• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      神經(jīng)再生的內(nèi)在調(diào)控機(jī)制*

      2015-09-13 05:41:47周松林趙莉莉于彬顧曉松南通大學(xué)江蘇省神經(jīng)再生重點(diǎn)實(shí)驗(yàn)室神經(jīng)再生協(xié)同創(chuàng)新中心江蘇226001
      交通醫(yī)學(xué) 2015年2期
      關(guān)鍵詞:軸突乙?;?/a>神經(jīng)節(jié)

      周松林,趙莉莉,于彬,顧曉松(南通大學(xué)江蘇省神經(jīng)再生重點(diǎn)實(shí)驗(yàn)室,神經(jīng)再生協(xié)同創(chuàng)新中心,江蘇226001)

      ·述評(píng)·

      神經(jīng)再生的內(nèi)在調(diào)控機(jī)制*

      周松林**,趙莉莉,于彬,顧曉松
      (南通大學(xué)江蘇省神經(jīng)再生重點(diǎn)實(shí)驗(yàn)室,神經(jīng)再生協(xié)同創(chuàng)新中心,江蘇226001)

      總結(jié)目前已知與神經(jīng)元內(nèi)在再生能力調(diào)控有關(guān)的關(guān)鍵轉(zhuǎn)錄調(diào)控因子、再生能力核心調(diào)控蛋白和轉(zhuǎn)錄后非編碼RNA在神經(jīng)再生調(diào)控中作用,以系統(tǒng)性闡述神經(jīng)再生的內(nèi)在調(diào)控機(jī)制,并就存活與再生、衰老與再生的調(diào)控進(jìn)行探討。

      神經(jīng)元再生;轉(zhuǎn)錄因子;蛋白信號(hào)轉(zhuǎn)導(dǎo)分子;非編碼RNA;內(nèi)在調(diào)控機(jī)制

      成年哺乳動(dòng)物的中樞神經(jīng)系統(tǒng)受損后往往難以恢復(fù),相對(duì)而言,成年后周圍神經(jīng)系統(tǒng)在受損后可以實(shí)現(xiàn)一定的再生。究其原因主要是成年后周圍神經(jīng)系統(tǒng)神經(jīng)元仍具有一定的再生能力,以及施萬細(xì)胞等提供了合適的再生微環(huán)境[1]。因此,充分理解周圍神經(jīng)成功再生的機(jī)制有助于我們解決在中樞神經(jīng)系統(tǒng)再生中遇到的問題。本文為系統(tǒng)性闡述神經(jīng)再生的內(nèi)在調(diào)控機(jī)制,總結(jié)目前已知與神經(jīng)元內(nèi)在再生能力調(diào)控有關(guān)的關(guān)鍵轉(zhuǎn)錄調(diào)控因子、再生能力核心調(diào)控蛋白和轉(zhuǎn)錄后非編碼RNA在神經(jīng)再生調(diào)控中作用。最后就存活與再生,衰老與再生的調(diào)控進(jìn)行探討。

      1 內(nèi)在再生轉(zhuǎn)錄調(diào)控

      1.1轉(zhuǎn)錄激活因子3(activating transcription factor3,ATF3)作為ATF/CREB的家族成員,ATF/ CREB蛋白可相互間形成異二聚體從而影響基因的轉(zhuǎn)錄調(diào)控。在大多數(shù)類型的細(xì)胞中,ATF3的表達(dá)都是比較低的,但神經(jīng)損傷引起ATF3的表達(dá)上調(diào)[2]。另外,血清、成纖維細(xì)胞生長(zhǎng)因子、細(xì)胞因子以及毛喉萜(Forskolin)[3]等許多細(xì)胞外的信號(hào)同樣可以引起ATF3的活化。

      到目前為止,在神經(jīng)元中,Hsp27是唯一被確認(rèn)的ATF3下游靶基因[4]。周圍神經(jīng)損傷能增強(qiáng)Hsp27在背根神經(jīng)節(jié)、灰質(zhì)后角和運(yùn)動(dòng)神經(jīng)元中的表達(dá)[5]。在PC12細(xì)胞中,ATF3可以直接結(jié)合到Hsp27的啟動(dòng)子上來活化Hsp27從而促進(jìn)其表達(dá)[6]。在ATF3轉(zhuǎn)基因小鼠的背根神經(jīng)節(jié)中,Hsp27的表達(dá)也是上調(diào)的,顯示在體內(nèi)Hsp27也是ATF3的靶基因[7]。

      1.2信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3,STAT3)系哺乳動(dòng)物中STAT家族中的一員。未活化的STAT位于細(xì)胞質(zhì)中,被JAKs激活后可形成二聚體或四聚體并被轉(zhuǎn)運(yùn)至細(xì)胞核內(nèi)。后者可以與基因的啟動(dòng)子序列結(jié)合,直接調(diào)控轉(zhuǎn)錄。在神經(jīng)系統(tǒng)中STAT3的表達(dá)廣泛,研究最為深入。在正常神經(jīng)元中STAT3的表達(dá)很低,當(dāng)神經(jīng)元受到損傷后,STAT3的磷酸化會(huì)迅速升高[8]。坐骨神經(jīng)受損后,磷酸化的STAT3從6小時(shí)開始增加一直持續(xù)1個(gè)月。如在損傷位點(diǎn)持續(xù)4周使用JAK/STAT的抑制劑不僅能減少STAT3的磷酸化水平,而且再生相關(guān)蛋白GAP-43的表達(dá)也被顯著抑制[9]。

