孟陽
(中國石化勝利油田分公司開發(fā)處,山東東營257000)
WHZ油田致密儲(chǔ)層微觀特征及介質(zhì)變形敏感實(shí)驗(yàn)
孟陽
(中國石化勝利油田分公司開發(fā)處,山東東營257000)
致密儲(chǔ)層普遍存在應(yīng)力敏感現(xiàn)象,會(huì)造成油井生產(chǎn)一段時(shí)間后產(chǎn)量大幅遞減。針對(duì)WHZ油田致密儲(chǔ)層開發(fā)過程中存在的問題,利用巖心核磁共振T2測(cè)試方法,得到孔喉半徑及T2截止值等參數(shù),分析了WHZ油田致密儲(chǔ)層巖石組成、孔喉結(jié)構(gòu)及孔滲分布等微觀特征,基于巖心流動(dòng)實(shí)驗(yàn)及統(tǒng)計(jì)分析方法,得到升、降圍壓過程中隨圍壓變化的滲透率,研究了致密儲(chǔ)層無因次滲透率與無因次圍壓之間的函數(shù)關(guān)系,分析了致密儲(chǔ)層介質(zhì)變形影響因素,并結(jié)合礦場(chǎng)實(shí)際分析不同開發(fā)方式下的油田生產(chǎn)情況。結(jié)果表明:WHZ油田致密儲(chǔ)層多孔介質(zhì)經(jīng)過升、降圍壓后,滲透率將產(chǎn)生不可逆損失,且壓力降低會(huì)影響孔喉結(jié)構(gòu)的重新分布,即使補(bǔ)充能量也難以恢復(fù)至初始值,存在儲(chǔ)層介質(zhì)永久性傷害。WHZ油田實(shí)際資料表明,降壓開采使產(chǎn)能受損,同期產(chǎn)能同步注水開發(fā)高于未注水開發(fā)。因此,在油田開發(fā)過程中應(yīng)盡量保持合理的地層壓力,避免因儲(chǔ)層介質(zhì)變形引起產(chǎn)量損失。
致密儲(chǔ)層 微觀特征 應(yīng)力敏感性 核磁共振 介質(zhì)變形 圍壓
致密儲(chǔ)層孔喉結(jié)構(gòu)復(fù)雜,在油藏開采前,儲(chǔ)層巖石受上覆地層壓力、孔隙流體壓力以及巖石骨架應(yīng)力等綜合作用,一般處于平衡狀態(tài)。但隨著注入水的進(jìn)入或地層流體的采出,巖石骨架的受力情況可能發(fā)生變化,導(dǎo)致其變形,從而影響儲(chǔ)層的物性參數(shù),這種性質(zhì)稱為巖石的應(yīng)力敏感性[1-5]。薛永超等進(jìn)行了不同級(jí)別滲透率巖心應(yīng)力敏感實(shí)驗(yàn),認(rèn)為應(yīng)力敏感性的存在使得巖石滲透率發(fā)生不可逆變化,將最終影響油井產(chǎn)能和油藏開發(fā)效果[6]。但目前關(guān)于應(yīng)力敏感性對(duì)油田生產(chǎn)的影響還缺乏定量研究,難以指導(dǎo)油田的合理開發(fā)。為此,筆者利用巖心核磁共振(NMR)測(cè)試和巖心流動(dòng)實(shí)驗(yàn)方法,結(jié)合礦場(chǎng)實(shí)際生產(chǎn)數(shù)據(jù),分析了WHZ油田致密儲(chǔ)層微觀孔隙結(jié)構(gòu)及介質(zhì)變形特征,以期為合理開發(fā)致密儲(chǔ)層的方案制定提供理論和實(shí)驗(yàn)依據(jù)。
1.1礦物組成及微觀孔喉結(jié)構(gòu)
實(shí)驗(yàn)巖心取自WHZ油田某致密儲(chǔ)層,氣測(cè)滲透率為0.019×10-3~0.793×10-3μm2,孔隙度為3.44%~17.7%,屬于低孔致密油藏。巖石礦物以石英為主,占整個(gè)礦物組分的58.2%,長(zhǎng)石次之,占18.8%,粘土占10.3%。通常在外力作用下,硬度越低越容易發(fā)生變形或破碎并發(fā)生位移,使儲(chǔ)層介質(zhì)的孔隙體積縮小,甚至堵塞孔隙和喉道,降低了致密儲(chǔ)層介質(zhì)的有效孔隙度和滲透率。
