specific surface area of the 13%F-NPZ-PC is 1 193 m2/g based on total mass,and 2 023 m2/g based on the carbon layers.88%of the pores of this product are mesopores,whose sizes are between 2 and 4 nm.The fibrous activated carbons exhibit excellent mechanical properties,high MB adsorption capacities and fast adsorption kinetics speed,which are similar to those of a conventional ACF with a specific surface area of 1 300 m2/g.Addition of PEG into the carbon precursors can effectively increase the specific surface area of the porous carbons by increasing the ZnCl2solubility in ethanol.And addition of furfural into the carbon precursors can greatly improve the development of pores because of the formation of a crosslinked structure between phenolic and furfural.

    [1]Zhang J H,Zhang W B,Zhang Y.Pore structure characteristics of activated carbon fibers derived from poplar bark liquefaction and their use for adsorption of Cu(II)[J].Bioresources,2015,10(1):566-574.

    [2]Yusof N,Ismail A F.Post spinning and pyrolysis processes of polyacrylonitrile(PAN)-based carbon fiber and activated carbon fiber:A review[J].J Anal Appl Pyrol 2012,93:1-13.

    [3]Cuerda-Correa E M,Macías-García A,Díez M,et al.Textural and morphological study of activated carbon fibers prepared from kenaf[J].Micropor Mesopor Mater 2008,111(1-3):523-529.

    [4]Nahil M A,Williams P T.Recycling of carbon fibre reinforced polymeric waste for the production of activated carbon fibres[J].J Anal Appl Pyrol 2011;91(1):67-75.

    [5]Valente N,Mouquinho A,Galacho C,et al.In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres[J].Fuel Process Technol 2008,89(5):549-555.

    [6]Economy J,Daley M A.Coated absorbent fibers[P].US patent 5834114,1998.

    [7]Economy J,Mangun C L.Design of new materials for environmental control[J].Macromol Symp 1999,143:75-79.

    [8]An H,F(xiàn)eng B,Su S.CO2capture capacities of activated carbon fibre-phenolic resin composites[J].Carbon,47(10):2396-2405.

    [9]Park S J,Jung W Y.KOH activation and characterization of glass fibers-supported phenolic resin[J].J Colloid Interface Sci,2003,265(2):245-250.

    [10]Nagashanmugam K B,Srinivasan K.Evaluation of lead(II)removal by carbon derived from gingelly oil cake[J].Asian J Chem,2010,22(7):5447-5462.

    [11]Ozdemir I,Sahin M,Orhan R,et al.Preparation and characterization of activated carbon from grape stalk by zinc chloride activation[J].Fuel Process Technol,2014,125:200-206.

    [12]Lu X C,Jiang J C,Su K,et al.Preparation and characterization of sisal fiber-based activated carbon by chemical activation with zinc chloride[J].B Kor Chem Soc,2014,35(1):103-110.

    [13]Hesas R H,Arami-Niya A,Wan D,et al.Comparison of oil palm shell-based activated carbons produced by microwave and conventional heating methods using zinc chloride activation[J].J Ana Appl Pyrol,2013,104:176-184.

    [14]Makeswari M,Santhi T.Optimization of preparation of activated carbon from ricinus communis leaves by microwave-assisted zinc chloride chemical activation:Competitive adsorption of Ni2+ions from aqueous solution[J].J Chem,2013:1-12.

    [15]Xiang X X,Liu E H,Huang Z Z,et al.Preparation of activated carbon from polyaniline by zinc chloride activation as supercapacitor electrodes[J].J Solid State Electr,2011,15(11-12):2667-2674.

    [16]Yue Z,Mangun C L,Economy J.Preparation of fibrous porous materials by chemical activation 1.ZnCl2activation of polymercoated fibers[J].Carbon,2002,40(8):1181-1191.

    [17]Teng H,Wang S C.Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation [J].Carbon,2000,38(6):817-824.

    [18]Tuinstra F,Koenig J L.Raman spectrum of graphite[J].J Chem Phys,1970,53(3):1126-1130.

    [19]Ram K,Abbie N J,Barry J M.Transmission electron microscopy,Raman and X-ray photoelectron spectroscopy studies on neutron irradiated polycrystalline graphite[J].Radiat Phys Chem,2015,107:121-127.

