• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice?

    2019-08-06 02:06:16XinLi李欣RongYu俞榕andQimiaoSi
    Chinese Physics B 2019年7期
    關(guān)鍵詞:李欣

    Xin Li(李欣), Rong Yu(俞榕), and Qimiao Si

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices,

    Renmin University of China,Beijing 100872,China

    4Department of Physics&Astronomy,Rice Center for Quantum Materials,Rice University,Houston,Texas 77005,USA

    Keywords: heavy fermion system,Kondo insulator,spin-orbit coupling

    1. Introduction

    Exploring novel quantum phases and the associated phase transitions in systems with strong electron correlations is a major subject of contemporary condensed matter physics.[1-3]In this context, heavy fermion (HF) compounds play a crucial role.[3-7]In these materials, the coexisted itinerant electrons and local magnetic moments (from localized f electrons) interact via the antiferromagnetic exchange coupling, resulting in the famous Kondo effect.[8]Meanwhile, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, namely the exchange coupling among the local moments mediated by the itinerant electrons, competes with the Kondo effect.[9]This competition gives rise to a rich phase diagram with an antiferromagnetic (AFM) quantum critical point (QCP) and various emergent phases nearby.[3,10]

    In the HF metals,experiments[11,12]have provided strong evidence for local quantum criticality,[13,14]which is characterized by the beyond-Landau physics of Kondo destruction at the AFM QCP. Across this local QCP, the Fermi surface jumps from large in the paramagnetic HF liquid phase to small in the AFM phase with Kondo destruction. A natural question arises: how does this local QCP connect to the conventional spin density wave(SDW)QCP described by the Hertz-Millis theory?[15,16]A proposed global phase diagram[17-20]makes this connection via the tuning of the quantum fluctuations in the local-moment magnetism. Besides the HF metals,it is also interesting to know whether a similar global phase diagram can be realized in Kondo insulators(KIs),where the chemical potential is inside the Kondo hybridization gap when the electron filling is commensurate. The KIs are band insulators where the band gap originates from nontrivial strong electron-correlation effects. A Kondo-destruction transition is expected to accompany the closure of the band gap. The question that remains open is: do the local moments immediately order or do they form a different type of magnetic state,such as spin liquid or valence bond solid(VBS),when the Kondodestruction takes place?

    Recent years have seen extensive studies about the effect of a fine spin-orbit coupling(SOC)on the electronic bands.In topological insulators(TIs),the bulk band gap opens due to a non-zero SOC,and there exist gapless surface states.The nontrivial topology of the band structure is protected by the time reversal symmetry(TRS).Even for a system with broken TRS,the conservation of combination of TRS and translational symmetry can give rise to a topological antiferromagnetic insulator(T-AFMI).[21]In general,these TIs and TAFIs can be tuned to topologically trivial insulators via topological quantum phase transitions. But how the strong electron correlations influence the properties of these symmetry dictated topological phases and the related phase transitions is still under active discussion.

    The SOC also has important effects in HF materials.[20]For example, the SOC can produce a topologically nontrivial band structure and induce exotic Kondo physics.[22,23]It may give rise to a topological Kondo insulator(TKI),[24]which has been invoked to understand the resistivity plateau of the heavyfermion SmB6at low temperatures.[25]

    From a more general perspective, the SOC provides an additional tuning parameter enriching the global phase diagram of the HF systems.[20,26]Whether and how the topological nontrivial quantum phases can emerge in this phase diagram is a timely issue. Recent studies have advanced a Weyl-Kondo semimetal phase.[27]The new heavy fermion compound Ce3Bi4Pd3displays thermodynamic[28]and zerofield Hall transport[29]properties that provide evidence for the salient features of the Weyl-Kondo semimetal. These measurements probe the linearly dispersing electronic excitations with a velocity that is renormalized by several orders of magnitude and singularities in the Berry-curvature distribution.

