朱 煉,韓 瑜,王 勇,李如平
(1.安徽工商職業(yè)學(xué)院 電子信息系,安徽 合肥 231100;2.哈爾濱工程大學(xué) 自動(dòng)化學(xué)院,黑龍江 哈爾濱 150001;3.中國(guó)船舶重工集團(tuán)公司第七一六研究所,江蘇 連云港 222006)
強(qiáng)耦合時(shí)滯系統(tǒng)的改進(jìn)型卡爾曼濾波器設(shè)計(jì)
朱 煉1,2,韓 瑜3,王 勇1,李如平1
(1.安徽工商職業(yè)學(xué)院 電子信息系,安徽 合肥 231100;2.哈爾濱工程大學(xué) 自動(dòng)化學(xué)院,黑龍江 哈爾濱 150001;3.中國(guó)船舶重工集團(tuán)公司第七一六研究所,江蘇 連云港 222006)
為了提高強(qiáng)耦合時(shí)滯系統(tǒng)的跟蹤性能,設(shè)計(jì)了改進(jìn)型卡爾曼濾波器.首先,描述了一類強(qiáng)耦合時(shí)滯系統(tǒng)的數(shù)學(xué)模型;其次,用指數(shù)衰減記憶的改進(jìn)型卡爾曼濾波器對(duì)一類強(qiáng)耦合時(shí)滯系統(tǒng)的狀態(tài)進(jìn)行了估計(jì).仿真結(jié)果表明,改進(jìn)型卡爾曼濾波器的跟蹤性能優(yōu)于常規(guī)的卡爾曼濾波器.
強(qiáng)耦合;時(shí)滯系統(tǒng);指數(shù)衰減;卡爾曼濾波器
時(shí)滯現(xiàn)象廣泛存在于我們的社會(huì)生活中,研究時(shí)滯系統(tǒng)具有很強(qiáng)的實(shí)際意義.國(guó)內(nèi)外很多文獻(xiàn)從不同角度對(duì)時(shí)滯系統(tǒng)進(jìn)行了研究.例如,文獻(xiàn)[1-3]研究了線性時(shí)滯系統(tǒng)的穩(wěn)定性,文獻(xiàn)[4-6]研究了非線性時(shí)滯系統(tǒng)的穩(wěn)定性,文獻(xiàn)[7,8]研究了線性時(shí)滯系統(tǒng)的H∞濾波,文獻(xiàn)[9,10]研究了非線性時(shí)滯系統(tǒng)的H∞濾波,文獻(xiàn)[11]研究了時(shí)滯系統(tǒng)的L2-L∞濾波.但是,對(duì)時(shí)滯系統(tǒng)各子系統(tǒng)之間的耦合關(guān)系的研究較少.文獻(xiàn)[12]對(duì)強(qiáng)耦合時(shí)滯系統(tǒng)的濾波進(jìn)行了研究,并用卡爾曼濾波器對(duì)強(qiáng)耦合時(shí)滯系統(tǒng)的節(jié)點(diǎn)的狀態(tài)進(jìn)行了跟蹤,取得了一定的效果.筆者用指數(shù)衰減記憶的改進(jìn)型卡爾曼濾波器對(duì)一類強(qiáng)耦合時(shí)滯系統(tǒng)的狀態(tài)進(jìn)行了估計(jì),其跟蹤效果優(yōu)于常規(guī)的卡爾曼濾波器.
假設(shè)強(qiáng)耦合系統(tǒng)由N個(gè)子系統(tǒng)構(gòu)成,每個(gè)子系統(tǒng)由于有強(qiáng)耦合作用而相互通信.在時(shí)刻t,設(shè)函數(shù)
其中Aij是系統(tǒng)的強(qiáng)耦合系數(shù),wi(t)是高斯白噪聲,Gi是系統(tǒng)的噪聲系數(shù).
