• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shear strength behavior of geotextile/geomembrane interfaces Belén M.Bacasa,*,Jorge Ca?izalb,Heinz Konietzkyc

    2015-10-09 07:09:54TerrsolumGeotechniclEngineeringTechnologyDevelopmentCenterofUniversityofCntbriCDTUCSntnderSpin

    Terrsolum S.L.Geotechnicl Engineering,Technology Development Center of University of Cntbri(CDTUC),Sntnder,Spin

    bSchool of Civil Engineering,University of Cantabria,Santander,Spain

    cGeotechnical Institute,TU Bergakademie Freiberg,F(xiàn)reiberg,Germany

    Shear strength behavior of geotextile/geomembrane interfaces Belén M.Bacasa,*,Jorge Ca?izalb,Heinz Konietzkyc

    aTerrasolum S.L.Geotechnical Engineering,Technology Development Center of University of Cantabria(CDTUC),Santander,Spain

    bSchool of Civil Engineering,University of Cantabria,Santander,Spain

    cGeotechnical Institute,TU Bergakademie Freiberg,F(xiàn)reiberg,Germany

    A R T I C L E I N F O

    Article history:

    in revised form 8 July 2015

    Accepted 5 August 2015

    Available online xxx

    Geotextiles

    Geomembranes

    Landfills

    Fiber length

    Roughness

    Shear strength

    Friction angle

    A B S T R A C T

    This paper aims to study the shear interaction mechanism of one of the critical geosynthetic interfaces, the geotextile/geomembrane,typically used for lined containment facilities such as landfills.A large direct shear machine is used to carry out 90 geosynthetic interface tests.The test results show a strain softening behavior with a very small dilatancy(<0.5 mm)and nonlinear failure envelopes at a normal stress range of 25-450 kPa.The influences of the micro-level structure of these geosynthetics on the macro-level interface shear behavior are discussed in detail.This study has generated several practical recommendations to help professionals to choose what materials are more adequate.From the three geotextiles tested,the thermally bonded monofilament exhibits the best interface shear strength under high normal stress.For low normal stress,however,needle-punched monofilaments are recommended. For the regular textured geomembranes tested,the space between the asperities is an important factor. The closer these asperities are,the better the result achieves.For the irregular textured geomembranes tested,the nonwoven geotextiles made of monofilaments produce the largest interface shear strength.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by

    Elsevier B.V.All rights reserved.

    1.Introduction

    The main functions of a municipal solid waste(MSW)landfill are to permit the maximum accumulation of waste in the smallest possible space and to isolate the waste from the natural surroundings.Besides,a MSW has to maintain security and provide a future usage after its closure.Landfill liner and cover systems are mainly formed by geosynthetic protection layers, which interact on geosynthetic/geosynthetic and geosynthetic/ soil interfaces.

    An important subject with respect to the landfill stability is the interface shear strength,which has been investigated thoroughly in the last decade(e.g.Fox and Kim,2008;McCartney et al.,2009;Palmeira,2009;Eid,2011;Fox and Ross,2011;Brachman and Sabir, 2013;Thielmann et al.,2013).

    The geotextile/geomembrane interfaces can be used for both liner and cover systems of the landfills.Geomembranes are typically used as a hydraulic barrier and geotextiles protect it from damages that may occur in some situations,such as high normal stressesandangularsoilparticles.Geotextile/geomembrane interfaces have previously been studied by Giroud et al.(1990), Koutsourais et al.(1991),Giroud and Darrasse(1993),Gilbert and Byrne(1996),Stark et al.(1996),Jones and Dixon(1998),Wasti and ?zdüzgün(2001),Hebeler et al.(2005),Bergado et al.(2006)and Pitanga et al.(2009).

    The objective of this paper is to study the interface shear behavior of the geotextile/geomembrane,providing a deeper understanding of how the structure of these geosynthetics at a microlevel influences the interface shear behavior at a macro-level.The interface shear behavior is studied by means of the direct shear tests on 18 different interfaces using 8 different geosynthetic materials.The guidelines of ASTM D5321(2014)are followed during the direct shear test on different types of geosynthetic interfaces. The means to grip the different geosynthetics and the suitable test parameters(shear displacement rate,consolidation time,hydration time)are established based on the studies from Stark and Poeppel(1994),Stark et al.(1996),Fox et al.(1997,1998),Gilbert et al.(1997),Jones and Dixon(1998),Eid et al.(1999),Triplett and Fox(2001),Zornbergetal.(2005),Sharmaetal.(2007)and McCartney et al.(2009).The following relationships are analyzed in this study:interface shear strength vs.shear displacement,shear displacementvs.normaldisplacement,andinterfaceshear strength vs.normal stress.

    This paper provides a useful and practical application for both researches and practitioners who use these materials in the field, helping them to make a decision about what geosynthetic material could work better in a particular loading condition.

    2.Experimental work

    2.1.Materials

    The characteristics of geosynthetics used for the direct shear tests are listed in Table 1 and described as follows:

    (1)Three nonwoven geotextiles:GT1(500 g/m2)is made of needle-punched monofilaments;GT2(500 g/m2)is made of needle-punched staple fibers;and GT3(335 g/m2)is made of thermally bonded monofilaments.

    (2)Five geomembranes of 1.5 mm thickness:GMs has smooth surfaces;GMr1 and GMr4 have irregular heavy textured surfaces smaller than 1 mm;GMr2s1 and GMr3 show regular, evenly spread asperities greater than 1 mm;GMr2s2 exhibits regular spread asperities smaller than 1 mm.

    Table 2 summarizes the geotextile/geomembrane interfaces tested as well as the testing conditions.

    2.2.Testing equipment

    The tests on geosynthetics are carried out with a large direct shear machine,whose shear box is 300 mm long and 300 mmwide and therefore fulfills the minimum requirements.The tests are performed at a constant shear displacement rate and fixed normal stress.The shear box is divided intoa moving lowerpart anda static upper part.The geotextile is fastened to the lower box,while the geomembrane is fastened to the upper box.The following gripping systems are used for the different types of geosynthetics:

    (1)Geotextiles are gripped with a double-side adhesive tape.This system works well for the range of normal stresses tested.