    Theoretical studies are also of interest for a Kondo lattice model defined on a honeycomb lattice,[30]which readily accommodates the SOC.[31]In the diluted carrier limit, this model supports a nontrivial Dirac-Kondo semimetal(DKSM)phase,which can be tuned to a TKI by increasing the SOC.[32]In Ref. [30], it was shown that, at half-filling, increasing the Kondo coupling induces a direct transition from a TI to a KI.A related model,with the conduction-electron part of the Hamiltonian described by a Haldane model[33]on the honeycomb lattice,was subsequently studied.[34]

    Here we investigate the global phase diagram of a spinorbit-coupled Kondo lattice model on the honeycomb lattice at half-filling. We show that the competing interactions in this model give rise to a very rich phase diagram containing a TI,a KI, and two AFM phases. We focus on discussing the influence of magnetic frustration on the phase diagram. In the TI,the local moments develop a VBS order. In the two AFM phases, the moments are ordered, respectively, in the plane of the honeycomb lattice(denoted as AFMxy)and perpendicular to the plane (AFMz). Particularly in the AFMzphase,the conduction electrons may have a topologically nontrivial band structure, although the TRS is explicitly broken. This T-AFMzstate connects to the trivial AFMzphase via a topological phase transition as the SOC is reduced.

    The remainder of the paper is organized as follows. We start by introducing the model and our theoretical procedure in Section 2. In Section 3,we discuss the magnetic phase diagram of the Heisenberg model for the local moments.Next,we obtain the global phase diagram of the full model in Section 4.In Section 5,we examine the nature of the conduction-electron band structures in the AFM states,with a focus on their topological characters. We discuss the implications of our results in Section 6.

    2. Model and method

    The model that we consider here is defined on an effective double-layer honeycomb lattice. The top layer contains conduction electrons realizing the Kane-Mele Hamiltonian.[31]The conduction electrons are Kondo coupled(i.e.,via AF exchange coupling JK)to the localized magnetic moments in the bottom layer. The local moments interact among themselves through direct exchange interaction,as well as the conduction electron mediated RKKY interaction; the interactions are described by a simple J1-J2model. Both the conduction bands and the localized bands are half-filled. This Kondo-lattice Hamiltonian takes the following form on the honeycomb lattice:

    We use the spinon representation for Si, i.e., rewriting Si= f?iσσσσ′fiσ′along with the constraint ∑σf?iσfiσ= 1,where f?iσis the spinon operator. The constraint is enforced by introducing the Lagrange multiplier term ∑iλi(∑σf?iσfiσ-1)in the Hamiltonian. To study both the non-magnetic and magnetic phases, We decouple the Heisenberg Hamiltonian into two channels

    Here x is a parameter that is introduced in keeping with the generalized procedure of Hubbard-Stratonovich decouplings and will be fixed to conveniently describe the effect of quantum fluctuations. The corresponding valence bond(VB)parameter Qijand sublattice magnetization Miare Qij=〈∑αf?iαfjα〉 and Mi= 〈Si〉, respectively. Throughout this paper, we consider the two-site unit cell, thus excluding any states that break the lattice translation symmetry. Under this construction, there are three independent VB mean fields Qi,i = 1,2,3 for the NN bonds and six independent VB mean fields Qi, i=4,5,...,9 for the NNN bonds, which are illustrated in Fig.1.We consider only AFM exchange interactions,J1>0 and J2>0, and will thus only take into account AFM order with M =Mi∈A=-Mi∈B.

    Fig.1.(a),(b)Definition of nearest neighboring and next nearest neighboring valence bond mean fields Qij. Filled and empty circles denote the two sublattices A and B,respectively. Different bond directions are labeled by different colors. (c) First Brilluion zone corresponds to the two-sublattice unit cell.

    To take into account the Kondo hybridization and the possible magnetic order on an equal footing,we follow the treatment of the Heisenberg interaction as outlined in Eq. (2) and decouple the Kondo interaction as follows:

    Here we have introduced the mean-field parameter for the Kondo hybridization,, and the conduction electron magnetization mi=〈si〉. For nonzero b,the conduction electrons will Kondo hybridize with the local moments and the system at half-filling is a KI.On the other hand,when b is zero and M is nonzero, magnetization (m/=0) on the conduction electron band will be induced by the Kondo coupling,and various AFM orders can be stabilized depending on the strength of the SOC.Just like the parameter x in Eq.(2)is chosen so that a saddle-point treatment captures the quantum fluctuations in the form of spin-singlet bond parameters,[19]the parameter y will be specified according to the criterion that the treatment at the same level describes the quantum fluctuations in the form of Kondo-insulator state.