    [20]Leyua-Garcia S,Nueangnoraj K,Lozano-Castello D,et al.Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy[J].Carbon,2015,89:63-73.

    [21]Li-Pook-Than A,F(xiàn)innie P.Observation of the metallic-type selective etching of single walled carbon nanotubes by real-time in situ two-laser Raman spectroscopy[J].Carbon,2015,89:232-241.

    [22]Wang H D,Liu J H,Zhang X,et al.Raman measurement of heat transfer in suspended individual carbon nanotube[J].J Nanosci Nanotechno,2015,15(4):2939-2943.

    [23]Bistricic L,Borjanovic V,Leskovac M,et al.Raman spectra,thermal and mechanical properties of poly(ethylene terephthalate)carbon-based nanocomposite films[J].J Polym Res,2015,22(3):1-12.

    [24]Kazemi-Zanjani N,Gobbo P,Zhu Z Y,et al.High-resolution Raman imaging of bundles of single-walled carbon nanotubes by tip-enhanced Raman spectroscopy[J].Can J Chem,2015,93(1):51-59 .

    The use of ZnCl2activation to prepare low-cost porous carbons coated on glass fibers using mixtures of Novolac,polyethylene glycol and furfural as carbon precursors

    WEI Xiao-qun1,3,LI Qi-han1,LI Hai-chao1,LI Hui-jun1,CHEN Shui-xia1,2
    (1.PCFM Lab,School of Chemistry and Chemical Engineering,Sun Yat-Sen University,Guangzhou510275,China;2.Materials Science Institute,Sun Yat-Sen University,Guangzhou510275,China;3.Inspection and Quarantine Technology Center of Guangdong Entry-Exit Inspection and Quarantine Bureau,Guangzhou510623,China)

    Using ZnCl2as an activation agent,low-cost porous carbonswere prepared using mixtures of Novolac,polyethylene glycol(PEG)and furfural in alcohol as carbon precursorsthat were coated onto glass fiber mats.The morphology,microcrystalline structure,pore structure,surface chemistry,mechanical strength and adsorption properties of the porous carbons were characterized.Results show that the addition of furfural and PEG to the carbon precursors greatly improves pore development.The specific surface area of the porous carbons is as high as 2 023 m2/g when PEG and furfural are added,otherwise it is only 404 m2/g.It is found that the addition of PEG to the precursors can increase the solubility of ZnCl2in alcohol,and thus facilitate the activation of the carbon precursors.The formation of a crosslinked structure of furfural with Novolac is responsible for the improvement in the thermal stability of the precursors and the increase in the carbon yield,which favors the increase in the surface area and the reduction of the production cost.The porous carbons have similar adsorption performance and microcrystalline structure to conventional activated carbon fibers.

    Activated carbon;Glass fiber;ZnCl2;Phenolic-resin

    Science and Technology Project of Guangdong Province(2014A030313192).

    CHEN Shui-xia,Professor.E-mail:cescsx@mail.sysu.edu.cn

    TQ127.1+1

    A

    廣東省科技項(xiàng)目(2014A030313192).