    (2)Based on the studies of Fox et al.(1997,1998),a particularly textured plate is designed for gripping the drainage geocomposites,the geomembranes and the geosynthetic clay liner(GCL).Thedimensionsofthisplateare 300 mm×285 mm×10 mm.The plate has 210 drainage holes of 2 mm diameter and 1680 pyramids of 1 mm height,which protrudes fromthe topside,as shown in Fig.1a.The bottom side has channels to allow for water flow,as shown in Fig.1b.This plate is screwed onto a metal support that is placed into the direct shear box.The topside is in contact with the geosynthetic and the bottom side is in contact with the metal support.

    2.3.Test procedure

    The shear test is carried out according to ASTM D5321(2014). The geotextile/geomembrane interfaces are tested under wet conditions with the following parameters:

    (1)Hydration time is 24 h for the geotextiles and the geomembranes were not hydrated.The geotextile samples are submerged into tap water inside a humidity chamber(temperature of 21°C,humidity of 96%).

    (2)Consolidation time inside the machine is 10 min.

    (3)Constant shear rate is 5 mm/min.Stark et al.(1996)and Triplett and Fox(2001)found out that the shear rate does not significantly affect the peak and post-peak strengths.

    The normal stress is applied to the loading platen above the upper metal support.After 10 min of consolidation,the lower shear box moves inparallel direction tothe shear forceat a constant shear rate.The maximum shear displacement is 50 mm.The shear displacement,shear force and vertical displacement are recorded during the test.The shear force is measured using a suitable dynamometric ring.Two linear variable differential transformers(LVDTs)are used to measure the shear and vertical displacements.

    3.Constitutive model on geosynthetic interfaces

    All interfaces tested exhibit frictional behavior,which is modeled by Mohr-Coulomb's equationτ=ca+σntanδ,whereτ andσnare the interface shear strength and normal stress acting on the failure plane,respectively;cais the adhesion;andδis the interface friction angle.Linear regression of the plot ofτvs.σnis used to identify the best-fit shear strength parameters.The shear strength of most interfaces tested in this study presents important friction angles and negligible adhesion.

    4.Direct shear test results

    As mentioned above,the geotextile/geomembrane interfaces are tested under wet conditions(Table 2).However,the water content does not affect significantly the interface shear strength,as shown in Fig.2 as well as proven by Mitchell and Mitchell(1992)and Bergado et al.(2006).The range of normal stresses applied is 25-450 kPa.The peak interface shear strength is usually reached at shear displacement of 4-10 mm and the post-peak strength is obtained at shear displacement around 50 mm.

    Table 1 Type of geosynthetics.

    Table 2 Geosynthetic interfaces tested and testing conditions.

    Fig.1.Textured plate for gripping textured geomembranes.(a)Topside and(b)Bottom side.

    Fig.3 presents the typical interface shear strength behavior for nonwoven geotextile/textured geomembrane interfaces.The shear strength-shear displacement curves in Fig.3a show strain softening behavior,i.e.the interface shear strength decreases with increasing shear displacement(Byrne,1994;Stark et al.,1996;Jones and Dixon,1998).The higher the normal stress,the higher the strain softening behavior.This phenomenon is observed in rock joints but contrary to geosynthetic interfaces,the higher the normal stress in this case,the lower the strain softening behavior. Based on this fact,Bacas et al.(2011)proposed a new shear constitutive model for this type of interface.

    In this study,approximately 60%of the tests reveal nonlinear failure envelopes whereas 40%are linear envelopes.Fig.3b shows nonlinear peak and post-peak failure envelopes(continuous lines). However,the straight envelopes,passing through the origin(dashed lines)with peak and post-peak friction angles of 24°and 12°,respectively,also show a good fit(R2>0.9).

    In line with Giroud et al.(1990),Koutsourais et al.(1991),Stark et al.(1996),Hebeler et al.(2005)and McCartney et al.(2009),the interaction mechanisms during the shear tests on nonwoven geotextile/texturedgeomembraneinterfacesshowthefollowing behaviors:

    Fig.2.Geotextile/geomembrane interface shear strength in wet and dry conditions.

    (1)At low normal stress(<50 kPa),the interaction between

    nonwoven geotextiles and the textured geomembranes consists of two mechanisms:(i)one is the interlocking(hook and loop)between the superficial filaments of the geotextile and the asperities of the geomembrane,(ii)the other is the friction between the materials.Both take place on a superficial level.

    (2)As the normal stress increases(>50 kPa),the geotextile is compressed and the asperities are introduced into the geotextile matrix,which is called interbedding factor.Thus,the friction and interlocking interactions take place on a matrix level.

    Fig.4 illustrates how the peak interface shear strength is reached fora small sheardisplacement(peak displacement),during which the friction angle is mobilized first and then the hook and loop interact,causing the shear strength to reach its peak.After the peak,the hook and loop mechanism degrades since the filaments are pulled out,torn and untangled from the geotextile until the residual interface shear strength is reached.

    Bacas et al.(2011)developed an interface shear model based on rock joint theories,quantifying the interbedding and the interlocking(hook and loop)factors,which depend mainly on the type of geotextile and the asperities of the geomembrane.Their respective ranges are 1-3 for the interbedding factor and 2-8 for the interlocking factor.The higher the asperity height,the higher the interlocking factor.Besides,the larger the hollows of the geotextile,the higher the interbedding factor.An example for such a geotextile would be one made of staple fibers.

    Fig.3.Typical interface shear strength behavior for nonwoven geotextile/textured geomembrane interfaces.(a)Shear strength vs.shear displacement curves,and(b)Peak and post-peak failure envelopes.