    3. Phase diagram of the Heisenberg model for the local moments

    Because of the complexity of the full Hamiltonian, we start by setting JK=0 and discuss the possible ground-state phases of the J1-J2Heisenberg model for the local moments.By treating the problem at the saddle-point level in Eq.(2),we obtain the phase diagram in the x-J2/J1plane shown in Fig.2.Here,the x-dependence is studied in the same spirit as that for the Shastry-Sutherland lattice in Ref. [19]. In the parameter regime explored, an AFM ordered phase (labeled as “AFM”in the figure)and a valence bond solid(VBS)phase are stabilized. The AF order stabilized is the two-sublattice N′eel order on the honeycomb lattice, and the VBS order refers to covering of dimer singlets with |Qi|=Q/=0 for one out of the three NN bonds(e.g.,Q1/=0,Q2=Q3=0)and|Qi|=0 for all the NNN bonds. This VBS state spontaneously breaks the C3rotational symmetry of the lattice. We thus define the order parameter for the VBS state to be Q=|∑j=1,2,3Qjei(2πj/3)|.

    In Fig. 3, we plot the evolution of VBS and AF order parameters Q and M as a function of J2/J1. A direct firstorder transition(signaled by the mid-point of the jump of the order parameters) between these two phases is observed for x 0.6. For the sake of understanding the global phase diagram of the full Kondo-Heisenberg model, we limit our discussion to J2/J1<1, where only the NN VBS is relevant. A different decoupling scheme approach has been used to study this model,[37]and the obtained results are consistent with ours in the parameter regime of overlap. To fix the parameter x,we compare our results with those about the J1-J2model derived from previous numerical studies. DMRG studies[38]found that the AFM state is stabilized for J2/J1<0.22, and VBS exists for J2/J1>0.35, while in between the nature of the ground states is still under debate. In this parameter regime,the DMRG calculations suggest a plaquette resonating valence bond(RVB)state,[38]while other methods implicate possibly spin liquids.[39]In light of these numerical results, we take x=0.4 in our calculations. This leads to a direct transition from AFM to VBS at J2/J1?0.27,close to the values of phase boundaries of these two phases determined by other numerical methods.

    Fig. 2. Ground-state phase diagram of the J1-J2 Hamiltonian for the local moments in the x-J2/J1 plane. A NN VBS and an AFM state are stabilized in the parameter regime shown.

    Fig. 3. Evolution of (a) the VBS order parameter Q and (b) the AFM order parameter M as a function of J2/J1 for x=0.3,0.4,0.5.

    4. Global phase diagram of the Kondo-lattice model

    We now turn to the global phase diagram of the full model by turning on the Kondo coupling. For definiteness, we set J1=1 and consider t =1 and λso=0.4. As prescribed in the previous section, we take x=0.4. Similar considerations for y require that its value allows for quantum fluctuations in the form of Kondo-singlet formation. This has guided us to take y=0.7 (see below). The corresponding phase diagram as a function of JKand the frustration parameter J2/J1is shown in Fig.4.

    In our calculation, the phase boundaries are determined by sweeping JKwhile along multiple horizontal cuts for several fixed J2/J1values, as shown in Fig. 5. For small JKand large J2/J1, the local moments and the conduction electrons are still effectively decoupled. The conduction electrons form a TI for finite SOC, and the local moments are in the VBS ground state as discussed in the previous section. When both JKand J2/J1are small, the ground state is AFM. Due to the Kondo coupling, finite magnetization m is induced for the conduction electrons. This opens an SDW gap in the conduction band, and therefore the ground state of the system is an AFM insulator. The SOC couples the rotational symmetry in the spin space to the one in the real space. As a consequence, the ordered moments in the AFM phase can be either along the z direction (AFMz)or in the x-y plane (AFMxy). For finite SOC, these two AFM states with different energies, which can be tuned by JK. As shown in the phase diagram, the AFM phase contains two ordered states, the AFMzand AFMxy. They are separated by a spin reorientation transition at JK/J1≈0.8.For the value of SOC taken, the AFM state is topologically nontrivial, and is hence denoted as T-AFMzstate. The nature of this state and the associated topological phase transition is discussed in detail in the next section.