    陳水挾,教授.E-mail:cescsx@mail.sysu.edu.cn

    1007-8827(2015)06-0579-08

    10.1016/S1872-5805(15)60206-2

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    猜你喜歡
    氯化鋅酚醛糠醛
    氯化鋅渣分離工藝探討
    不同糠醛抽出油對(duì)SBS改性瀝青性能的影響
    石油瀝青(2021年6期)2021-02-10 06:15:34
    2028年氯化鋅市場(chǎng)預(yù)計(jì)將達(dá)到4.264億美元
    憎水性ZIFs對(duì)糠醛和5-羥甲基糠醛的吸附分離性能
    氯化鋅ZnCl2制備條件實(shí)驗(yàn)淺探
    日本氯化鋅原料供求緊張
    催化合成典型5-羥甲基糠醛衍生物的研究進(jìn)展
    腰果酚醛胺固化環(huán)氧樹(shù)脂泡沫塑料性能研究
    碳納米管-聚酰胺纖維改性鄰甲酚醛環(huán)氧樹(shù)脂
    膠料中烷基酚醛增粘樹(shù)脂的鑒定
    欧美日韩一级在线毛片| 日韩大尺度精品在线看网址 | 999精品在线视频| 天天影视国产精品| 99国产精品免费福利视频| 久久99一区二区三区| 1024香蕉在线观看| 又大又爽又粗| 男女高潮啪啪啪动态图| 激情在线观看视频在线高清| 久久国产乱子伦精品免费另类| 亚洲成av片中文字幕在线观看| 国产成人精品久久二区二区91| 日韩一卡2卡3卡4卡2021年| 久久影院123| 欧美性长视频在线观看| 在线视频色国产色| 成在线人永久免费视频| 国产极品粉嫩免费观看在线| 91精品国产国语对白视频| 日韩中文字幕欧美一区二区| 日本 av在线| 国产伦人伦偷精品视频| 欧美黄色淫秽网站| 久久精品亚洲精品国产色婷小说| 国产av在哪里看| www.999成人在线观看| 久久天躁狠狠躁夜夜2o2o| 99久久综合精品五月天人人| 亚洲国产精品合色在线| 又黄又粗又硬又大视频| 国产精品免费视频内射| 在线观看免费视频网站a站| 狠狠狠狠99中文字幕| 两人在一起打扑克的视频| 色综合婷婷激情| 精品电影一区二区在线| 久久久精品欧美日韩精品| 黄色片一级片一级黄色片| 日日摸夜夜添夜夜添小说| 丝袜在线中文字幕| 91成年电影在线观看| 国产精品美女特级片免费视频播放器 | 在线观看免费视频日本深夜| 亚洲第一青青草原| 中文欧美无线码| 久久影院123| 老熟妇乱子伦视频在线观看| 免费av毛片视频| 亚洲五月天丁香| 午夜久久久在线观看| 日韩精品中文字幕看吧| 亚洲激情在线av| 又大又爽又粗| 日日摸夜夜添夜夜添小说| 国产欧美日韩一区二区三区在线| 亚洲狠狠婷婷综合久久图片| 亚洲第一欧美日韩一区二区三区| 国产精品一区二区精品视频观看| 欧美黄色片欧美黄色片| tocl精华| 国产成人免费无遮挡视频| 悠悠久久av| 欧美日本中文国产一区发布| 中文字幕人妻熟女乱码| 亚洲精品av麻豆狂野| 999久久久国产精品视频| 国产精品九九99| 国产欧美日韩综合在线一区二区| 精品国产国语对白av| 午夜免费成人在线视频| 69av精品久久久久久| 亚洲男人的天堂狠狠| 老熟妇乱子伦视频在线观看| 国产精品二区激情视频| 国产欧美日韩综合在线一区二区| 国产伦一二天堂av在线观看| 久热这里只有精品99| 18美女黄网站色大片免费观看| 高清在线国产一区| 12—13女人毛片做爰片一| 国产精品九九99| 美女 人体艺术 gogo| 一区二区三区国产精品乱码| 新久久久久国产一级毛片| 少妇裸体淫交视频免费看高清 | 欧美+亚洲+日韩+国产| 90打野战视频偷拍视频| 欧美一级毛片孕妇| 妹子高潮喷水视频| 久久久精品欧美日韩精品| 欧美中文日本在线观看视频| 精品少妇一区二区三区视频日本电影| 