設(shè)x(t)=[x1(t)T,…,xN(t)T]T,w(t)=[w1(t)T,…,wN(t)T]T,引入序列n={1,…,N2}與序列ij相對(duì)應(yīng),設(shè)n=N(i-1)+j,則有
子系統(tǒng)j的信息傳送到子系統(tǒng)i的成功率為pij,假定在任意時(shí)刻t都有Iii(t)=1,pii=1,則有P(Iij(t)=1)=pii.假設(shè)當(dāng)l≠i或者m≠j時(shí),Iij(t)與Ilm(t)相互獨(dú)立.并假設(shè)每個(gè)子系統(tǒng)的時(shí)滯時(shí)間均為τ.
設(shè)每個(gè)子系統(tǒng)的狀態(tài)方程為:
設(shè)狀態(tài)變量X(t+1)=[x(t+1)Tx(t-τ+1)T]T,W(t)=[w(t)Tx(t-τ)T]T,則強(qiáng)耦合時(shí)滯系統(tǒng)的狀態(tài)方程為
其中
其中y(t)為觀測(cè)信號(hào),H為觀測(cè)矩陣,v(t)為觀測(cè)高斯白噪聲,其方差為R.
強(qiáng)耦合時(shí)滯系統(tǒng)的觀測(cè)方程為
2.1 常規(guī)的卡爾曼濾波器卡爾曼濾波方程如下:
定義誤差方程為
對(duì)于(4)式所描述的強(qiáng)耦合時(shí)滯系統(tǒng),由文獻(xiàn)[12]知
2.2 指數(shù)衰減記憶的卡爾曼濾波器設(shè)計(jì)
指數(shù)衰減記憶的卡爾曼濾波器設(shè)計(jì)的基本思想是:在計(jì)算濾波估計(jì)值時(shí),乘以指數(shù)系數(shù),逐漸減小以前數(shù)據(jù)的權(quán)重,使濾波達(dá)到快速收斂的目的.
在(10)式中增加指數(shù)系數(shù),則有
結(jié)合(6),(7),(8),(11)式,即為(4)式所描述的強(qiáng)耦合時(shí)滯系統(tǒng)的指數(shù)衰減記憶的卡爾曼濾波器.
設(shè)(4)式所描述的強(qiáng)耦合時(shí)滯系統(tǒng)有3個(gè)子系統(tǒng)構(gòu)成.對(duì)于i=1,2,3設(shè)系統(tǒng)的狀態(tài)變量xi=τ=1,Q=0.02*I3×3,R=0.1*I6×6,k=0.5,C=0.5.
從圖1中可以看出,用指數(shù)衰減記憶的改進(jìn)型卡爾曼濾波器對(duì)強(qiáng)耦合時(shí)滯系統(tǒng)的狀態(tài)進(jìn)行估計(jì),其跟蹤誤差比常規(guī)的卡爾曼濾波對(duì)強(qiáng)耦合時(shí)滯系統(tǒng)的狀態(tài)進(jìn)行估計(jì)的跟蹤誤差小,響應(yīng)的速度快,動(dòng)態(tài)性能更好.
分別用指數(shù)衰減記憶的改進(jìn)型卡爾曼濾波器和常規(guī)卡爾曼濾波器對(duì)一類強(qiáng)耦合時(shí)滯系統(tǒng)的狀態(tài)進(jìn)行了估計(jì).通過對(duì)系統(tǒng)跟蹤誤差比較,得出指數(shù)衰減記憶的改進(jìn)型卡爾曼濾波器的估計(jì)效果優(yōu)于常規(guī)卡爾曼濾波器.由于強(qiáng)耦合時(shí)滯系統(tǒng)在實(shí)際中廣泛存在,所以該方法具有很強(qiáng)的實(shí)際意義.
圖1 跟蹤誤差
[1]CARLOS E,DANIEL C.Robust Stability and Control of Uncertain Linear Discrete-time Periodic Systems with Time-delay[J].Automati ca,2014,50(2):431-441.