    5.Influence of roughness characteristics of geomembranes on interface shear strength

    5.1.Effect of roughness patterns

    The differences between the various roughness patterns are analyzed through the interface shear strength vs.shear displacement curves of the nonwoven needle-punched geotextile,GT1. Fig.5a presents the GT1/GMr1,GT1/GMr2s1 and GT1/GMr3 results. GMr1 has a rough,irregular texturing while GMr2s1 and GMr3 have regular asperities,as shown in Fig.6,which presents microscope images of roughness.Interface shear strength presents similar values at normal stress lower than 50 kPa and depends neither on the roughness pattern nor on the asperity height.At normal stress higher than 50 kPa,regular texturing normallyshows larger interface shear strength and strain softening behavior than irregular texturing.The downward stepping post-peak curves of GMr3 and GMr2s1 with their successive peaks(mini-peaks)are caused by the deterioration of the geotextile fiber weft,as can be observed at normal stress of 300 kPa.The separation between the mini-peaks matches the separation between the asperities.GMr3 and GMr2s1 have asperities spaced at 6 mm and 9 mm in staggered rows,respectively.Therefore,the GMr3 presents larger peak and post-peak interface shear strengths than GMr2s1.This means that the closer the asperities are,the better the result achieves but without becoming too close,because the surface could become uniform.One has to bear in mind,however,that until 100 kPa,the shear results of GMr3 and GMr2s1 show similar values.

    Fig.5b illustrates the results of three different geomembranes with different roughness patterns and different asperity heights less than 1 mm.GMr2s2 has regular asperities spaced at 4 mm,and GMr1 and GMr4 have rough irregular texturing,however GMr1 is rougher than GMr4(Fig.6).The curves at normal stress of 50 kPa are similar,but at normal stress higher than 50 kPa,the differences between roughness patterns affect the interface shear strength. GMr1 and GMr2s2 show an increased frictional performance compared with GMr4.The post-peak curves are uniform without any successive steps,even though the GMr2s2 has regular asperities,but these are too close.

    Fig.4.Illustration of the decomposition of strain softening behavior.

    5.2.Effect of asperity height

    Fig.7 presents the interface friction angles vs.asperity heights. The following important aspects are observed:

    (1)The smaller values of interface friction angle belong to the smooth geomembrane(GMs).Shear strength is purely frictional;hence the geotextile/GMs interfaces present similar peak and post-peak friction angles.

    (2)The higher the geomembrane roughness,the higher the peak interface shear strength(Ivy,2003;McCartney et al.,2005). Therefore,GMr2s1 and GMr3 show the greatest peak values while GMr4 presents the smallest peak friction angle.

    (3)The geomembranes with an asperity height larger than 1 mm present greater post-peak interface strength loss due to their high capacity of damaging the geotextile fiber wefts.

    (4)The post-peak values do not show a clear trend related to the size of the asperity,but they do show dependency on the type of geotextile(McCartney et al.,2005).

    6.Influence of fiber characteristics of geotextile on interface shear strength

    6.1.Effect of fiber length

    The influence of the geotextile fibers'length on the interface shear strength is observed through comparing the nonwoven needle-punched geotextiles GT1 and GT2 in Fig.8.They are made of monofilament and staple fibers,respectively,as shown in Fig.9a and b,which are microscope plots of the fibers.At normal stress lower than 100 kPa,GT1 presents larger peak values than GT2.This is because the length of the fibers greatly affects the interface shear strength at low normal stress,as can be observed in Fig.10a,which depicts the interface shear strength vs.shear displacement curves at normal stress of 50 kPa.GT2 presents a smaller interface shear strength,because on a superficial level,the staple fibers do not develop the interlocking mechanism as much as the monofilament of GT1 does.However,at normal stress higher than 100 kPa,thepeak values are closer for both materials(Fig.8).The lower postpeak values belong to the GT2 because its staple fibers are easier todamagethanthemonofilamentsweft,whicharemore intertwined.

    Fig.5.Comparison of different roughness patterns:(a)regular(GMr3,GMr2s1)and irregular(GMr1)texturing,(b)irregular texturing with asperity height less than 1 mm.

    6.2.Effect of geotextile manufacture

    The influence of the manufacture of the geotextiles can be observedthroughcomparingthenonwovenmonofilament geotextiles GT1 and GT3.The former is a needle-punched fabric and the latter is a thermally bonded one.Fig.9a and c prove that GT1 has looser filaments and larger hollows than GT3.The latter shows a higher interlocking leading to a higher interface shear strength,as shown in Figs.7 and 8a.An exception to this is presented in Fig.8b, where the GT3/GMr3 interface presents the lowest interface shear strength.The asperities cannot penetrate the geotextile matrix deeply enough because of the smaller hollows.Moreover,the regular texturing creates linear tracks through the geotextile which acts like a plow,stretching the superficial filaments,as can be observed in Fig.11a which shows the samples after testing.Fig.11b indicates that the interaction between GMr1 and GT3 leads to higher interlocking(hook and loop)due to the greater entanglement between the filaments and the irregular roughness.This behavior is also observed at low normal stress(see Fig.10b).

    Fig.7.Friction angles of geotextile/geomembrane interfaces tested in wet conditions.

    Fig.6.Scanning electron microscope(SEM)images of roughness of geomembrane.Asperity average height:(a)GMr3:~1.3 mm,(b)GMr2s1:~1.2 mm,(c)GMr2s2:~0.8 mm,(d)GMr1:~0.5 mm,(e)GMr4:~0.25 mm.

    The post-peak interface shear strengths mainly depend on the type of geotextile.Usually,GT3 presents the largest post-peak values,because thermally bonded monofilaments are stretched and very tangled during the shear,causing a higher resistance as the geomembrane slides over the geotextile.However,the needlepunched monofilaments of the GT1 are stretched and brushed in shear direction,facilitating the geomembrane to slide over the geotextile's surface.Finally,GT2 normally presents the lowest post-peak values because its staple fibers are stretched and brushed most easily.

    Fig.8.Comparison of interface shear strength between 3 nonwoven geotextiles.(a)Geotextile/GMr1,and(b)Geotextile/GMr3.