      1.3c-Jun作為異二聚體轉(zhuǎn)錄因子AP-1的組成成分,生長(zhǎng)因子、細(xì)胞因子和損傷相關(guān)的應(yīng)急壓力許多信號(hào)通路都會(huì)導(dǎo)致c-Jun的激活[10]。在神經(jīng)受損后,c-Jun表達(dá)迅速升高,并持續(xù)到受損神經(jīng)元修復(fù)完成[11]。然而,敲除c-Jun不僅降低神經(jīng)再生的速度,引起靶肌神經(jīng)支配的減少并且延遲功能的恢復(fù),同時(shí)可以減少受損的神經(jīng)元的死亡[11]。表明c-Jun一方面可以促進(jìn)受損神經(jīng)元的再生,另一方面也可以促進(jìn)其凋亡。c-Jun的活化受控于JNKs,它可以將c-Jun的N末端磷酸化[12]。目前認(rèn)為JNK/c-Jun轉(zhuǎn)錄通路是神經(jīng)損傷的一個(gè)感應(yīng)器[13]。JNK是c-Jun的一個(gè)磷酸激酶,它可通過磷酸化c-Jun的Ser位點(diǎn)來激活c-Jun[14]。神經(jīng)損傷增加JNK引起的c-Jun的磷酸化,而JNK的抑制劑可在不影響細(xì)胞存活條件下減少c-Jun的磷酸化、ATF3的表達(dá)及神經(jīng)生長(zhǎng)[15]。然而在浦肯野神經(jīng)元中過表達(dá)c-Jun并不能促進(jìn)其再生,這說明c-Jun促神經(jīng)再生作用是高度依賴細(xì)胞所處的環(huán)境[16]。

      1.4環(huán)磷腺苷效應(yīng)元件結(jié)合蛋白(cyclic AMP response element binding protein,CREB)屬于含bZIP結(jié)構(gòu)域的ATF/CREB轉(zhuǎn)錄因子家族,是環(huán)腺苷酸(cAMP)信號(hào)通路在神經(jīng)系統(tǒng)的轉(zhuǎn)錄傳遞因子[17]。CREB的激活與細(xì)胞內(nèi)cAMP的濃度密切相關(guān)。環(huán)腺苷酸作為第二信使可直接激活PKA,而后者能進(jìn)一步磷酸化CREB并使其入核,從而促進(jìn)細(xì)胞骨架的建立,誘導(dǎo)軸突的延伸。而持續(xù)活化的CREB也可以克服髓磷脂的抑制作用,從而促進(jìn)神經(jīng)的再生[18]。CREB在軸突的生長(zhǎng)及再生過程中扮演著重要角色。敲除CREB的小鼠周圍及中樞神經(jīng)生長(zhǎng)都會(huì)受阻[19],體外培養(yǎng)的背根神經(jīng)節(jié)和頸上交感神經(jīng)節(jié)神經(jīng)元的軸突生長(zhǎng)長(zhǎng)度也要短于對(duì)照組。CREB下游重要因子Arg I,可以通過促進(jìn)多胺的合成來促進(jìn)軸突的再生[20]。抑制CREB將導(dǎo)致Arg I的表達(dá)受到抑制,過表達(dá)CREB將顯著增加Arg I的表達(dá),但CREB是否直接調(diào)控Arg I目前還不是很清楚[18]。

      2 再生能力核心調(diào)控蛋白

      2.1PTENPark等發(fā)現(xiàn)刪除PTEN不僅可以減少細(xì)胞的凋亡,同時(shí)也可以促進(jìn)軸突的再生[21]。PTEN被抑制后可以促進(jìn)PIP3的積累。而后者作為第二信使,可以引起下游一系列的反應(yīng),如活化磷脂酰肌醇依賴性蛋白激酶、蛋白激酶B(AKT或PKB)糖原合成酶激酶等[22]。而mTOR的抑制劑雷帕霉素可以抑制因缺失PTEN引起的再生[21],這就表明缺失PTEN引起的軸突再生是依賴mTOR信號(hào)通路的。然而,刪除PTEN促進(jìn)的神經(jīng)再生,不僅只依賴mTOR這一條通路,Park等學(xué)者發(fā)現(xiàn)糖原合成酶激酶3也參與其中。在軸突末梢,糖原合成酶激酶3可以通過調(diào)節(jié)微管的組裝來調(diào)控細(xì)胞骨架的重組,而這對(duì)軸突的再生非常重要[23]。另外,糖原合成酶激酶3還可通過調(diào)節(jié)許多轉(zhuǎn)錄因子活化來參與基因轉(zhuǎn)錄調(diào)控,從而進(jìn)一步參與到神經(jīng)損傷與修復(fù)中[24]。但這些參與軸突再生的不依賴mTOR的通路仍需進(jìn)一步探究。

      缺失PTEN引起的神經(jīng)再生不僅發(fā)生在視網(wǎng)膜神經(jīng)節(jié)細(xì)胞中,在皮質(zhì)脊髓束中,mTOR的活性不僅隨著皮質(zhì)神經(jīng)元的生長(zhǎng)發(fā)育而降低,而且皮質(zhì)神經(jīng)元的損傷也能降低mTOR的活性。但如果在皮質(zhì)神經(jīng)元中刪除PTEN來維持mTOR的活性,將大大促進(jìn)皮質(zhì)脊髓束的軸突再生[25]。另外,在背根神經(jīng)節(jié)中,缺失PTEN或TSC2同樣可以促進(jìn)軸突的生長(zhǎng)及再生[26]。這些都表明在軸突的再生過程中,PTEN/ mTOR發(fā)揮著重要作用,但這種作用不通過活化核糖體S6蛋白激酶途徑[27]。