由繪制的氣測(cè)滲透率與孔隙度關(guān)系曲線(圖1)可以看出,該致密儲(chǔ)層隨著巖石滲透率的增大,孔隙度也相應(yīng)增大,二者具有良好的指數(shù)關(guān)系。
圖1 WHZ油田某致密儲(chǔ)層氣測(cè)滲透率與孔隙度的關(guān)系Fig.1 Relationship between permeability and porosity in the tight reservoirsofWHZoilfield
致密儲(chǔ)層巖石孔隙結(jié)構(gòu)通常為小孔和細(xì)孔型,大孔隙的體積占巖心總孔隙體積的比例很小。選擇3塊巖心(表1)進(jìn)行測(cè)試,得到喉道半徑和孔隙半徑分布結(jié)果。結(jié)果(圖2)表明:致密儲(chǔ)層中喉道半徑和孔隙半徑分布規(guī)律相似,均呈近似正態(tài)分布特征;幾何尺寸絕對(duì)值較小的孔隙組成了致密巖心的有效孔隙。具體表現(xiàn)在:①巖心單位體積有效孔道個(gè)數(shù)越多,其氣測(cè)滲透率越高;②當(dāng)巖心單位體積有效孔隙個(gè)數(shù)相近時(shí),喉道和孔隙半徑越大,滲透率越大。反之,喉道和孔隙半徑越小,滲透率越?。虎蹘r心喉道和孔隙數(shù)量越多,該巖心的孔隙體積相對(duì)越大。
表1 巖心流動(dòng)實(shí)驗(yàn)基本參數(shù)Table1 Basic parametersof the flow experiment of rock samples
圖2 WHZ油田某致密儲(chǔ)層喉道半徑和孔隙半徑分布結(jié)果Fig.2 Throat radiusand pore radiusdistribution in the tight reservoirsofWHZoilfield
1.2巖心流體飽和度
油藏中流體在儲(chǔ)層多孔介質(zhì)中以束縛和可動(dòng)兩類狀態(tài)存在。儲(chǔ)層孔隙空間的可動(dòng)流體百分?jǐn)?shù)越大,意味著束縛流體百分?jǐn)?shù)越小,則儲(chǔ)層的滲流能力就越好。因此,流體可流動(dòng)能力從某種程度上決定了油田實(shí)際開發(fā)潛力[7-9]。
由6塊致密砂巖巖心常規(guī)孔隙度和核磁孔隙度測(cè)定結(jié)果(表2)可以看出,當(dāng)回波間隔為0.5ms時(shí),核磁孔隙度大多略微小于常規(guī)孔隙度,常規(guī)孔隙度平均值為12.42%,核磁孔隙度平均值為12.34%。
NMR標(biāo)準(zhǔn)T2截止值作為區(qū)分可動(dòng)流體與束縛流體的關(guān)鍵參數(shù),其準(zhǔn)確與否直接關(guān)系到束縛水飽和度和滲透率計(jì)算結(jié)果的準(zhǔn)確性。6塊致密砂巖巖心核磁共振可動(dòng)流體飽和度測(cè)試結(jié)果(表2)表明:可動(dòng)流體飽和度與巖心滲透率、孔隙度具有一定的相關(guān)性;該致密儲(chǔ)層可動(dòng)流體飽和度平均為26.77%~47.33%,核磁共振測(cè)試確定可動(dòng)流體時(shí),巖心的T2截止值平均為27.09ms,可將該值作為WHZ油田致密儲(chǔ)層T2截止值。
表2 致密砂巖巖心核磁共振實(shí)驗(yàn)結(jié)果Table2 NMR resultsof the tightsandstone cores
2.1實(shí)驗(yàn)方法