亚洲熟妇熟女久久| 国产单亲对白刺激| 少妇 在线观看| a级片在线免费高清观看视频| 欧美精品一区二区免费开放| 精品国产国语对白av| 亚洲国产精品999在线| 欧美成人性av电影在线观看| 久久人人爽av亚洲精品天堂| 成人国产一区最新在线观看| 久久久久久久精品吃奶| 国产激情欧美一区二区| 丁香欧美五月| 国产精华一区二区三区| netflix在线观看网站| 久久国产乱子伦精品免费另类| 久久99一区二区三区| 亚洲精品国产色婷婷电影| 动漫黄色视频在线观看| av在线天堂中文字幕 | 精品人妻1区二区| 国产精品自产拍在线观看55亚洲| 亚洲人成电影观看| 性欧美人与动物交配| 在线观看免费高清a一片| 欧美成人午夜精品| 日本欧美视频一区| 欧美日韩乱码在线| 国产成人av教育| 精品欧美一区二区三区在线| 啦啦啦在线免费观看视频4| 国产精品影院久久| 久久亚洲真实| 欧美最黄视频在线播放免费 | 欧美色视频一区免费| 免费一级毛片在线播放高清视频 | 午夜亚洲福利在线播放| 国产精品永久免费网站| 波多野结衣高清无吗| 国产亚洲精品久久久久5区| 国产成人啪精品午夜网站| 一级黄色大片毛片| 91成年电影在线观看| 成年女人毛片免费观看观看9| 精品福利观看| 十八禁网站免费在线| 美女 人体艺术 gogo| 在线十欧美十亚洲十日本专区| 日韩欧美一区视频在线观看| 国产欧美日韩一区二区精品| 欧美乱色亚洲激情| 日韩欧美三级三区| 国产单亲对白刺激| 色哟哟哟哟哟哟| 亚洲人成77777在线视频| 大码成人一级视频| 成人特级黄色片久久久久久久| av有码第一页| 久久草成人影院| 精品少妇一区二区三区视频日本电影| 99热只有精品国产| 在线观看免费午夜福利视频| 欧美久久黑人一区二区| 久久国产精品影院| 宅男免费午夜| a级毛片在线看网站| 男女午夜视频在线观看| 亚洲人成电影观看| 日韩国内少妇激情av| 80岁老熟妇乱子伦牲交| 成人黄色视频免费在线看| 亚洲av片天天在线观看| 亚洲视频免费观看视频| 人人妻人人澡人人看| 99国产精品一区二区三区| a级片在线免费高清观看视频| 热99re8久久精品国产| 欧美日韩瑟瑟在线播放| 啦啦啦 在线观看视频| 99久久综合精品五月天人人| 天天躁夜夜躁狠狠躁躁| 中亚洲国语对白在线视频| 国产激情欧美一区二区| 国产成人系列免费观看| 又大又爽又粗| 午夜日韩欧美国产| 宅男免费午夜| 成熟少妇高潮喷水视频| 三上悠亚av全集在线观看| 大陆偷拍与自拍| 午夜成年电影在线免费观看| 国产av在哪里看| 午夜福利在线观看吧| 国产1区2区3区精品| 一a级毛片在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区久久| 国产欧美日韩一区二区三| 人人妻人人澡人人看| 欧美日韩精品网址| 国产精品av久久久久免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区中文字幕在线| 视频在线观看一区二区三区| 国产精品久久久久成人av| 18禁国产床啪视频网站| 国产精品亚洲av一区麻豆| 亚洲欧美激情在线| 一夜夜www| 精品第一国产精品| 国产一区在线观看成人免费| 别揉我奶头~嗯~啊~动态视频| 久久精品亚洲熟妇少妇任你| 女生性感内裤真人,穿戴方法视频| 亚洲欧美精品综合久久99| 亚洲精品国产区一区二| 黄频高清免费视频| 久久久久久久久中文| 日本 av在线| 黄色片一级片一级黄色片| av免费在线观看网站| 国产一区二区激情短视频| 亚洲精品国产一区二区精华液| 亚洲专区中文字幕在线| 国产精华一区二区三区| 美女国产高潮福利片在线看| 国内毛片毛片毛片毛片毛片| 脱女人内裤的视频| 国产一卡二卡三卡精品| 一级片'在线观看视频| 欧美亚洲日本最大视频资源| 色精品久久人妻99蜜桃| 99国产精品一区二区三区| 