    The conclusion from these analyses is that the manufacturing process of the geotextile influences both the peak and the post-peak interface shear strengths.If the roughness of the geomembrane is irregular and dense,we recommend using thermally bonded monofilaments,because the interlocking mechanism has a major influence on interface shear strength.If,however,the roughness is regular and uniform,we rather recommend using needle-punched filaments,especially for high normal stress levels,where the interbedding factor has higher influence on the interlocking mechanism and thereby on the interface shear strength.Finally,for cover systems of the landfills subject to low ranges of normal stresses(<100 kPa),it is recommended using monofilament rather than staple fibers,because the former mobilizes the interlocking mechanism at lower normal stresses better than the latter.

    Fig.10.Comparison of interface shear strength at low normal stress for(a)needlepunched geotextile(GT1,GT2)/GMr,(b)needle-punched geotextile(GT1)/GMr and thermally bonded geotextile(GT3)/GMr.

    7.Conclusions

    The study of large direct shear tests conducted on geotextile/ geomembrane leads to the following main conclusions:

    (1)The interface interaction mechanisms depend on normal stress. At low normal stress(<50 kPa),interlocking and friction develop at a superficial level.At high normal stress(>50 kPa), interlocking and friction develop at a matrix level.

    (2)If the roughness of the geomembrane is irregular and dense,it is recommended using the nonwoven geotextile made of monofilaments,because it develops larger interlocking mechanism causing the shear strength to increase.

    Fig.9.SEM images of nonwoven geotextiles.(a)GT1:needle-punched monofilament,(b)GT2:needle-punched staple fibers,(c)GT3:thermally bonded monofilament.

    Fig.11.Thermally bonded geotextile after testing at normal stress of 300 kPa.(a)GT3/ GMr3,and(b)GT3/GMr1.

    (3)If the roughness of the geomembrane is regular and evenly spread,it is recommended using the nonwoven geotextile with needle-punched filaments,especially for high normal stresses(≥100 kPa),where the interbedding factor has larger influence on the interlocking mechanism and thus on the shear strength.

    (4)For cover systems of the landfills subject to low normal stresses(<100 kPa),it is recommended using monofilaments rather than staple fibers,since the former mobilize the interlocking mechanism at lower normal stresses.

    (5)For regular textured geomembranes,the space between the asperities is an important factor.The closer these asperities are, the better the result achieves.Nevertheless,they should not be too close because the surface could become uniform,thereby decreasing the interlocking mechanism.

    Conflict of interest

    The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Acknowledgments

    This work was derived from an extensive research project sponsored by the Company Ferrovial S.A.(Spain)conducted by the Geotechnical Group at the School of Civil Engineering,the University of Cantabria(Spain).The facilities provided for this research project are gratefully acknowledged.Moreover,the authors are grateful to Deutscher Akademischer Austausch Dienst(DAAD, Germany)for the research fellowship received,as well as the facilities provided by the Chair for Rock Mechanics at the Geotechnical Institute,the TU Bergakademie Freiberg(Germany).

    References

    ASTM D5321.Standard test method for determining the shear strength of soilgeosynthetic and geosynthetic-geosynthetic interfaces by direct shear.West Conshohocken,PA,USA:ASTM International;2014.

    Bacas BM,Konietzky H,Ca?izal J,Sagaseta C.A new constitutive model for textured geomembrane/geotextile interfaces.Geotextiles and Geomembranes 2011;29(2):137-48.

    Bergado DT,Ramana GV,Sia HI,Varun.Evaluation of interface shear strength of composite liner system and stability analysis for a landfill lining system in Thailand.Geotextiles and Geomembranes 2006;24(6):371-93.

    Brachman RWI,Sabir A.Long-term assessment of a layered-geotextile protection layer for geomembranes.Journal of Geotechnical and Geoenvironmental Engineering 2013;139(5):752-64.

    Byrne RJ.Design issues with strain-softening interfaces in landfill liners.In:Proceedings of waste technology;1994.Charleston,South Carolina,Session 4, Paper 4.

    Eid HT,Stark TD,Doerfler CK.Effect of shear displacement rate on internal shear strength of a reinforced geosynthetic clay liner.Geosynthetics International 1999;6(3):219-39.

    Eid HT.Shear strength of geosynthetic composite systems for design of landfill liner and cover slopes.Geotextiles and Geomembranes 2011;29(3):335-44.

    Fox PJ,Kim RH.Effect of progressive failure on measured shear strength of geomembrane/GCL interface.Journal of Geotechnical and Geoenvironmental Engineering 2008;134(4):459-69.

    Fox PJ,Ross JD.Relationship between NP GCL internal and HDPE GMX/NP GCL interface shear strengths.Journal of Geotechnical and Geoenvironmental Engineering 2011;137(8):743-53.

    Fox PJ,Rowland MG,Scheithe JR,Davis KL,Supple MR,Crow CC.Design and evaluation of a large direct shear machine for geosynthetic clay liners.Geotechnical Testing Journal 1997;20(3):279-88.

    Fox PJ,Rowland MG,Scheithe JR.Internal shear strength of three geosynthetic clay liners.JournalofGeotechnicalandGeoenvironmentalEngineering 1998;124(10):933-44.

    Gilbert RB,Byrne RJ.Strain-softening behavior of waste containment system interfaces.Geosynthetics International 1996;3(2):181-202.

    Gilbert RB,Scranton HB,Daniel DE.Shear strength testing for geosynthetic clay liners.In:Testing and acceptance criteria for geosynthetic clay liners.Conshohocken,PA,USA:ASTM International;1997.

    Giroud JP,Darrasse J.Hyperbolic expression for soil-geosynthetics or geosyntheticsgeosyntheticinterfaceshearstrength.GeotextilesandGeomembranes 1993;12(3):275-86.

    Giroud JP,Swan RH,Richer PJ,Spooner PR.Geosynthetic landfill cap:laboratory and field tests,design and construction.In:Geotextiles,geomembranes and related products.Rotterdam,Netherlands:A.A.Balkema;1990.p.493-8.

    Hebeler GL,Frost JD,Myers AT.Quantifying hook and loop interaction in textured geomembrane-geotextile systems.Geotextiles and Geomembranes 2005;23(1):77-105.