依據(jù)SY/T 5358—2010[10],對(duì)WHZ油田某致密儲(chǔ)層的8塊巖心(表3)進(jìn)行室內(nèi)巖心流動(dòng)實(shí)驗(yàn),測(cè)定不同圍壓下的巖心滲透率,通過改變巖心圍壓模擬儲(chǔ)層巖石受到的上覆壓力變化,并分析巖心滲透率隨圍壓的變化規(guī)律。實(shí)驗(yàn)用水為礦化度為9 525 mg/L、粘度為1.005mPa·s的地層水。應(yīng)力敏感實(shí)驗(yàn)的步驟包括:①按照?qǐng)D3安裝實(shí)驗(yàn)流程,在溫度為25℃的條件下,保持巖心兩端壓力梯度恒定;②設(shè)定初始圍壓為5MPa,將圍壓依次增至10,15,20,30,40和50MPa,每個(gè)圍壓點(diǎn)保持30min,測(cè)定升壓過程中不同圍壓下的滲透率;③根據(jù)選擇的圍壓變化區(qū)間,再依次將圍壓由50MPa降至40,30,20,15, 10和5MPa,每個(gè)圍壓點(diǎn)保持1 h,測(cè)定降壓過程中不同圍壓下的巖心滲透率;④對(duì)于每塊巖心,均通過重復(fù)步驟②和③來模擬開采過程中地層降壓后又升壓的過程。
表3 應(yīng)力敏感實(shí)驗(yàn)所用巖心基本參數(shù)Table3 Basic parametersof the rock samples in the stresssensitivity experiments
圖3 應(yīng)力敏感實(shí)驗(yàn)流程Fig.3 Flowchartofstresssensitivity experiments
2.2圍壓對(duì)巖石滲透率的影響
由8塊致密巖心測(cè)得的滲透率與圍壓的關(guān)系曲線(圖4)可以看出:①無論升壓還是降壓過程,隨著圍壓的增大巖心滲透率均下降;②經(jīng)過升壓和降壓過程后,滲透率均會(huì)產(chǎn)生損失,且該過程是不可逆的;③當(dāng)圍壓為5~20MPa時(shí),滲透率隨圍壓降低幅度較大,且滲透率最終不可逆損失率也較大;當(dāng)圍壓為20~50MPa時(shí),滲透率隨圍壓降低幅度較小,滲透率最終不可逆損失率也較小,為2%~4%。
圖4 巖心滲透率隨圍壓的變化關(guān)系Fig.4 Variationsof rock sample permeabilities with the confining pressure
2.3應(yīng)力敏感系數(shù)
應(yīng)力敏感系數(shù)可以定量表征儲(chǔ)層滲透率隨應(yīng)力變化的敏感程度,其值越大說明儲(chǔ)層對(duì)壓力越敏感[11-13]。將8塊巖心的滲透率及圍壓進(jìn)行無因次化處理后,分別繪制兩者的關(guān)系曲線(圖5),利用乘冪數(shù)學(xué)式對(duì)曲線進(jìn)行擬合,所得擬合方程形式與Zhu-Suyang等研究結(jié)果[14-16]相同,且相關(guān)系數(shù)較高,為0.981 1~0.997 1,得到的滲透率與圍壓的關(guān)系式為
式中:Ks為某一圍壓下的滲透率,10-3μm2;Ki為圍壓為5MPa時(shí)的初始滲透率,10-3μm2;α和β均為系數(shù);σs為圍壓,MPa;σi為初始圍壓,MPa。
圖5 實(shí)驗(yàn)巖心Ks/Ki與σs/σi的關(guān)系Fig.5 Relationship between Ks/Kiandσs/σiof rock samples
筆者將式(1)中的β定義為應(yīng)力敏感系數(shù),8塊致密巖心的應(yīng)力敏感系數(shù)為0.264~1.023。
巖石的滲透率和孔隙度均隨著應(yīng)力條件變化而變化,但是孔隙度的變化幅度遠(yuǎn)小于滲透率的變化幅度。根據(jù)圖1中孔隙度與滲透率的關(guān)系,假設(shè)應(yīng)力敏感系數(shù)與初始滲透率和孔隙度的關(guān)系為
式中:?為孔隙度;K為氣測(cè)滲透率,10-3μm2。
根據(jù)WHZ油田8塊致密巖心的孔隙度、滲透率和應(yīng)力敏感系數(shù),繪制 β與?K0.4141的關(guān)系曲線,擬合得到相關(guān)性較高的冪函數(shù)關(guān)系為