      2.2細(xì)胞因子信號(hào)通路抑制因子(suppressor of cytokine signaling,SOCS)3SOLS家族是由8個(gè)在細(xì)胞內(nèi)發(fā)揮細(xì)胞因子信號(hào)傳導(dǎo)抑制作用的成員組成。SOCS蛋白主要通過結(jié)合到JAK或細(xì)胞激素受體的酪氨酸殘基上來抑制信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活。SOCS蛋白還參與炎癥反應(yīng)、免疫反應(yīng)、內(nèi)分泌以及致癌反應(yīng)[28]等細(xì)胞許多生理功能的調(diào)節(jié)。其中SOCS3在神經(jīng)系統(tǒng)中廣泛表達(dá),尤其在海馬、基底節(jié)、丘腦,以及小腦顆粒細(xì)胞層的神經(jīng)元中表達(dá)。白介素-6上調(diào)SOCS3,可以在體內(nèi)特異性地抑制周圍神經(jīng)的JAK/ STAT3的激活及抗炎癥的作用[29]。研究發(fā)現(xiàn)在RGCs中敲除SOCS3,將同時(shí)促進(jìn)視神經(jīng)損傷后的神經(jīng)元的存活以及軸突再生。在SOCS3基因敲除小鼠中再進(jìn)一步敲除gp130明顯抑制軸突的再生,這說明缺失SOCS3引起的軸突再生是通過gp130信號(hào)調(diào)節(jié)的。

      另外,在視網(wǎng)膜神經(jīng)節(jié)細(xì)胞中,通過腺病毒轉(zhuǎn)染來過表達(dá)SOCS3,發(fā)現(xiàn)軸突的再生幾乎被完全抑制[30]。在玻璃體內(nèi)注射重組人睫狀神經(jīng)營養(yǎng)因子的作用,也會(huì)被腺病毒介導(dǎo)的SOCS3的過表達(dá)抑制,這也說明過表達(dá)SOCS3可以抑制細(xì)胞的存活途徑[31]。

      3 非編碼RNA與神經(jīng)元再生能力的調(diào)控

      3.1microRNAs(miRNAs)系一類大約22 nt的非編碼RNA(noncoding RNA,ncRNA),可以在翻譯后水平調(diào)控基因的表達(dá)[32]。芯片和深度測(cè)序發(fā)現(xiàn)miRNA參與大鼠坐骨神經(jīng)再生的許多環(huán)節(jié)[33-35],神經(jīng)元的存活是成功再生的前提條件。通過系統(tǒng)性分析坐骨神經(jīng)損傷后L4-L6背根神經(jīng)節(jié)miRNA的表達(dá)譜變化,發(fā)現(xiàn)miR-21和miR-222通過靶向TIMP3,抑制背根神經(jīng)節(jié)神經(jīng)元的凋亡。另外白介素-6刺激背根神經(jīng)節(jié)神經(jīng)元可以上調(diào)miR-21的表達(dá)[36]。

      目前許多研究都集中在miRNA對(duì)神經(jīng)元突起生長(zhǎng)的研究上,例如miR-21在損傷后的DRG神經(jīng)元中迅速上調(diào),通過靶向Sprouty2來促進(jìn)DRG神經(jīng)元突起的再生[37]。另外miR-431,miR-145,miR-138,miR-214和miR-132分別靶向Kremen1,Robo2,Sirtuin type 1,Slit-Robo GTPase-activating protein 3和Rasa1來調(diào)控軸突再生[38-42]。我們系統(tǒng)分析大鼠坐骨神經(jīng)損傷后L4-L6背根神經(jīng)節(jié)miRNA的表達(dá)譜變化,發(fā)現(xiàn)miR-222通過靶向PTEN促進(jìn)背根神經(jīng)節(jié)神經(jīng)元突起的生長(zhǎng)。另外c-Jun激活上調(diào)miR-222的表達(dá),miR-222也可通過PTEN調(diào)節(jié)CREB磷酸化,與cAMP/CREB信號(hào)通路協(xié)同促進(jìn)神經(jīng)元的再生[43](圖1)。

      圖1 miR-222調(diào)控神經(jīng)再生的原理圖

      對(duì)線蟲的302個(gè)神經(jīng)元的分析,發(fā)現(xiàn)let-7-lin-41-lin-29異時(shí)信號(hào)通路控制著線蟲前腹微管(anterior ventral microtubule,AVM)神經(jīng)元的存活及軸突的再生。直接抑制let-7或增加它的交互抑制基因lin-41的表達(dá)水平,能夠完全恢復(fù)這種幼蟲神經(jīng)元軸突的再生能力[44]。在斑馬魚脊髓損傷后發(fā)現(xiàn)miR-133b上調(diào),可靶向GTPase RhoA促進(jìn)軸突再生[45]。在小鼠的P19細(xì)胞中,過表達(dá)miR-124可促進(jìn)突起生長(zhǎng),這與其靶向Cdc42和Rac1有關(guān)[46]。