久久精品影院6| 欧美另类亚洲清纯唯美| 无遮挡黄片免费观看| 91国产中文字幕| 欧美人与性动交α欧美软件| 亚洲av电影在线进入| 中文字幕最新亚洲高清| 亚洲精品久久成人aⅴ小说| 国产成人av教育| 侵犯人妻中文字幕一二三四区| 成人免费观看视频高清| 欧美久久黑人一区二区| 国产精品久久久人人做人人爽| 美女 人体艺术 gogo| 国产亚洲av高清不卡| 国产av精品麻豆| 久久人妻av系列| 国产亚洲精品第一综合不卡| 一进一出抽搐动态| 又紧又爽又黄一区二区| 免费搜索国产男女视频| 久久精品亚洲熟妇少妇任你| 亚洲九九香蕉| 看片在线看免费视频| 久热这里只有精品99| 免费不卡黄色视频| 国产欧美日韩一区二区三区在线| 久久九九热精品免费| 欧美性长视频在线观看| 久久中文字幕人妻熟女| 丁香六月欧美| 亚洲精品美女久久久久99蜜臀| 成人三级做爰电影| 国产亚洲精品第一综合不卡| 午夜老司机福利片| 免费在线观看影片大全网站| 桃红色精品国产亚洲av| 一级a爱视频在线免费观看| 丝袜美腿诱惑在线| 国产成人精品久久二区二区免费| 午夜福利一区二区在线看| 欧美黄色淫秽网站| av中文乱码字幕在线| 久9热在线精品视频| 久热爱精品视频在线9| 欧美激情高清一区二区三区| 脱女人内裤的视频| 欧美激情 高清一区二区三区| 亚洲成国产人片在线观看| 纯流量卡能插随身wifi吗| 18美女黄网站色大片免费观看| 中文字幕精品免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 国产日韩一区二区三区精品不卡| 日韩欧美一区视频在线观看| 免费久久久久久久精品成人欧美视频| 国产xxxxx性猛交| 久久这里只有精品19| 夜夜看夜夜爽夜夜摸 | 韩国av一区二区三区四区| 欧美黑人欧美精品刺激| 成人18禁高潮啪啪吃奶动态图| av在线播放免费不卡| 日本vs欧美在线观看视频| 99久久久亚洲精品蜜臀av| 丝袜人妻中文字幕| 国产精品亚洲一级av第二区| 日韩人妻精品一区2区三区| 国产精品久久久久成人av| 亚洲av日韩精品久久久久久密| 人人澡人人妻人| 国产高清激情床上av| 可以免费在线观看a视频的电影网站| 一进一出抽搐gif免费好疼 | 午夜影院日韩av| 99在线视频只有这里精品首页| 成年版毛片免费区| 天堂√8在线中文| 久久草成人影院| 成人国产一区最新在线观看| 国产精品 国内视频| 精品国内亚洲2022精品成人| 亚洲精品美女久久av网站| 欧洲精品卡2卡3卡4卡5卡区| 巨乳人妻的诱惑在线观看| 极品人妻少妇av视频| 久久久久久免费高清国产稀缺| 亚洲国产欧美一区二区综合| 老熟妇乱子伦视频在线观看| 精品福利永久在线观看| 精品福利观看| 午夜福利在线观看吧| 黑人操中国人逼视频| 69精品国产乱码久久久| 欧美日韩黄片免| 国产黄色免费在线视频| 亚洲人成网站在线播放欧美日韩| 中亚洲国语对白在线视频| 久久精品亚洲精品国产色婷小说| 久久中文字幕一级| 美国免费a级毛片| 久久久国产精品麻豆| 国产99久久九九免费精品| 欧美黑人欧美精品刺激| xxxhd国产人妻xxx| 久久精品影院6| 91老司机精品| 亚洲男人天堂网一区| 久久久久精品国产欧美久久久| 日韩精品免费视频一区二区三区| 老司机午夜十八禁免费视频| 国产三级在线视频| 国产97色在线日韩免费| 丁香欧美五月| 亚洲avbb在线观看| 亚洲精品久久成人aⅴ小说| 一级片'在线观看视频| 丁香欧美五月| 美女扒开内裤让男人捅视频| 80岁老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 中文字幕人妻丝袜一区二区| 日日夜夜操网爽| 一二三四社区在线视频社区8| 亚洲情色 制服丝袜| 久久天堂一区二区三区四区| 黑人欧美特级aaaaaa片| 男女床上黄色一级片免费看| 亚洲色图综合在线观看| 