分析初始滲透率、孔隙度與應(yīng)力敏感系數(shù)的關(guān)系可知,巖心初始滲透率與孔隙度對(duì)應(yīng)力敏感系數(shù)影響較大。滲透率和孔隙度越小,對(duì)應(yīng)的應(yīng)力敏感系數(shù)越大,且在一定范圍內(nèi)應(yīng)力敏感系數(shù)變化較大;當(dāng)滲透率和孔隙度較大時(shí),應(yīng)力敏感系數(shù)變化較小。對(duì)于致密儲(chǔ)層,壓力的下降會(huì)影響孔喉結(jié)構(gòu)的重新分布,造成滲透率和孔隙度的大幅損失,即使補(bǔ)充能量也難以恢復(fù)至初始值,即存在永久性傷害。這種傷害與孔喉微觀結(jié)構(gòu)及有效應(yīng)力密切相關(guān),油藏開發(fā)過程中壓力下降越快,滲透率損失越大,產(chǎn)量遞減越快,對(duì)油田穩(wěn)產(chǎn)增產(chǎn)越不利。
WHZ油田原始地層壓力為50MPa,滲透率為0.2×10-3μm2,儲(chǔ)層厚度為24m,地層原油粘度為0.78mPa·s。井組A采用同步注水開發(fā)方式,井組B采用天然能量開發(fā)方式,2井組儲(chǔ)層滲透率接近。由2個(gè)井組平均單井產(chǎn)油量曲線(圖6)可知:油藏開發(fā)初期,2個(gè)井組產(chǎn)能損失明顯,產(chǎn)油量均遞減較快,開采5 a的遞減率均約為50%;但同步注水開發(fā)效果明顯好于天然能量開發(fā),同期產(chǎn)能同步注水開發(fā)高于天然能量開發(fā),井組A注水見效后,油藏壓力恢復(fù),產(chǎn)油量上升明顯,后期產(chǎn)油量下降趨勢(shì)比較緩慢,開采10 a后,產(chǎn)油量穩(wěn)定在4 t/d左右,而井組B,由于地層能量一直下降,產(chǎn)油量一直低于井組A,且一直處于遞減狀態(tài)。因此,在油田開發(fā)過程中應(yīng)盡量保持合理的地層壓力,避免因儲(chǔ)層介質(zhì)變形引起產(chǎn)量損失。
圖6 注水和未注水井組平均單井產(chǎn)油量對(duì)比曲線Fig.6 Comparison ofaverage daily oilproduction curvesbetweenwellgroupswith and withoutwater flooding
WHZ油田致密儲(chǔ)層孔隙結(jié)構(gòu)以幾何尺寸絕對(duì)值較小的小孔和細(xì)孔型為主,喉道半徑和孔隙半徑分布規(guī)律相近,均呈近似正態(tài)分布特征;油藏平均可動(dòng)流體飽和度為25%~45%,且可動(dòng)流體飽和度隨著巖心滲透率與孔隙度的增大而增大。在進(jìn)行核磁共振確定可動(dòng)流體時(shí),可將27.09ms作為WHZ油田致密儲(chǔ)層T2截止值。巖石滲透率在升、降圍壓過程中存在一定的應(yīng)力敏感性,當(dāng)圍壓為0~20MPa時(shí),滲透率降低幅度大;當(dāng)圍壓為20~50MPa時(shí),滲透率降低幅度小。升圍壓過程中孔喉結(jié)構(gòu)重新分布,介質(zhì)發(fā)生變形,造成滲透率大幅損失,且在經(jīng)先升圍壓再降圍壓的過程后,滲透率產(chǎn)生不可逆的損失,即使地層壓力再升高滲透率也難以恢復(fù)至初始值。因此,高效開發(fā)致密油藏應(yīng)保持合理的地層壓力,避免因儲(chǔ)層介質(zhì)變形引起油井產(chǎn)量的損失。
[1] 許濤,黃海龍,修德艷,等.低滲透油藏應(yīng)力敏感評(píng)價(jià)新方法[J].特種油氣藏,2014,21(6):126-129. Xu Tao,Huang Hailong,Xiu Deyan,et al.New method for stress sensitivity evaluation aimed at low permeability oil reservoirs[J]. SpecialOil&GasReservoirs,2014,21(6):126-129.