      3.2長(zhǎng)鏈非編碼RNA(long noncoding RNA,lncRNA)隨著功能基因組學(xué)的迅速發(fā)展,非編碼RNA家族的重要成員lncRNA受到人們?cè)絹碓蕉嗟年P(guān)注。它是一類長(zhǎng)度大于200nt,但不具備編碼蛋白功能的基因轉(zhuǎn)錄產(chǎn)物[47]。近年研究發(fā)現(xiàn),lncRNA在轉(zhuǎn)錄及轉(zhuǎn)錄后等水平通過影響mRNA的轉(zhuǎn)錄、拼接、轉(zhuǎn)運(yùn)和翻譯等過程,調(diào)節(jié)蛋白編碼基因的表達(dá)。lncRNA在大腦中高表達(dá),但絕大部分作用并不清楚[48]。我們最近對(duì)坐骨神經(jīng)損傷后的DRG中的lncRNA表達(dá)譜進(jìn)行了研究,發(fā)現(xiàn)24個(gè)lncRNA在損傷下調(diào),生物信息分析發(fā)現(xiàn)其可能的靶基因與MAPK通路有關(guān)。進(jìn)一步研究發(fā)現(xiàn)干擾lncRNA BC089918可促進(jìn)DRG神經(jīng)突起的生長(zhǎng),這些研究從一個(gè)全新的角度闡述了神經(jīng)再生的分子機(jī)制[49]。

      4 再生通路調(diào)控模式

      目前已知7條經(jīng)典的再生調(diào)控通路,分別是cAMP/PKA/CREB,JNK/c-JUN,ATF3,JAK/STAT3,CBP/p300/PCAF-p53,KLF4,BMP4/Smad1[50]。這些通路間又有相互聯(lián)系,例如c-Jun可能會(huì)和ATF3和STAT3等轉(zhuǎn)錄因子共同起作用,從而啟動(dòng)周圍神經(jīng)再生[16]。KLF4可與p53協(xié)作,反式激活p21Cip1/ Waf1的增強(qiáng)子[51],并反過來影響神經(jīng)的生長(zhǎng)。KLF4還可綁定到STAT3的705酪氨酸磷酸化位點(diǎn),從而抑制視神經(jīng)節(jié)軸突的再生[52]。先前研究表明Bcl-2可通過減少內(nèi)質(zhì)網(wǎng)上Ca2+的攝入,以及增加Ca2+的外流來調(diào)節(jié)內(nèi)質(zhì)網(wǎng)上Ca2+的濃度。在神經(jīng)元中,Bcl-2能夠提高神經(jīng)受損后細(xì)胞內(nèi)Ca2+的濃度,從而活化絲裂原活化蛋白激酶以及CREB,來促進(jìn)軸突的再生[53]。

      另一方面,在視網(wǎng)膜神經(jīng)節(jié)細(xì)胞中敲除SOCS3能夠上調(diào)神經(jīng)損傷后3天和7天的mTOR水平,同時(shí)促進(jìn)RGCs對(duì)損傷誘導(dǎo)因子的反應(yīng)[54]。研究發(fā)現(xiàn)聯(lián)合缺失SOCS3和PTEN能夠大大促進(jìn)軸突再生的強(qiáng)度及持續(xù)性,表明PTEN和SOCS3是通過2條獨(dú)立途徑而又協(xié)同促進(jìn)軸突的再生[55]。

      最近一項(xiàng)研究表明,在PTEN基因敲除小鼠視神經(jīng)損傷后施加cAMP能夠使RGC的軸突生長(zhǎng)延長(zhǎng)。在損傷后10周,大部分再生軸突跨過視神經(jīng)交叉的中間部位。視神經(jīng)受損的小鼠開始對(duì)類似視動(dòng)反應(yīng)及晝夜活動(dòng)等作出反應(yīng)[56]。這表明再生的視網(wǎng)膜神經(jīng)節(jié)細(xì)胞軸突與目標(biāo)神經(jīng)元之間重新建立了突觸聯(lián)系。

      5 乙酰化與神經(jīng)元再生能力的調(diào)控

      乙?;侵笇⒁阴;D(zhuǎn)移到氨基酸側(cè)鏈基團(tuán)上的過程,乙?;揎椆δ苎芯恐饕性趯?duì)細(xì)胞染色體結(jié)構(gòu)的影響以及對(duì)核內(nèi)轉(zhuǎn)錄調(diào)控因子的激活方面,最常見的是組蛋白乙?;?。在乙?;揎棇?duì)細(xì)胞染色體結(jié)構(gòu)的影響上,Valeria Cavalli通過研究周圍神經(jīng)系統(tǒng)DRG神經(jīng)元軸突再生,發(fā)現(xiàn)釋放組蛋白去乙酰化酶5(HDAC5)出核是周圍神經(jīng)再生連鎖反應(yīng)中重要的一步。HDAC5出核可以開啟一系列促進(jìn)軸突再生的基因的表達(dá),同時(shí)HDAC5也可以運(yùn)動(dòng)到損傷位點(diǎn)協(xié)助微管的形成,從而促進(jìn)軸突的再生。而大腦和脊髓中的神經(jīng)細(xì)胞缺少HDAC5出核,這可以部分解釋為何中樞神經(jīng)系統(tǒng)的神經(jīng)元軸突再生非常困難[57]。