    Ivy N.Asperity height variability and effects.GFR 2003;21(8):28-9.

    Jones DRV,Dixon N.Shear strength properties of geomembrane/geotextile interfaces.Geotextiles and Geomembranes 1998;16(1):45-71.

    Koutsourais MM,Sprague CJ,Pucetas RC.Interfacial friction study of cap and liner components for landfill design.Geotextiles and Geomembranes 1991;10(5-6):531-48.

    McCartney JS,Zornberg JG,Swan RH.Analysis of a large database of GCL-geomembrane interface shear strength results.Journal of Geotechnical and Geoenvironmental Engineering 2009;135(2):209-23.

    McCartney JS,Zornberg JG,Swan RH.Effect of geomembrane texturing on GCL-geomembrane interface shear strength.In:Proceedings of GeoFrontiers 2005. Reston,VA,USA:American Society of Civil Engineers(ASCE);2005.p.1-11.

    Mitchell RA,Mitchell JK.Stability evaluation of waste landfills.In:Proceedings of stability and performance of slopes and embankments II.Geotechnical Special Publication No.31.Reston,VA,USA:American Society of Civil Engineers(ASCE);1992.p.1152-87.

    Palmeira EM.Soil-geosynthetic interaction:modelling and analysis.Geotextiles and Geomembranes 2009;27(5):368-90.

    Pitanga HN,Gourc JP,Vilar OM.Interface shear strength of geosynthetics:evaluation and analysis of inclined plane tests.Geotextiles and Geomembranes 2009;27(6):435-46.

    Sharma JS,Fleming IR,Jogi MB.Measurement of unsaturated soil-geomembrane interfaceshear-strengthparameters.CanadianGeotechnicalJournal 2007;44(1):78-88.

    Stark TD,Poeppel AR.Landfill liner interface strengths from torsional-ring-shear tests.Journal of Geotechnical Engineering 1994;120(3):597-615.

    Stark TD,Williamson TA,Eid HT.HDPE geomembrane/geotextile interface shear strength.Journal of Geotechnical Engineering 1996;122(3):197-203.

    Thielmann SS,Fox PJ,Athanassopoulos C.Interface shear testing of GCL liner systems for very high normal stress conditions.In:Proceedings of Geo-Congress2013:stability and performance of slopes and embankments III.California. Reston,VA,USA:American Society of Civil Engineers(ASCE);2013.p.63-71.

    Triplett EJ,Fox PJ.Shear strength of HDPE geomembrane/geosynthetic clay liner interfaces.JournalofGeotechnicalandGeoenvironmentalEngineering 2001;127(6):543-52.

    Wasti Y,?zdüzgün ZB.Geomembrane geotextile interface shear properties as determined by inclined board and direct shear box tests.Geotextiles and Geomembranes 2001;19(1):45-57.

    Zornberg JG,McCartney JS,Swan RH.Analysis of a large database of GCL internal shear strength results.Journal of Geotechnical and Geoenvironmental Engineering 2005;131(3):367-80.

    Belén M.Bacas obtained a M.Sc.and a Ph.D.degree from University of Cantabria,Spain.She is geotechnical engineer in Terrasolum S.L.and assistant professor of Mechanics of Continuous Media at the University of Cantabria.She has been involved in geotechnical research,consulting and education for the last 10 years.She is co-author of 6 scientific papers.She has worked on a series of mining and geotechnical projects,both at home and abroad.In recent years,she has been collaborated in two European Projects:COGAN and GEOAPPS,Apps for geotechnical field work.

    5 May 2015

    *Corresponding author.Tel.:+34 942272685.

    E-mail address:bacasb@terrasolum.es(B.M.Bacas).

    Peer review under responsibility of Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.08.001