    Fig. 4. Global phase diagram at T =0 from the saddle-point calculations with x=0.4 and y=0.7. The ground states include the valencebond solid (VBS) and Kondo insulator (KI), as well as two antiferromagnetic orders,T-AFMz and AFMxy,as described in Section 5.

    Fig. 5. Evolution of parameters (a) b, (b) Q, (c) Mx, and (d) Mz as a function of JK for different ratios of J2/J1.

    For sufficiently large JK, the Kondo hybridization b is nonzero (see Fig. 5(a)), and the ground state is a KI. Note that for finite SOC, this KI does not have a topological nontrivial edge state, as a consequence of the topological no-go theorem.[30,40,41]In our calculation at the saddle-point level,the KI exists for y ≥0.6; this provides the basis for taking y=0.7,as noted earlier. Going beyond the saddle-point level,the dynamical effects of the Kondo coupling will appear,and we will expect the KI phase to arise for other choices of y.

    Several remarks are in order. The phase diagram,Fig.4,has a similar profile of the global phase diagram for the Kondo insulating systems.[26,42]However, the presence of SOC has enriched the phase diagram. In the AF state,the ordered moment may lie either within the plane or be perpendicular to it. These two states have very different topological properties.We now turn to a detailed discussion of this last point.

    5. Topological properties of the AFM states

    In this section, we discuss the properties of the AFMxyand AFMzstates,in particular to address their topological nature. For a clear discussion, we fix t =1, J1=1, and J2=0.Since the Kondo hybridization is not essential to the nature of the AFM states, in this section we simply the discussion by setting y=0.

    We start by defining the order parameters of the two states

    Note that for the AFMxystate,we set My=my=0 without losing generality. In Fig.6, we plot the evolution of these AFM order parameters with JKfor a representative value of SOC λso=0.1. Due to the large J1value we take, the sublattice magnetizations of the local moments are already saturated to 0.5. Therefore, at the saddle-point level, they serve as effective (staggered) magnetic fields to the conduction electrons.The Kondo coupling then induces finite sublattice magnetizations for the conduction electrons, and they increase linearly with JKfor small JKvalues. But mxis generically different from mz,which is important for the stabilization of the states.

    Fig. 6. The conduction electron magnetization for the AFMxy and AFMz states at λso=0.1.

    We then discuss the energy competition between the AFMxyand AFMzstates. The conduction electron part of the mean-field Hamiltonian reads

    with

    for the AFMxystate and

    for the AFMzstate. Here=t1(1+e-ik·a1+e-ik·a2),∈?(k)is the complex conjugate of ∈(k), and a1=are the primitive vectors. For both states,the eigenvalues are doubly degenerate

    The eigenenergies of the spinon band can be obtained in a similar way

    The expression of the total energy for either state is then

    The first line of the above expression comes from filling the bands up to the Fermi energy(which is fixed to be zero here).The second line is the constant term in the mean-field decomposition. The factor 2 in the k summation is to take into account the double degeneracy of the energies. Nkrefers to the number of k points in the first Brillouin zone.

    By comparing the expressions of Ec-(k)in Eqs.(11)and(12),we find that adding a small Mxis to increase the size of the gap at both of the two(inequivalent)Dirac points,thereby pushing the states further away from the Fermi-energy. While adding a small Mzis to enlarge the gap at one Dirac point but reduce the gap size at the other one.Therefore,an AFMxystate is more favorable than the AFMzstate in lowering the energy of the conduction electrons ∑kEc-(k).

    Meanwhile, from Eqs.(13)-(15), we see that the overall effect of adding a magnetization of the conduction band, m,is to increase the total energy Etot(the main energy increase comes from the 2JK(M·m)term). Because|mz|<|mx|from the self consistent solution,as shown in Fig.6,the energy increase of the AFMzstate is smaller than that in the AFMxystate.

    Fig.7. Energy difference between AFMz and AFMxy states as a function of JK for various values of spin-orbital coupling λso.