      在乙酰化修飾功能及對(duì)核內(nèi)轉(zhuǎn)錄調(diào)控因子的激活方面,p53是一個(gè)典型代表。研究發(fā)現(xiàn)p53不僅可通過其靶基因Coronin1b,Rab13來促進(jìn)軸突的生長(zhǎng),還可通過翻譯后修飾來調(diào)節(jié)p53的活性,以增加軸突生長(zhǎng)[58]。p53可行乙?;?、磷酸化和泛素化等多種類型的翻譯后修飾[59],這些可能會(huì)影響p53定位和功能。乙?;D(zhuǎn)移酶CBP/p300在特定賴氨酸位點(diǎn)乙酰化p53,使轉(zhuǎn)錄單元CBP/P300/AC-P53與GAP-43啟動(dòng)子結(jié)合增強(qiáng),增加GAP-43的表達(dá)。有趣的是在皮層神經(jīng)元中,p53蛋白的C末端的乙?;粫?huì)導(dǎo)致細(xì)胞死亡,但在細(xì)胞系中會(huì)導(dǎo)致細(xì)胞凋亡[60-63]。因此,轉(zhuǎn)錄因子的功能不僅取決于翻譯后修飾,還與細(xì)胞內(nèi)特殊的內(nèi)環(huán)境有關(guān)。

      6 神經(jīng)元存活與再生的調(diào)控

      神經(jīng)損傷后,神經(jīng)元存活及軸突的再生這兩者看似密不可分[64-65],實(shí)際上,轉(zhuǎn)基因小鼠實(shí)驗(yàn)證實(shí)神經(jīng)元的存活與再生似乎是兩個(gè)獨(dú)立的過程[66]。一個(gè)很好的例子就是在體外培養(yǎng)的視神經(jīng)節(jié)細(xì)胞中過表達(dá)Bcl-2,這足以確保其存活。但沒有神經(jīng)營養(yǎng)因子等外來刺激,視神經(jīng)節(jié)細(xì)胞并不會(huì)長(zhǎng)出突起,這說明存活的神經(jīng)元并不會(huì)自動(dòng)地長(zhǎng)突起[67]。另外也發(fā)現(xiàn)在視網(wǎng)膜神經(jīng)節(jié)細(xì)胞中敲除SOCS3將同時(shí)促進(jìn)視神經(jīng)損傷后的神經(jīng)元的存活以及軸突再生。但是途徑并不一致,在SOCS3與gp130基因雙敲除小鼠中,可明顯抑制軸突的再生,說明缺失SOCS3引起的軸突再生是很大程度是依賴gp130信號(hào)的。然而對(duì)于神經(jīng)元的存活來說,雙敲除SOCS3和gp130的存活率反而要明顯高于單缺失SOCS3或gp130,說明非依賴gp130的途徑在缺失SOCS3后神經(jīng)元的存活上發(fā)揮作用[54]。

      7 神經(jīng)元衰老與再生的調(diào)控

      軸突的再生能力隨著年齡的增長(zhǎng)逐漸下降。一種可能假設(shè)是再生能力的丟失是機(jī)體衰老的必然結(jié)果。然而最近Byrne的一項(xiàng)研究中發(fā)現(xiàn),神經(jīng)元再生能力和衰老是兩個(gè)獨(dú)立的,可以解偶聯(lián)的過程[68-69]。線蟲是一個(gè)很好的研究再生與衰老的模式動(dòng)物,其中sir-2.1、eat-2和daf-2三種突變可以延長(zhǎng)線蟲的壽命。但只發(fā)現(xiàn)daf-2(胰島素/類胰島素生長(zhǎng)因子受體)突變后,可以提高年老動(dòng)物的再生能力。daf-2突變后促再生和延長(zhǎng)壽命的作用,是通過daf-16/ FOXO轉(zhuǎn)錄因子介導(dǎo)的。然而daf-16調(diào)控再生能力和延長(zhǎng)壽命是2條獨(dú)立的途徑,也說明神經(jīng)元的衰老是受內(nèi)在基因調(diào)控的特定過程。另一個(gè)證據(jù)是當(dāng)在線蟲中突變daf-18/PTEN后,雖然能促進(jìn)TOR通路的激活,但其壽命是降低的。以前在哺乳動(dòng)物中也證實(shí)PTEN敲除可以促進(jìn)神經(jīng)的再生,這些結(jié)果表明無論是年輕還是年老動(dòng)物,激活TOR都可促進(jìn)再。也說明daf-2和daf-18都可促進(jìn)神經(jīng)再生,但其對(duì)線蟲的壽命卻有相反的作用。雖然兩者似乎是相互連接的,但實(shí)際上daf-2/胰島素受體—daf-16/ FOXO和daf-18/PTEN—mTOR通路似乎是獨(dú)立地調(diào)控這些過程的。

      8 展望

      綜上所述,神經(jīng)元內(nèi)在再生能力的激活,一方面受控于一系列復(fù)雜的細(xì)胞外信號(hào),另一方面與神經(jīng)元本身存在的再生能力相關(guān)。主要涉及神經(jīng)內(nèi)在再生轉(zhuǎn)錄調(diào)控,再生能力核心調(diào)控蛋白,轉(zhuǎn)錄后非編碼RNA調(diào)控以及再生通路調(diào)控模式等。神經(jīng)內(nèi)在再生能力研究的難點(diǎn),在于體外培養(yǎng)的神經(jīng)元再生突起長(zhǎng)度的比較。而近年來微流體培養(yǎng)[70]和“spot”培養(yǎng)[57]方法的建立和完善較好的解決這些問題;其次由于血腦屏障的存在,藥物很難作用于達(dá)中樞神經(jīng)系統(tǒng)的神經(jīng)元。近年來開發(fā)的鞘內(nèi)注射siRNA[71]以及外周神經(jīng)再生小室內(nèi)注射siRNA[72]和miRNA[73-74]都取得了良好的效果。這些方法的建立大大拓寬了神經(jīng)內(nèi)在再生能力研究的途徑,有助于加深對(duì)神經(jīng)再生內(nèi)在調(diào)控機(jī)制的理解。深入闡明神經(jīng)再生的內(nèi)在調(diào)控機(jī)制將為神經(jīng)系統(tǒng)疾病,包括神經(jīng)退行性病變,中樞及周圍神經(jīng)損傷等提供新的思路和策略,為臨床應(yīng)用提供有益的科學(xué)指導(dǎo)。

      [1]Gu X,Ding F,Williams DF.Neural tissue engineering options for peripheral nerve regeneration[J].Biomaterials,2014,35(24):6143-6156.