    男女边吃奶边做爰视频| 国产精品 国内视频| 国产精品不卡视频一区二区| 亚洲不卡免费看| 日韩亚洲欧美综合| 欧美丝袜亚洲另类| 简卡轻食公司| 成人无遮挡网站| 色婷婷久久久亚洲欧美| 人妻少妇偷人精品九色| 一区二区三区乱码不卡18| 王馨瑶露胸无遮挡在线观看| 亚洲欧美清纯卡通| 水蜜桃什么品种好| 中文字幕制服av| 久久精品国产亚洲网站| 三上悠亚av全集在线观看| 久久久精品区二区三区| 国产在线一区二区三区精| 久久久国产欧美日韩av| 久热久热在线精品观看| 狠狠精品人妻久久久久久综合| 日日啪夜夜爽| 欧美一级a爱片免费观看看| 在线观看免费视频网站a站| 国产精品人妻久久久久久| a级片在线免费高清观看视频| 欧美成人午夜免费资源| 国产乱人偷精品视频| 日本欧美视频一区| 国产日韩欧美亚洲二区| 欧美一级a爱片免费观看看| 日韩成人伦理影院| 看十八女毛片水多多多| 高清黄色对白视频在线免费看| 母亲3免费完整高清在线观看 | 午夜福利,免费看| 久久精品国产亚洲av涩爱| 亚洲中文av在线| 国产成人精品久久久久久| freevideosex欧美| 国产欧美日韩综合在线一区二区| 一本色道久久久久久精品综合| a级毛片免费高清观看在线播放| 校园人妻丝袜中文字幕| 春色校园在线视频观看| 美女国产高潮福利片在线看| 丝袜美足系列| 少妇 在线观看| 王馨瑶露胸无遮挡在线观看| 热99国产精品久久久久久7| 久久久久精品性色| 飞空精品影院首页| 日日啪夜夜爽| kizo精华| 在线播放无遮挡| 少妇的逼水好多| 久久久久久久久久成人| 99re6热这里在线精品视频| 日韩熟女老妇一区二区性免费视频| 交换朋友夫妻互换小说| 亚洲欧洲国产日韩| 国产精品三级大全| 久久久久久久久大av| 大码成人一级视频| 蜜桃久久精品国产亚洲av| 亚洲精品456在线播放app| 在线 av 中文字幕| 久久精品国产亚洲网站| 超碰97精品在线观看| 亚洲精品第二区| 成人二区视频| 一个人免费看片子| 人妻 亚洲 视频| 亚洲精品一二三| 99re6热这里在线精品视频| 你懂的网址亚洲精品在线观看| 国产男女超爽视频在线观看| 久久久久久久久久久免费av| 国产高清不卡午夜福利| 久久人妻熟女aⅴ| 日产精品乱码卡一卡2卡三| 草草在线视频免费看| 国产片内射在线| 嫩草影院入口| 国产视频内射| 999精品在线视频| av专区在线播放| 制服丝袜香蕉在线| 九九久久精品国产亚洲av麻豆| 国国产精品蜜臀av免费| 男女高潮啪啪啪动态图| 午夜免费鲁丝| 亚洲高清免费不卡视频| 啦啦啦中文免费视频观看日本| 2021少妇久久久久久久久久久| av国产久精品久网站免费入址| 青春草国产在线视频| 三上悠亚av全集在线观看| 99热这里只有是精品在线观看| 亚洲av在线观看美女高潮| 在线观看一区二区三区激情| 久久精品熟女亚洲av麻豆精品| 成人午夜精彩视频在线观看| 97在线人人人人妻| 国产白丝娇喘喷水9色精品| 91久久精品电影网| 亚洲精品美女久久av网站| 久久毛片免费看一区二区三区| 亚洲丝袜综合中文字幕| 国产色爽女视频免费观看| 在线观看人妻少妇| 飞空精品影院首页| 日日啪夜夜爽| videos熟女内射| 国产成人freesex在线| 两个人的视频大全免费| 久久精品国产自在天天线| 国产一区亚洲一区在线观看| 久久国产亚洲av麻豆专区| 久久韩国三级中文字幕| 日本黄色日本黄色录像| 午夜影院在线不卡| 老熟女久久久| 国产伦理片在线播放av一区| 国产淫语在线视频| 新久久久久国产一级毛片| 婷婷成人精品国产| av不卡在线播放| 国产av精品麻豆| freevideosex欧美| 亚洲国产av新网站| 久久久久久久精品精品| 美女国产高潮福利片在线看| av在线app专区| 免费看光身美女| 视频在线观看一区二区三区| 成人国语在线视频| 啦啦啦中文免费视频观看日本| 亚洲精品成人av观看孕妇| 欧美一级a爱片免费观看看| 国产精品99久久久久久久久| 国产av码专区亚洲av| 亚洲美女黄色视频免费看| 在线观看三级黄色| 精品久久久精品久久久| 晚上一个人看的免费电影| 亚洲精品久久成人aⅴ小说 | 丰满少妇做爰视频| 一级黄片播放器| 久久久久久久久久久丰满| 男人添女人高潮全过程视频| 久久国产精品大桥未久av| 国产精品国产三级专区第一集| 日日撸夜夜添| 校园人妻丝袜中文字幕| 麻豆乱淫一区二区| 精品一品国产午夜福利视频| 亚洲av日韩在线播放| av免费在线看不卡| 国产视频内射| 在线观看免费视频网站a站| 久久毛片免费看一区二区三区| 久久国产精品大桥未久av| 国产一区二区三区av在线| 男女高潮啪啪啪动态图| 99久国产av精品国产电影| 自线自在国产av| 亚洲精品美女久久av网站| 日韩人妻高清精品专区| 女人精品久久久久毛片| av国产精品久久久久影院| 久久人人爽人人片av| 精品亚洲成a人片在线观看| 国产在线免费精品| 黄片无遮挡物在线观看| 亚洲精品国产色婷婷电影| 色婷婷久久久亚洲欧美| 亚洲精品乱码久久久v下载方式| 伦精品一区二区三区| 午夜日本视频在线| 国产精品三级大全| 精品一区二区三区视频在线| 国产色婷婷99| 亚洲av日韩在线播放| 亚洲精品色激情综合| 性色avwww在线观看| 国产深夜福利视频在线观看| 国产在线免费精品| 欧美日韩精品成人综合77777| 欧美另类一区| 精品人妻熟女av久视频| 成人综合一区亚洲| 永久网站在线| 18禁裸乳无遮挡动漫免费视频| 毛片一级片免费看久久久久| 久久久久久人妻| 成年人免费黄色播放视频| 最新的欧美精品一区二区| 一本—道久久a久久精品蜜桃钙片| 777米奇影视久久| 在现免费观看毛片| 老熟女久久久| 午夜福利视频在线观看免费| 色网站视频免费| 欧美日韩视频精品一区| 久久久精品94久久精品| 午夜老司机福利剧场| 建设人人有责人人尽责人人享有的| 国产日韩欧美在线精品| av有码第一页| 大陆偷拍与自拍| 