[2] PARK M J,KWON O M,PARK J H,et al. A New Augmented Lyapunov-krasovskii Functional Approach for Stability of Linear Systems with Time-varying Delays[J]. Applied Mathematics and Computation,2011,217(17):7 197-7 209.
[3] HIEN L V,PHAT V N. Exponential Stability and Stabilization of A Class of Uncertain Linear Time -delay Systems [J].Journal of the Franklin Institute,2009,346(6):611-625.
[4] LAKSHMANAN S,SENTHILKUMAR T,BALASUBRAMANIAM P. Improved Results on Robust Stability of Neutral Systems with Mixed Time-varying Delays and Nonlinear Perturbations[J]. Mathematical Modelling,2011,35(11):5 355-5 368.
[5] YANG Ren-ming,WANG Yu-zhen. Stability Analysis and Estimate of Domain of Attraction for a Class of Nonlinear Systems with Timevarying Delay[J].Acta Automatica Sinica,2012,38(5):716-723.
[6] QIU Fang,CUI Bao-tong,JI Yan. Further Results on Robust Stability of Neutral System with Mixed Time-varying Delays and Nonlinear Perturbations[J].Nonlinear Analysis,2010:11(2):895-906.
[7] ZHANG Xian-ming,HAN Qing-long. Robust H∞ Filtering for A Class of Uncertain Linear Systems With Time-varying Delay[J].Automatica,2008,44(1):157-166.
[8] LIU Jin-liang,GU Zhou,TIAN En-gang. A New Approach toH∞Filtering for Linear Time-delay Systems [J].Journal of the Franklin Institute,2012,349(1):184-200.
[9] ZHANG Dan,YU Li.H∞Filtering for Linear Neutral Systems with Mixed Time-varying Delays and Nonlinear Perturbations [J]. Journal of the Franklin Institute,2010,347(7): 1 374-1 390.
[10] LI Hui-ping,SHI Yang. Robust H∞ Filtering for Nonlinear Stochastic Systems with Uncertainties and Markov Delays[J].Automatica,2012,48(1):159-166.
[11] ZHAO Fu,SUN Wen-li. Robust L2-L∞ Filtering for Discrete-Time Systems with Markovian Switching and Mode-Dependent Time-Delays[J]. Procedia Engineering,2012,29:2 458-2 464.
[12]魯俊.局域強(qiáng)耦合系統(tǒng)濾波方法研究[D].上海:上海交通大學(xué),2012.
Design of Improved Kalman Filter for the Strong Coupling Time Delay System
ZHU Lian1,2,HAN Yu3,WANG Yong1,LI Ru-ping1
(1.Dept.of Electronic Information,Anhui Vocational College of Business,Hefei,Anhui 231100,China;2.School of Automation,Harbin Engineering University,Harbin,Heilongjiang 150001,China;3.The 716th Research Institute,China Shipbuilding Industry Corporation,Lianyungang,Jiangsu 222006,China)
An improved kalman filter is designed in order to improve the tracking performance of the strong coupling time delay system.A mathematical model of a class of the strong coupling time delay system is described.Then,the state variables of a class of the strong coupling time delay system are estimated by the improved kalman filter based on the exponent attenuation memory.The simulation results show that the tracking performance of the improved kalman filter is superior to the conventional kalman filter.
strong coupling;time delay system;exponent attenuation;kalman filter
TP13
A
1673-1972(2015)03-0005-04
2015-01-13
國(guó)家自然科學(xué)基金(61305050);安徽省高等學(xué)校優(yōu)秀青年人才基金(2012SQRL236)
朱煉(1981-),男,湖北漢川人,安徽工商職業(yè)學(xué)院講師,哈爾濱工程大學(xué)博士研究生,主要從事時(shí)滯系統(tǒng)和精密儀器研究.