      [2]Seijffers R,Allchorne AJ,Woolf CJ.The transcription factor ATF-3 promotes neurite outgrowth[J].Molecular and Cellular Neuroscience,2006,32(1-2):143-154.

      [3]Hai T,Wolfgang CD,Marsee DK,et al.ATF3 and stress responses[J].Gene Expr,1999,7(4-6):321-335.

      [4]Benn SC,Perrelet D,Kato AC,et al.Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival[J].Neuron,2002,36(1):45-56.

      [5]Costigan M,Mannion RJ,Kendall G,et al.Heat shock protein 27:developmental regulation and expression after peripheral nerve injury[J].J Neurosci,1998,18(15):5891-5900.

      [6]Nakagomi S,Suzuki Y,Namikawa K,et al.Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation[J].J Neurosci,2003,23(12):5187-5196.

      [7]Seijffers R,Mills CD,Woolf CJ.A TF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration[J].J Neurosci,2007,27(30):7911-7920.

      [8]Dziennis S,Alkayed NJ.Role of signal transducer and activator of transcription 3 in neuronal survival and regeneration[J].Rev Neurosci,2008,19(4/5):341-361.

      [9]Qiu J,Cafferty WB,McMahon SB,et al.Conditioning injuryinduced spinal axon regeneration requires signal transducer and activator of transcription 3 activation[J].J Neurosci,2005,25(7):1645-1653.

      [10]Herdegen T,Skene P,Bahr M.The c-Jun transcription factor——bipotential mediator of neuronal death,survival and regeneration[J].Trends Neurosci,1997,20(5):227-231.

      [11]Raivich G,Bohatschek M,Da Costa C,et al.The AP-1 transcription factor c-jun is required for efficient axonal regeneration[J].Neuron,2004,43(1):57-67.

      [12]Angel P,Allegretto EA,Okino ST,et al.Oncogene jun encodes a sequence-specific trans-activator similar to AP-1[J].Nature,1988,332(6160):166-171.

      [13]Makwana M,Raivich G.Molecular mechanisms in successful peripheral regeneration[J].FEBS Journal,2005,272(11):2628-2638.

      [14]Waetzig V,Zhao Y,Herdegen T.The bright side of JNKs-Multitalented mediators in neuronal sprouting,brain development and nerve fiber regeneration[J].Prog Neurobiol,2006,80(2):84-97.

      [15]Lindwall C,Dahlin L,Lundborg G,et al.Inhibition of c-Jun phosphorylation reduces axonal outgrowth of adult rat nodose ganglia and dorsal root ganglia sensory neurons[J]. Molecular and Cellular Neuroscience,2004,27(3):267-279.

      [16]Carulli D,Buffo A,Botta C,et al.Regenerative and survival capabilities of Purkinje cells overexpressing c-Jun[J].Eur J Neurosci,2002,16(1):105-118.

      [17]Hannila SS,F(xiàn)ilbin MT.The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury[J]. Exp Neurol,2008,209(2):321-332.

      [18]Gao Y,Deng K,Hou J,et al.Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo[J].Neuron,2004,44(4):609-621.

      [19]Rudolph D,Tafuri A,Gass P,et al.Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein[J].Proc Natl Acad Sci U S A,1998,95(8):4481-4486.

      [20]Deng K,He H,Qiu J,et al.Increased synthesis of spermidine as a result of upregulation of arginase I promotes axonal regeneration in culture and in vivo[J].J Neurosci,2009,29(30):9545-9552.

      [21]Park KK,Liu K,Hu Y,et al.Promoting Axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway[J].Science,2008,322(593):963-966.

      [22]Park KK,Liu K,Hu Y,et al.PTEN/mTOR and axon regeneration[J].Exp Neurol,2010,223(1):45-50.

      [23]Hur EM,Saijilafu,Zhou FQ.Growing the growth cone:remodeling the cytoskeleton to promote axon regeneration[J]. Trends Neurosci,2012,35(3):164-174.

      [24]Liu CM,Hur EM,Zhou FQ.Coordinating Gene Expression and Axon Assembly to Control Axon Growth:Potential Role of GSK3 Signaling[J].Front Mol Neurosci,2012:53.

      [25]Liu K,Lu Y,Lee JK,et al.PTEN deletion enhances the regenerative ability of adult corticospinal neurons[J].NatNeurosci,2010,13(9):1064-1075.

      [26]Abe N,Borson SH,Gambello MJ,et al.Mammalian target of rapamycin(mTOR)activation increases axonal growth capacity of injured peripheral nerves[J].J Biol Chem,2010,285(36):28034-28043.

      [27]Christie KJ,Webber CA,Martinez JA,et al.PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons[J].J Neurosci,2010,30(27):9306-9315.