    With increasing JK,the two effects from the magnetic orders compete,resulting in different magnetic ground states as shown in Fig.4. This analysis is further supported by our selfconsistent mean-field calculation. In Fig. 7, we plot the energy difference between these two states ΔE =Exy-Ezas a function of JKat several λsovalues. In the absence of SOC,the model has the spin SU(2) symmetry, and the AFMzand AFMxystates are degenerate with ΔE =0. For finite λso, at small JKvalues,the energy gain from the ∑kEc-(k)term dominates, ΔE >0, and the ground state is an AFMzstate. With increasing JK, the contribution from the 2JK(M ·m) term is more important. ΔE crosses zero to be negative, and the AFMxystate is eventually energetically favorable for large JK.

    Next we discuss the topological nature of the AFMzand AFMxystates. In the absence of Kondo coupling JK,the conduction electrons form a TI, which is protected by the TRS.There, the left- and right-moving edge states connecting the conduction and valence bands are respectively coupled to up and down spin flavors (eigenstates of the Szoperator) as the consequence of SOC,and these two spin polarized edge states do not mix.

    Once the TRS is broken by the AFM order, generically,topologically nontrivial edge states are no longer guaranteed.However,in the AFMzstate,the structure of the Hamiltonian for the conduction electrons is the same as that in a TI. This is clearly shown in Eq. (10) the effect of magnetic order is only to shift Λ(k)to Λ(k)+JKMz/2. In particular,the spinup and spin-down sectors still do not mix with each other.Therefore, the two spin polarized edge states are still well defined as in the TI, and the system is topologically nontrivial,though without the protection of TRS.Note that the above analysis is based on assuming JKMz?Λ(k),where the bulk gap between the conduction and valence bands is finite. Forthe bulk gap closes at one of the inequivalent Dirac points and the system is driven to a topologically trivial phase via a topological phase transition.[30]We also note that a similar AFMzstate arises in a Kondo lattice model without SOC but with a Haldane coupling,as analyzed in Ref.[34].

    For the AFMxystate,we can examine the Hamiltonian for the conduction electrons in a similar way.As shown in Eq.(9),the transverse magnetic order Mxmixes the spin-up and spindown sectors. As a result, a finite hybridization gap opens between the two edge states,making the system topologically trivial.

    To support this analysis, we perform calculations of the energy spectra of the conduction electrons in the AFMzand AFMxystates, as shown in Eqs. (9) and (10), on a finite slab of size Lx×Ly, with Lx=200 and Ly=40. The boundary condition is chosen to be periodic along the x direction and open and zig-zag-type along the y direction. In Fig. 8, we show the energy spectra with three different sets of parameters:(a) λso=0.01, JK=0.4, Mz=0.5, (b) λso=0.1, JK=0.4,Mz=0.5, and (c) λso=0.1, JK=0.8, Mx=0.5, which respectively correspond to the topologically trivial AFMzstate,topological AFMzinsulator,and AFMxystate.As clearly seen,the gapless edge states only exist for parameter set(b),where the system is in the topological AFMzstate. Note that in this state,the spectrum is asymmetric with respect to the Brilluion zone boundary (kx= π), reflecting the explicit breaking of TRS. Based on our analysis and numerical calculations, we construct a phase diagram(as shown in Fig.9)to illustrate the competition of these AFM states.As expected,the AFMzstate is stabilized for,and is topological for JK<123λso(above the red line).

    Fig.8. Energy spectra of(a)the trivial AFMz state,(b)the topological AFMz insulator, and (c) the AFMxy state from finite slab calculations.Black lines denote the bulk states and red lines denote the edge states.The topological AFMz state is characterized by the gapless edge states.See text for detailed information on the parameters.

    Fig.9. Phase diagram in the λso-JK plane showing the competition of various AFM states. The red line denotes a topological phase transition between the topological trivial and topological nontrivial AFMz states,and the black curve gives the boundary between the AFMz and AFMxy states. These two states become equivalent in the limit of λso →0.

    6. Discussion

    We have discussed the properties of various phases in the ground-state phase diagram of the spin-orbit-coupled Kondo lattice model on the honeycomb lattice at half filling. We have shown how the competition of SOC,Kondo interaction,and magnetic frustration stabilizes these phases. For example,in the AFM phase the moments can order either along the z-direction or within the x-y plane. In our model, the AFM order is driven by the RKKY interaction,and the competition of SOC and Kondo interaction dictates the direction of the ordered magnetic moments.