90打野战视频偷拍视频| 91九色精品人成在线观看| 淫秽高清视频在线观看| 在线观看免费高清a一片| 五月开心婷婷网| 久久国产亚洲av麻豆专区| av有码第一页| netflix在线观看网站| 久久久精品欧美日韩精品| 亚洲午夜理论影院| 免费女性裸体啪啪无遮挡网站| 好看av亚洲va欧美ⅴa在| 叶爱在线成人免费视频播放| 成人永久免费在线观看视频| 日本免费a在线| 日韩免费高清中文字幕av| 国产精品爽爽va在线观看网站 | 精品无人区乱码1区二区| 91字幕亚洲| 国产欧美日韩综合在线一区二区| 99国产极品粉嫩在线观看| 很黄的视频免费| 18禁观看日本| 日本wwww免费看| 久久人人97超碰香蕉20202| 99久久国产精品久久久| 久久久国产欧美日韩av| 校园春色视频在线观看| 国产av一区二区精品久久| 国产av一区在线观看免费| 国产精品国产av在线观看| 天堂影院成人在线观看| 天堂动漫精品| 麻豆一二三区av精品| 露出奶头的视频| 久久精品国产综合久久久| 亚洲九九香蕉| 曰老女人黄片| 日韩高清综合在线| 悠悠久久av| 在线观看免费午夜福利视频| 大型黄色视频在线免费观看| 国产97色在线日韩免费| 国产又爽黄色视频| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一二三| 久久久久久久久免费视频了| 国产一区二区在线av高清观看| 一区二区三区国产精品乱码| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品合色在线| 又大又爽又粗| 少妇粗大呻吟视频| 夜夜夜夜夜久久久久| 亚洲国产精品sss在线观看 | 亚洲成人免费av在线播放| 在线av久久热| 久久精品国产亚洲av香蕉五月| 国内久久婷婷六月综合欲色啪| 18禁国产床啪视频网站| 啦啦啦在线免费观看视频4| 视频区欧美日本亚洲| 女人爽到高潮嗷嗷叫在线视频| 国产伦人伦偷精品视频| 国产精品免费视频内射| 一区在线观看完整版| 999久久久国产精品视频| aaaaa片日本免费| 村上凉子中文字幕在线| 日韩欧美在线二视频| 亚洲视频免费观看视频| 国产激情欧美一区二区| 香蕉丝袜av| 在线十欧美十亚洲十日本专区| 日韩人妻精品一区2区三区| 亚洲中文字幕日韩| 无人区码免费观看不卡| 久久国产精品男人的天堂亚洲| 法律面前人人平等表现在哪些方面| 91麻豆精品激情在线观看国产 | 欧美日韩亚洲综合一区二区三区_| 免费日韩欧美在线观看| 久久久久九九精品影院| 大型黄色视频在线免费观看| 老司机午夜福利在线观看视频| 日韩欧美一区视频在线观看| 人人妻人人添人人爽欧美一区卜| 天天添夜夜摸| 97人妻天天添夜夜摸| 日韩三级视频一区二区三区| 9191精品国产免费久久| 国产精品久久久久久人妻精品电影| 一边摸一边做爽爽视频免费| 一进一出抽搐动态| 天天躁狠狠躁夜夜躁狠狠躁| 国产人伦9x9x在线观看| 国产午夜精品久久久久久| 韩国av一区二区三区四区| 男女下面插进去视频免费观看| 一边摸一边做爽爽视频免费| 黄色片一级片一级黄色片| 天天躁狠狠躁夜夜躁狠狠躁| av天堂久久9| 国产一区二区激情短视频| 国产成+人综合+亚洲专区| 久久久久久久久久久久大奶| 悠悠久久av| 国产区一区二久久| 国产精品国产av在线观看| 久久青草综合色| 国产av精品麻豆| 老司机在亚洲福利影院| 久久午夜亚洲精品久久| 亚洲伊人色综图| 亚洲精品国产一区二区精华液| 99热只有精品国产| 欧美乱码精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 精品国产超薄肉色丝袜足j| 视频区图区小说| 村上凉子中文字幕在线| 搡老乐熟女国产| 女性生殖器流出的白浆| 在线国产一区二区在线| 亚洲狠狠婷婷综合久久图片| 9191精品国产免费久久| cao死你这个sao货| 