      [28]Newbern JM,Shoemaker SE,Snider WD.Taking off the SOCS:cytokine signaling Spurs regeneration[J].Neuron,2009,64(5):591-592.

      [29]Jo D,Liu D,Yao S,et al.Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis[J].Nat Med,2005,11(8):892-898.

      [30]Hellstrom M,Muhling J,Ehlert EM,et al.Negative impact of rAAV2 mediated expression of SOCS3 on the regeneration of adult retinal ganglion cell axons[J].Mol Cell Neurosci,2011,46(2):507-515.

      [31]Yang P,Yang Z.Enhancing intrinsic growth capacity promotes adult CNS regeneration[J].J Neurol Sci,2012,312(1/2):1-6.

      [32]Ouyang YB,Xu L,Yue S,et al.Neuroprotection by astrocytes in brain ischemia:importance of microRNAs[J]. Neurosci Lett,2014,565:53-58.

      [33]Yu B,Zhou S,Wang Y,et al.Profile of microRNAs following rat sciatic nerve injury by deep sequencing:implication for mechanisms of nerve regeneration[J].PLoS One,2011,6(9):e24612.

      [34]Wu D,Raafat M,Pak E,et al.MicroRNA machinery responds to peripheral nerve lesion in an injury-regulated pattern[J].Neuroscience,2011,190:386-397.

      [35]Zhou SL,Yu B,Qian TM,et al.Early changes of microRNAs expression in the dorsal root ganglia following rat sciatic nerve transection[J].Neurosci Lett,2011,494(2):89-93.

      [36]Zhou S,Zhang S,Wang Y,et al.MiR-21 and miR-222 inhibit apoptosis of adult dorsal root ganglion neurons by repressing TIMP3 following sciatic nerve injury[J].Neurosci Lett,2015,586:43-49.

      [37]Strickland IT,Richards L,Holmes FE,et al.Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons[J].PLoS One,2011,6(8):e23423.

      [38]Wu D,Murashov AK.MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1[J].Front Mol Neurosci,2013,6:35.

      [39]Zhang HY,Zheng SJ,Zhao JH,et al.MicroRNAs 144,145,and 214 are down-regulated in primary neurons responding to sciatic nerve transection[J].Brain Res,2011,1383:62-70.

      [40]Liu CM,Wang RY,Saijilafu,et al.MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration[J].Genes Dev,2013,27(13):1473-1483.

      [41]Lu A,Huang Z,Zhang C,et al.Differential expression of microRNAs in dorsal root ganglia after sciatic nerve injury[J].Neural Regeneration Research,2014,9(10):1031-1040.

      [42]Hancock ML,Preitner N,Quan J,et al.MicroRNA-132 is enriched in developing axons,locally regulates Rasa1 mRNA,and promotes Axon extension[J].Journal of Neuroscience,2014,34(1):66-78.

      [43]Zhou S,Shen D,Wang Y,et al.microRNA-222 targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection[J]. PLoS One,2012,7(9):e44768.

      [44]Zou Y,Chiu H,Zinovyeva A,et al.Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers[J].Science,2013,340(6130):372-376.

      [45]Yu YM,Gibbs KM,Davila J,et al.MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish[J].Eur J Neurosci,2011,33(9):1587-1597.

      [46]Xu WW,Wang XY,Li P,et al.miR-124 regulates neural stem cells in the treatment of spinal cord injury[J].Neurosci Lett,2012,529(1):12-17.

      [47]Wilusz JE,Sunwoo H,Spector DL.Long noncoding RNAs: functional surprises from the RNA world[J].Genes Dev,2009,23(13):1494-1504.

      [48]Wapinski O,Chang HY.Long noncoding RNAs and human disease[J].Trends Cell Biol,2011,21(6):354-361.

      [49]Yu B,Zhou S,Hu W,et al.Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury[J].Neurosci Lett,2013,534:117-122.

      [50]Tedeschi A.Tuning the orchestra:transcriptional pathways controlling axon regeneration[J].Front Mol Neurosci,2012,4:60.

      [51]Zhang W,Geiman DE,Shields JM,et al.The gut-enriched Kruppel-like factor(Kruppel-like factor 4)mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter[J].J Biol Chem,2000,275(24):18391-18398.

      [52]Qin S,Zou Y,Zhang CL.Cross-talk between KLF4 andSTAT3 regulates axon regeneration[J].Nat Commun,2013,4:2633.

      [53]Jiao J,Huang X,F(xiàn)eit-Leithman RA,et al.Bcl-2 enhances Ca(2+)signaling to support the intrinsic regenerative capacity of CNS axons[J].EMBO Journal,2005,24(5):1068-1078.

      [54]Smith PD,Sun F,Park KK,et al.SOCS3 deletion promotes optic nerve regeneration in vivo[J].Neuron,2009,64(5):617-623.

      [55]Sun F,Park KK,Belin S,et al.Sustained axon regeneration induced by co-deletion of PTEN and SOCS3[J].Nature,2011,480(7377):372-U125.

      [56]De Lima S,Koriyama Y,Kurimoto TA,et al.Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors[J].Proc Natl Acad Sci U S A,2012,109(23):9149-9154.

      [57]Cho Y,Sloutsky R,Naegle KM,et al.Injury-Induced HDAC5 nuclear export is essential for Axon regeneration[J].Cell,2013,155(4):894-908.