国产精品国产三级专区第一集| 亚洲国产欧美在线一区| 亚洲,一卡二卡三卡| 性色avwww在线观看| 国产精品久久久久久精品电影小说| 99久久精品国产国产毛片| 亚洲国产欧美日韩在线播放| 日韩欧美一区视频在线观看| 免费高清在线观看日韩| 成人手机av| 欧美精品国产亚洲| 91在线精品国自产拍蜜月| 国模一区二区三区四区视频| 国产精品无大码| 午夜免费观看性视频| 亚洲图色成人| av黄色大香蕉| 少妇的逼水好多| 欧美日韩成人在线一区二区| 中文字幕最新亚洲高清| 日韩一区二区三区影片| 在线精品无人区一区二区三| 亚洲熟女精品中文字幕| 毛片一级片免费看久久久久| 精品人妻一区二区三区麻豆| 国产精品久久久久久久电影| 一边亲一边摸免费视频| 精品人妻熟女av久视频| 少妇被粗大的猛进出69影院 | 韩国高清视频一区二区三区| 成人午夜精彩视频在线观看| 午夜福利在线观看免费完整高清在| 亚洲精品乱久久久久久| 久久久久人妻精品一区果冻| 亚洲精品国产av成人精品| 在线观看www视频免费| 乱码一卡2卡4卡精品| 日本-黄色视频高清免费观看| √禁漫天堂资源中文www| 国产日韩欧美视频二区| 久久久久国产网址| 国产精品秋霞免费鲁丝片| 最近手机中文字幕大全| 日韩电影二区| 国产极品天堂在线| 色视频在线一区二区三区| 熟妇人妻不卡中文字幕| 久久人妻熟女aⅴ| 精品久久国产蜜桃| 99热全是精品| 伊人久久精品亚洲午夜| 99热国产这里只有精品6| 一区二区三区免费毛片| 日日啪夜夜爽| 99精国产麻豆久久婷婷| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 精品久久久噜噜| 人成视频在线观看免费观看| √禁漫天堂资源中文www| 国产精品一二三区在线看| 午夜激情久久久久久久| 最后的刺客免费高清国语| 丝瓜视频免费看黄片| 性高湖久久久久久久久免费观看| 亚洲国产av影院在线观看| 欧美 亚洲 国产 日韩一| 一级毛片aaaaaa免费看小| av网站免费在线观看视频| 亚洲情色 制服丝袜| 亚洲精品国产av蜜桃| 免费观看在线日韩| 亚洲av.av天堂| 少妇猛男粗大的猛烈进出视频| 久久99热6这里只有精品| 国产在线免费精品| 国产一区二区在线观看av| 日日爽夜夜爽网站| 精品亚洲成国产av| 狠狠婷婷综合久久久久久88av| 大码成人一级视频| 99热全是精品| 免费大片黄手机在线观看| 美女国产视频在线观看| 人妻少妇偷人精品九色| 伊人久久精品亚洲午夜| 精品久久久久久电影网| 国产 精品1| 在线精品无人区一区二区三| 亚洲美女视频黄频| 最近2019中文字幕mv第一页| 国产成人一区二区在线| 免费播放大片免费观看视频在线观看| 免费观看的影片在线观看| 久久婷婷青草| 在线观看免费日韩欧美大片 | 日韩一区二区视频免费看| 边亲边吃奶的免费视频| 久久久久人妻精品一区果冻| 亚洲成人一二三区av| 国产探花极品一区二区| 成人黄色视频免费在线看| 一级毛片我不卡| 丁香六月天网| 亚洲,欧美,日韩| 精品酒店卫生间| 成人国语在线视频| 三级国产精品片| 亚洲国产日韩一区二区| 免费不卡的大黄色大毛片视频在线观看| 少妇 在线观看| videosex国产| 777米奇影视久久| 水蜜桃什么品种好| 欧美激情国产日韩精品一区| 亚洲美女视频黄频| 简卡轻食公司| 日韩熟女老妇一区二区性免费视频| 久久久久视频综合| 午夜激情福利司机影院| 伊人久久精品亚洲午夜| 女人精品久久久久毛片| 亚洲欧美日韩另类电影网站| 性高湖久久久久久久久免费观看| 国产一区亚洲一区在线观看| 嘟嘟电影网在线观看| 夜夜看夜夜爽夜夜摸| 亚洲精品乱码久久久久久按摩| 久久青草综合色| 在线观看人妻少妇| 赤兔流量卡办理| 国产在线免费精品| 亚洲av福利一区| 中文字幕制服av| 久久热精品热| 久久精品久久精品一区二区三区| 丝袜喷水一区| 欧美精品一区二区免费开放| 国产精品熟女久久久久浪| 国产探花极品一区二区| 亚洲精品色激情综合| 丰满少妇做爰视频| a级片在线免费高清观看视频| 国产一区二区在线观看日韩| 曰老女人黄片| 国产免费现黄频在线看| 国产精品三级大全| 国产深夜福利视频在线观看| 亚洲精品aⅴ在线观看| 国产成人免费无遮挡视频| 男人添女人高潮全过程视频| 国产精品一国产av| 久久国产亚洲av麻豆专区| 自线自在国产av| .国产精品久久| 精品久久久久久电影网| 三级国产精品片| 国产熟女欧美一区二区| 九色成人免费人妻av| 蜜桃久久精品国产亚洲av| 亚洲精品视频女| 性色avwww在线观看| 国产又色又爽无遮挡免| 少妇人妻久久综合中文| 嘟嘟电影网在线观看| 久久久久久久久久久久大奶| 天堂8中文在线网| 久久久久久久亚洲中文字幕| 亚洲精品亚洲一区二区| 日日爽夜夜爽网站| 国产免费又黄又爽又色| 成人毛片a级毛片在线播放| 免费观看性生交大片5| 91成人精品电影| 婷婷色麻豆天堂久久| 99久久综合免费| 在线观看免费视频网站a站| 免费观看a级毛片全部| 高清欧美精品videossex| 熟女av电影| 国产成人91sexporn| 欧美xxxx性猛交bbbb| 免费大片黄手机在线观看| 美女大奶头黄色视频| 日本爱情动作片www.