久久婷婷成人综合色麻豆| 成年人黄色毛片网站| 激情视频va一区二区三区| 中文字幕人妻熟女乱码| 国产真人三级小视频在线观看| 搡老乐熟女国产| 国产免费现黄频在线看| 亚洲国产精品合色在线| 成人黄色视频免费在线看| 久久人人精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 十八禁网站免费在线| 久久精品亚洲精品国产色婷小说| a在线观看视频网站| 伊人久久大香线蕉亚洲五| 成人三级做爰电影| 国产欧美日韩精品亚洲av| 中文字幕精品免费在线观看视频| 亚洲五月婷婷丁香| 亚洲少妇的诱惑av| 黄色丝袜av网址大全| 色综合站精品国产| 色老头精品视频在线观看| 后天国语完整版免费观看| 亚洲自拍偷在线| 国产精品一区二区在线不卡| 黑丝袜美女国产一区| 一二三四在线观看免费中文在| 免费在线观看黄色视频的| 精品一区二区三卡| 人人澡人人妻人| 91av网站免费观看| 亚洲精品在线美女| 女人精品久久久久毛片| 国产精品免费一区二区三区在线| 搡老熟女国产l中国老女人| 1024视频免费在线观看| 乱人伦中国视频| www.熟女人妻精品国产| 亚洲人成77777在线视频| 国产精品免费视频内射| 精品无人区乱码1区二区| 最近最新中文字幕大全电影3 | 女人高潮潮喷娇喘18禁视频| 国产av一区在线观看免费| 淫秽高清视频在线观看| 女性被躁到高潮视频| 国产av又大| 亚洲自拍偷在线| 欧美久久黑人一区二区| 国产伦人伦偷精品视频| 久久婷婷成人综合色麻豆| 亚洲欧美精品综合久久99| 老汉色av国产亚洲站长工具| 久久久久国产精品人妻aⅴ院| 久久久国产成人免费| 精品一区二区三卡| 日日摸夜夜添夜夜添小说| 免费搜索国产男女视频| 好男人电影高清在线观看| 色尼玛亚洲综合影院| 国产精品日韩av在线免费观看 | 久久精品国产清高在天天线| 精品卡一卡二卡四卡免费| 视频在线观看一区二区三区| 免费看a级黄色片| 久久影院123| 中文字幕另类日韩欧美亚洲嫩草| 精品国产超薄肉色丝袜足j| www国产在线视频色| 一二三四社区在线视频社区8| 女性被躁到高潮视频| 久99久视频精品免费| 日本 av在线| 午夜日韩欧美国产| 超色免费av| 亚洲国产毛片av蜜桃av| 欧美最黄视频在线播放免费 | 一本大道久久a久久精品| 香蕉国产在线看| 精品一区二区三卡| 麻豆一二三区av精品| 电影成人av| 97碰自拍视频| 久久人妻av系列| а√天堂www在线а√下载| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美在线二视频| 久久久精品欧美日韩精品| 一区二区三区激情视频| 精品久久蜜臀av无| 99在线人妻在线中文字幕| 国产精品99久久99久久久不卡| 精品久久久久久电影网| 国产91精品成人一区二区三区| 欧美人与性动交α欧美软件| 别揉我奶头~嗯~啊~动态视频| 精品人妻在线不人妻| 韩国av一区二区三区四区| 欧美乱妇无乱码| 日本欧美视频一区| 日日摸夜夜添夜夜添小说| 久久精品成人免费网站| 无遮挡黄片免费观看| 窝窝影院91人妻| 国产精品久久视频播放| 亚洲自拍偷在线| 窝窝影院91人妻| 又大又爽又粗| 免费少妇av软件| 成人精品一区二区免费| 久久久久国内视频| 亚洲美女黄片视频| 高潮久久久久久久久久久不卡| 夜夜爽天天搞| 久久人人精品亚洲av| av国产精品久久久久影院| 亚洲一区二区三区欧美精品| 在线视频色国产色| 久久国产亚洲av麻豆专区| 桃红色精品国产亚洲av| 久久狼人影院| netflix在线观看网站| 成人黄色视频免费在线看| 久久精品国产亚洲av香蕉五月| 国产伦一二天堂av在线观看| av福利片在线| a级片在线免费高清观看视频| 岛国在线观看网站| 日韩一卡2卡3卡4卡2021年| www.999成人在线观看| 亚洲专区国产一区二区| 精品久久蜜臀av无|