      [58]Tedeschi A,Di Giovanni S.The non-apoptotic role of p53 in neuronal biology:enlightening the dark side of the moon[J].EMBO Rep,2009,10(6):576-583.

      [59]Lavin MF,Gueven N.The complexity of p53 stabilization and activation[J].Cell Death Differ,2006,13(6):941-950.

      [60]Gu W,Luo J,Brooks CL,et al.Dynamics of the p53 acetylation pathway[J].Novartis Found Symp,2004,259:197-205.

      [61]Knights CD,Catania J,Di Giovanni S,et al.Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate[J].J Cell Biol,2006,173(4):533-544.

      [62]Tang Y,Zhao WH,Chen YE,et al.Acetylation is indispensable for p53 activation[J].Cell,2008,133(4):612-626.

      [63]Yamaguchi H,Woods NT,Piluso LG,et al.p53 acetylation is crucial for its transcription-independent proapoptotic functions[J].Journal of Biological Chemistry,2009,284(17):11171-11183.

      [64]Rossi F,Gianola S,Corvetti L.Regulation of intrinsic neuronal properties for axon growth and regeneration[J].Prog Neurobiol,2007,81(1):1-28.

      [65]Cafferty WB,McGee AW,Strittmatter SM.Axonal growth therapeutics:regeneration or sprouting or plasticity[J]?Trends Neurosci,2008,31(5):215-220.

      [66]Kiryu-Seo S,Kiyama H.The nuclear events guiding successful nerve regeneration[J].Front Mol Neurosci,2011,4:53.

      [67]Goldberg JL,Espinosa JS,Xu Y,et al.Retinal ganglion cells do not extend axons by default:promotion by neurotrophic signaling and electrical activity[J].Neuron,2002,33(5):689-702.

      [68]Byrne AB,Walradt T,Gardner KE,et al.Insulin/IGF1 signaling inhibits Age-Dependent Axon regeneration[J].Neuron,2014,81(3):561-573.

      [69]Belin S,Norsworthy M,He ZG.Independent control of aging and Axon regeneration[J].Cell Metab,2014,19(3):354-356.

      [70]Taylor AM,Blurton-Jones M,Rhee SW,et al.A microfluidic culture platform for CNS axonal injury,regeneration and transport[J].Nat Methods,2005,2(8):599-605.

      [71]Njoo C,Heinl C,Kuner R.In vivo SiRNA transfection and gene knockdown in spinal cord via rapid noninvasive lumbar intrathecal injections in mice[J].J Vis Exp,2014,(85):doi:10.3791/51229.

      [72]Christie KJ,Krishnan A,Martinez JA,et al.Enhancing adultnerveregenerationthroughtheknockdownof retinoblastoma protein[J].Nat Commun,2014,5:3670.

      [73]Zhou SL,Gao R,Hu W,et al.miR-9 inhibits schwann cell migration by targeting cthrc1 following sciatic nerve injury[J].J Cell Sci,2014,127(5):967-976.

      [74]Li S,Wang X,Gu Y,et al.Let-7 microRNAs Regenerate Peripheral Nerve Regeneration by Targeting Nerve Growth Factor[J].Molecular Therapy,2015,23(3):423-433.

      Q421

      B

      1006-2440(2015)02-0107-07

      國家973計(jì)劃項(xiàng)目(2014CB542202);國家自然科學(xué)基金資助項(xiàng)目(31200799)。

      **[作者簡(jiǎn)介]周松林,男,漢族,湖北黃石人,生于1980年9月,博士。研究方向:神經(jīng)再生的細(xì)胞與分子機(jī)制。通信作者:顧曉松,E-mail:nervegu@ntu.edu.cn

      2015-03-13

      猜你喜歡
      軸突乙?;?/a>神經(jīng)節(jié)
      椎神經(jīng)節(jié)麻醉的應(yīng)用解剖學(xué)研究
      抑癌蛋白p53乙?;揎椀恼{(diào)控網(wǎng)絡(luò)
      GM1神經(jīng)節(jié)苷脂貯積癥影像學(xué)表現(xiàn)及隨訪研究
      microRNA在神經(jīng)元軸突退行性病變中的研究進(jìn)展
      蝶腭神經(jīng)節(jié)針刺術(shù)治療動(dòng)眼神經(jīng)麻痹案1則
      慢性支氣管哮喘小鼠肺組織中組蛋白H3乙酰化修飾增強(qiáng)
      神經(jīng)干細(xì)胞移植聯(lián)合腹腔注射促紅細(xì)胞生成素對(duì)橫斷性脊髓損傷大鼠神經(jīng)軸突的修復(fù)作用
      超聲引導(dǎo)星狀神經(jīng)節(jié)阻滯治療原發(fā)性痛經(jīng)
      組蛋白去乙酰化酶抑制劑的研究進(jìn)展
      中樞神經(jīng)損傷后軸突變性的研究進(jìn)展
      镇宁| 潞城市| 栖霞市| 楚雄市| 岚皋县| 南漳县| 金华市| 海丰县| 昌都县| 政和县| 石泉县| 自治县| 四子王旗| 田阳县| 甘德县| 庐江县| 陕西省| 边坝县| 丰宁| 建平县| 泸定县| 旬阳县| 永城市| 进贤县| 淅川县| 四会市| 台前县| 峡江县| 焦作市| 区。| 伊通| 林口县| 彰武县| 杭锦旗| 繁峙县| 黎城县| 呼图壁县| 恭城| 福鼎市| 乌拉特中旗| 辽中县|