在线观看| 青春草视频在线免费观看| 免费高清在线观看视频在线观看| 久久青草综合色| 中文字幕免费在线视频6| 边亲边吃奶的免费视频| 天美传媒精品一区二区| 在线观看免费视频网站a站| 免费播放大片免费观看视频在线观看| 午夜激情福利司机影院| 免费观看av网站的网址| 天美传媒精品一区二区| 最近手机中文字幕大全| 免费人成在线观看视频色| av免费在线看不卡| 欧美成人精品欧美一级黄| 亚洲第一区二区三区不卡| 91在线精品国自产拍蜜月| 18+在线观看网站| 一级片'在线观看视频| 另类精品久久| 久久av网站| 久久国产精品大桥未久av| 欧美精品一区二区大全| 2018国产大陆天天弄谢| 晚上一个人看的免费电影| 亚洲成人av在线免费| 亚洲,一卡二卡三卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产在线免费精品| 青青草视频在线视频观看| 国产淫语在线视频| av免费在线看不卡| 免费黄网站久久成人精品| 中文欧美无线码| 女性被躁到高潮视频| 国产av码专区亚洲av| 日日摸夜夜添夜夜爱| 在线精品无人区一区二区三| 免费久久久久久久精品成人欧美视频 | 午夜福利视频在线观看免费| av福利片在线| 国产成人免费无遮挡视频| 亚洲av综合色区一区| 人体艺术视频欧美日本| 久久久久久久精品精品| 两个人免费观看高清视频| 我的女老师完整版在线观看| 超碰97精品在线观看| 亚洲精品视频女| 国产亚洲精品久久久com| 日韩,欧美,国产一区二区三区| 成人影院久久| 国产日韩欧美在线精品| 成人国产麻豆网| 精品一区二区三区视频在线| 99视频精品全部免费 在线| 午夜久久久在线观看| 久久精品国产亚洲av天美| 国产精品一国产av| 人妻人人澡人人爽人人| 欧美成人精品欧美一级黄| 久久久久久久久久人人人人人人| 国产男女内射视频| 97精品久久久久久久久久精品| 天堂中文最新版在线下载| av播播在线观看一区| 男人操女人黄网站| 美女xxoo啪啪120秒动态图| 欧美丝袜亚洲另类| 国产黄片视频在线免费观看| av免费在线看不卡| 亚洲精品一区蜜桃| 日韩伦理黄色片| 韩国高清视频一区二区三区| 成人毛片a级毛片在线播放| 我要看黄色一级片免费的| 日韩电影二区| 国产亚洲欧美精品永久| 中文字幕久久专区| 色婷婷av一区二区三区视频| 国产一级毛片在线| 母亲3免费完整高清在线观看 | 国产亚洲一区二区精品| 99国产综合亚洲精品| 毛片一级片免费看久久久久| 亚洲国产日韩一区二区| 国产成人av激情在线播放 | 日日撸夜夜添| 亚洲少妇的诱惑av| 国产伦精品一区二区三区视频9| 久久精品国产亚洲av天美| 精品久久久久久电影网| av线在线观看网站| 国产精品秋霞免费鲁丝片| 超碰97精品在线观看| 国产 一区精品| 国产视频内射| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线 | 女的被弄到高潮叫床怎么办| 国产国语露脸激情在线看| 久久精品国产亚洲av天美| 亚洲伊人久久精品综合| 欧美成人午夜免费资源| 大香蕉久久成人网| 欧美日韩国产mv在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 我要看黄色一级片免费的| 日本-黄色视频高清免费观看| 在现免费观看毛片| 国产免费福利视频在线观看| 啦啦啦视频在线资源免费观看| 久久毛片免费看一区二区三区| 亚洲国产精品专区欧美| 亚洲精品国产av蜜桃| 婷婷色综合大香蕉| 超碰97精品在线观看| 欧美日韩在线观看h| 性色av一级| av播播在线观看一区| 亚洲人与动物交配视频| 精品人妻偷拍中文字幕| 水蜜桃什么品种好| 日韩av不卡免费在线播放| 欧美日韩av久久| 久久久久久久久久久久大奶| 简卡轻食公司| 久久久亚洲精品成人影院| 欧美精品亚洲一区二区| a级毛片在线看网站| 99热这里只有是精品在线观看| 人妻制服诱惑在线中文字幕| 久久热精品热| 亚洲国产精品专区欧美| 狂野欧美激情性bbbbbb| 日韩一本色道免费dvd| 亚洲成人手机| 下体分泌物呈黄色| 久久人妻熟女aⅴ| 国产黄色视频一区二区在线观看| 午夜日本视频在线| 另类精品久久| 男女边摸边吃奶| 久久精品夜色国产| 一区二区三区精品91| 久久人人爽人人片av| 大陆偷拍与自拍| 大香蕉97超碰在线| 91午夜精品亚洲一区二区三区| 熟女人妻精品中文字幕| 国产精品偷伦视频观看了| 欧美成人精品欧美一级黄| 亚洲综合色惰| 久久久国产欧美日韩av| 高清av免费在线| 国产精品久久久久久精品电影小说| 在线看a的网站| 中文乱码字字幕精品一区二区三区| 人成视频在线观看免费观看| 97精品久久久久久久久久精品| 亚洲av欧美aⅴ国产| 最近2019中文字幕mv第一页| 母亲3免费完整高清在线观看 | 91精品国产九色| 69精品国产乱码久久久| 国产精品国产三级国产专区5o| 观看av在线不卡| 国产亚洲精品久久久com| 国产成人freesex在线| 日韩欧美精品免费久久| 人妻夜夜爽99麻豆av| 久久人人爽人人片av| 看非洲黑人一级黄片| 极品少妇高潮喷水抽搐| 亚洲精品色激情综合| 亚洲人成网站在线观看播放| 黑人猛操日本美女一级片| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 一个人看视频在线观看www免费| 国精品久久久久久国模美| 国产av码专区亚洲av| 午夜激情av网站| 欧美日韩一区二区视频在线观看视频在线| 人人妻人人添人人爽欧美一区卜| 在线播放无遮挡| 九九久久精品国产亚洲av麻豆| 男人操女人黄网站| 中文字幕免费在线视频6| 日韩电影二区| 在线观看免费日韩欧美大片 | 国产成人午夜福利电影在线观看| 最近最新中文字幕免费大全7| 亚洲五月色婷婷综合| 母亲3免费完整高清在线观看 | av卡一久久| 午夜老司机福利剧场| 日本黄色日本黄色录像| 热re99久久国产66热| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 亚洲,一卡二卡三卡| 人妻制服诱惑在线中文字幕| 精品卡一卡二卡四卡免费| 全区人妻精品视频| 最后的刺客免费高清国语| 看免费成人av毛片| 中文字幕精品免费在线观看视频 | 国产免费又黄又爽又色| 一级二级三级毛片免费看| 国产白丝娇喘喷水9色精品| 久久国产亚洲av麻豆专区| av.在线天堂| 人妻系列 视频| 精品久久久久久电影网| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲精品一区二区精品久久久 | 日本av手机在线免费观看|