[2] 游利軍,王巧智,康毅力,等.壓裂液浸潤對(duì)頁巖儲(chǔ)層應(yīng)力敏感性的影響[J].油氣地質(zhì)與采收率,2014,21(6):102-106. You Lijun,Wang Qiaozhi,Kang Yili,etal.Influence of fracturing fluid immersion on stress sensitivity of shale reservoir[J].Petroleum Geology and Recovery Efficiency,2014,21(6):102-106.
[3] 蘇玉亮,欒志安,張永高.變形介質(zhì)油藏開發(fā)特征[J].石油學(xué)報(bào),2000,21(2):51-55. Su Yuliang,Luan Zhian,Zhang Yonggao.A studyon development characteristics for deformed reservoir[J].Acta Petrolei Sinica,2000,21(2):51-55.
[4] Zeng Zhengwen,Grigg Reid B,Gupta D B.Laboratory investigation of stress-sensitivity of non-Darcy gas flow parameters[C]. SPE 89431,2004.
[5] 肖開華,馮動(dòng)軍,李秀鵬.川西新場(chǎng)須四段致密砂巖儲(chǔ)層微觀孔喉與可動(dòng)流體變化特征[J].石油實(shí)驗(yàn)地質(zhì),2014,36(1):77-82. Xiao Kaihua,F(xiàn)eng Dongjun,Li Xiupeng.Micro pore and throat characteristics and moveable fluid variation of tight sandstone in 4th member of Xujiahe Formation,Xinchang Gas Field,western Sichuan Basin[J].Petroleum Geology&Experiment,2014,36 (1):77-82.
[6] 薛永超,程林松.不同級(jí)別滲透率巖心應(yīng)力敏感實(shí)驗(yàn)對(duì)比研究[J].石油鉆采工藝,2011,33(3):38-41. Xue Yongchao,Cheng Linsong.Experimental comparison study on stress sensitivity of different permeability cores[J].Oil Drilling& Production Technology,2011,33(3):38-41.
[7] LeiQun,XiongWei,Yuang Jiangru,etal.Analysisof stress sensitivity and its influence on oil production from tight reservoirs[C]. SPE 111148,2007.
[8] 劉順,何衡,賀艷祥,等.低滲透油藏應(yīng)力敏感實(shí)驗(yàn)數(shù)據(jù)處理方法對(duì)比[J].油氣地質(zhì)與采收率,2012,19(4):71-73. Liu Shun,He Heng,He Yanxiang,et al.Data processing correlation on stress sensitivity experiment for low-permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2012,19 (4):71-73.
[9] 王培璽,劉仁靜.低滲透儲(chǔ)層應(yīng)力敏感系數(shù)統(tǒng)一模型[J].油氣地質(zhì)與采收率,2012,19(2):75-77. Wang Peixi,Liu Renjing.Universalmodel of stress sensitive coefficient for low permeability reservoir[J].Petroleum Geology and Recovery Efficiency,2012,19(2):75-77.
[10]曲巖濤,房會(huì)春,朱健,等.SY/T 5358—2010儲(chǔ)層敏感性流動(dòng)實(shí)驗(yàn)評(píng)價(jià)方法[S].北京:石油工業(yè)出版社,2010. Qu Yantao,F(xiàn)ang Huichun,Zhu Jian,et al.SY/T 5358-2010 Formation damage evaluation by flow test[S].Beijing:Petroleum Industry Press,2010.
[11]朱蘇陽,李傳亮,董鳳玲.基于三維地應(yīng)力的滲透率轉(zhuǎn)換方法[J].油氣地質(zhì)與采收率,2013,20(4):69-71. Zhu Suyang,Li Chuanliang,Dong Fengling.Conversion calculation of reservoir permeability from laboratory data based on 3D strata stresses[J].Petroleum Geology and Recovery Efficiency,2013,20(4):69-71.