    Throughout this work, we have discussed the phase diagram of the model at half filling. The phase diagram away from half-filling is also an interesting problem. We expect that the competition between the AFMzand AFMxystates persist at generic fillings, but the topological feature will not. Another interesting filling would be the dilute-carrier limit,where a DKSM exists, and can be tuned to a TKI by increasing the SOC.[32]

    In this work, we have considered a particular type of SOC, which is inherent in the band structure of the itinerant electrons. In real materials,there are also SOC terms that involve the magnetic ions. Such couplings will lead to models beyond the current work, and may further enrich the global phase diagram.

    Although the model in this work is defined on the honeycomb lattice, our conclusion on the global phase diagram is quite general, and will be important in understanding the nature of the transition between the Kondo insulating phase and the antiferromagnetic phase in real materials. For example, the Kondo insulator compound SmB6undergoes a magnetic transition under pressure.[44]The Kondo-insulatorto-antiferromagnet transition may also be realized by doping CeNiSn with Pt or Pd ions since both CePtSn and CePdSn are antiferromagnetic at low temperatures.[44-46]Nontrivial topological properties in the antiferromagnetic phase are expected given that the 5d electrons of CePtSn may contain a large SOC.Moreover, because the Kane-Mele model describes the electron states in graphene,our model may also shed light on the properties of graphene with 5d adatoms.[47]

    7. Conclusion

    We have investigated the ground state phase diagram of a spin-orbit coupled Kondo lattice model at half-filling. The combination of SOC,Kondo and RKKY interactions produces various quantum phases,including a Kondo insulator,a topological insulator with VBS spin correlations, and two AFM phases. Depending on the strength of SOC,the magnetic moments in the AFM phase can be either ordered perpendicular to or in the x-y plane. We further show that the z-AFM state is topologically nontrivial for strong and moderate SOC, and can be tuned to a topologically trivial one via a topological phase transition by varying either the SOC or the Kondo coupling. Our results shed new light on the global phase diagram of heavy fermion materials.

    Acknowledgment

    We thank W Ding, P Goswami, S E Grefe, H H Lai, Y Liu,S Paschen,J H Pixley,T Xiang,and G M Zhang for useful discussions.