[12]陳明強(qiáng),任龍,李明,等.鄂爾多斯盆地長(zhǎng)7超低滲油藏滲流規(guī)律研究[J].斷塊油氣田,2013,20(2):191-195. Chen Mingqiang,Ren Long,LiMing,et al.Study on seepage law of Chang7 ultra-low permeability reservoir in Ordos Basin[J]. Fault-Block Oil&Gas Field,2013,20(2):191-195.
[13]羅瑞蘭.關(guān)于低滲致密儲(chǔ)層巖石的應(yīng)力敏感問題——與李傳亮教授探討[J].石油鉆采工藝,2010,32(2):126-128. Luo Ruilan.Discussion of stress sensitivity of low permeability and tight reservoir rocks[J].Oil Drilling&Production Technology,2010,32(2):126-128.
[14]Zhu Suyang.Experiment research of tight sandstone gas reservoir stress sensitivity based on the capillary bundle mode[C].SPE 167638,2013.
[15]李傳亮.儲(chǔ)層巖石的應(yīng)力敏感問題——答羅瑞蘭女士[J].石油鉆采工藝,2006,28(6):86-88. Li Chuanliang.Discussion on the stress sensitivity of reservoir rocks-Reply to Ms Luo Ruilan[J].Oil Drilling&Production Technology,2006,28(6):86-88.
[16]章敬,李佳琦,徐江濤,等.準(zhǔn)噶爾盆地高閉合應(yīng)力致密儲(chǔ)層改造技術(shù)研究及應(yīng)用[J].油氣地質(zhì)與采收率,2014,21(2):98-101. Zhang Jing,Li Jiaqi,Xu Jiangtao,et al.Stimulation techniques study and application for tight reservoirwith high closure stress,Junggar basin[J].Petroleum Geology and Recovery Efficiency,2014,21(2):98-101.
編輯常迎梅
Microscopic characteristicsand sensitivity experimentofmedium deformation in the tight reservoirsofWHZ oilfield
Meng Yang
(DevelopmentDepartment,ShengliOilfield Company,SINOPEC,Dongying City,Shandong Province,257000,China)
Common phenomenon of stress sensitivity in the tight reservoirsmay result in great decline of production after producing for some time for the oilwells.According to the development problem of the tight reservoirs inWHZ oilfield,T2testingmethod through core NMR was applied to obtain pore-throat radius and T2cutoff value and other parameters.The microscopic characteristics of rock composition,the pore-throat structure and the distribution of porosity and permeability in the tight reservoirsofWHZoilfield were analyzed.Based on the experimentof core flooding and themethod of statistical analysis,the variation of core permeability with the confining pressure was understood,and the function relationship between dimensionless permeability and dimensionless confining pressure for the tight reservoirswas researched.Influencing factors onmedium deformation for the tight reservoirswere analyzed and the oilfield production situation under various developmentmodeswas analyzed combined with the actual field situation.The result shows that the permeability damage of porousmedium is irreversible under loading and unloading confining pressure for the tight reservoirs inWHZ oilfield,and the re-distribution of pore-throat structuremay be affected in the process of pressure drop.It’s hard to recover the initial value and permanent damagemay form for the reservoir even if energy is supplemented.Actual data of theWHZ oilfield show that the productivity lossmay occur under pressure drop and the productivitywith synchronouswater floodingmay be higher than thatwith nowater flooding.Therefore,a reasonable formation pressure isnecessary in the processofoilfield development,whichmay avoid production loss resulted frommedium deformation of the reservoirs.
tight reservoir;microscopic characteristics;stresssensitivity;NMR;medium deformation;confining pressure
TE311
A
1009-9603(2015)03-0095-05
2015-03-03。
孟陽(1970—),男,山東嘉祥人,高級(jí)工程師,碩士,從事油田開發(fā)方面的研究。聯(lián)系電話:(0546)8711849,E-mail:mengyang. slyt@sinopec.com。
國家科技重大專項(xiàng)“勝利油田薄互層低滲透油田開發(fā)示范工程”(2011ZX05051)。