    猜你喜歡
    李欣
    Merging and splitting dynamics between two bright solitons in dipolar Bose–Einstein condensates?
    瘋狂夜飛兔
    為挽回戀情,網(wǎng)上找道士作法
    方圓(2021年21期)2021-11-20 06:35:57
    一口奶
    幼兒圖畫(huà)
    選對(duì)羽絨服, 不再怕冷
    選對(duì)羽絨服,不再怕冷
    愛(ài)你(2019年46期)2019-12-18 02:12:22
    獵頭的秘密
    Study of fluid resonance between two side-by-side floating barges*
    目 光
    一区福利在线观看| 亚洲av成人一区二区三| 另类精品久久| 国产精品免费一区二区三区在线 | 久久精品91无色码中文字幕| 欧美另类亚洲清纯唯美| 午夜福利影视在线免费观看| 亚洲 国产 在线| 亚洲,欧美精品.| 狠狠狠狠99中文字幕| 精品久久久久久电影网| 国产免费视频播放在线视频| 亚洲三区欧美一区| 亚洲,欧美精品.| 久久久久久久久久久久大奶| 熟女少妇亚洲综合色aaa.| 欧美日韩国产mv在线观看视频| 黄色 视频免费看| 久久久欧美国产精品| 人成视频在线观看免费观看| 国产亚洲欧美精品永久| 国产精品久久久久久精品电影小说| 老熟妇仑乱视频hdxx| 亚洲,欧美精品.| 午夜福利在线观看吧| 亚洲国产欧美在线一区| 美国免费a级毛片| 狠狠精品人妻久久久久久综合| 亚洲,欧美精品.| 麻豆av在线久日| 自拍欧美九色日韩亚洲蝌蚪91| 天天躁日日躁夜夜躁夜夜| 乱人伦中国视频| 国产亚洲欧美在线一区二区| 性少妇av在线| 不卡av一区二区三区| 免费黄频网站在线观看国产| 国产福利在线免费观看视频| 夫妻午夜视频| 国产精品99久久99久久久不卡| 男女无遮挡免费网站观看| 久久精品国产亚洲av高清一级| 亚洲成国产人片在线观看| 亚洲欧美一区二区三区久久| 亚洲第一av免费看| 电影成人av| 欧美中文综合在线视频| 一边摸一边做爽爽视频免费| 99re6热这里在线精品视频| 欧美日韩成人在线一区二区| 久久99热这里只频精品6学生| 欧美日韩黄片免| 日本精品一区二区三区蜜桃| 国产极品粉嫩免费观看在线| netflix在线观看网站| 成人国产一区最新在线观看| 99精国产麻豆久久婷婷| 一级片'在线观看视频| 五月天丁香电影| 久久国产精品男人的天堂亚洲| 免费观看av网站的网址| 精品午夜福利视频在线观看一区 | 国产精品一区二区在线观看99| 操出白浆在线播放| 久久精品亚洲精品国产色婷小说| 国产淫语在线视频| 嫁个100分男人电影在线观看| 国产人伦9x9x在线观看| 飞空精品影院首页| 色94色欧美一区二区| 久久这里只有精品19| 亚洲av成人一区二区三| 在线观看一区二区三区激情| 电影成人av| 久久久久精品国产欧美久久久| 亚洲欧美日韩另类电影网站| 国产欧美日韩精品亚洲av| 免费观看a级毛片全部| 日日夜夜操网爽| 亚洲专区中文字幕在线| 18禁美女被吸乳视频| av网站在线播放免费| 国产精品国产高清国产av | 亚洲国产欧美一区二区综合| 黄色丝袜av网址大全| 日韩中文字幕欧美一区二区| 久久久国产精品麻豆| 日本一区二区免费在线视频| 亚洲va日本ⅴa欧美va伊人久久| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 午夜老司机福利片| 淫妇啪啪啪对白视频| 欧美国产精品va在线观看不卡| 成人av一区二区三区在线看| 一二三四社区在线视频社区8| 亚洲专区国产一区二区| 欧美老熟妇乱子伦牲交| 女警被强在线播放| 老司机深夜福利视频在线观看| 亚洲国产看品久久| 日本av免费视频播放| 国精品久久久久久国模美| 少妇粗大呻吟视频| 精品乱码久久久久久99久播| 69av精品久久久久久 | 亚洲专区国产一区二区| 国产在线一区二区三区精| 国产精品av久久久久免费| 可以免费在线观看a视频的电影网站| 国产老妇伦熟女老妇高清| 两个人免费观看高清视频| 免费人妻精品一区二区三区视频| 精品少妇内射三级| 国产日韩欧美亚洲二区| 一级片免费观看大全| 正在播放国产对白刺激| 亚洲精品中文字幕在线视频| 五月开心婷婷网| 日本撒尿小便嘘嘘汇集6| 超碰成人久久| 一二三四社区在线视频社区8| 一进一出抽搐动态| 美国免费a级毛片| av在线播放免费不卡| 免费看十八禁软件| 窝窝影院91人妻| 精品亚洲成国产av| 超色免费av| 99精品在免费线老司机午夜| 欧美在线黄色| a在线观看视频网站| 窝窝影院91人妻| 涩涩av久久男人的天堂| 啪啪无遮挡十八禁网站| 在线av久久热| 日日摸夜夜添夜夜添小说| 成人永久免费在线观看视频 | 亚洲精品自拍成人| 亚洲成a人片在线一区二区| 久久国产精品人妻蜜桃| 在线十欧美十亚洲十日本专区| 欧美+亚洲+日韩+国产| 亚洲男人天堂网一区| 纵有疾风起免费观看全集完整版| 操美女的视频在线观看| 久久国产亚洲av麻豆专区| 无限看片的www在线观看| 午夜精品国产一区二区电影| 精品国产一区二区三区四区第35| 亚洲人成77777在线视频| 久久精品亚洲av国产电影网| 国产精品 欧美亚洲| 亚洲精品av麻豆狂野| 曰老女人黄片| 丝袜喷水一区| 国产伦理片在线播放av一区| videosex国产| 香蕉国产在线看| 亚洲av国产av综合av卡| 国产一区二区在线观看av| 国产男女内射视频| 国产av国产精品国产| 一本大道久久a久久精品| 12—13女人毛片做爰片一| 高清视频免费观看一区二区| 亚洲国产欧美在线一区| 老熟妇仑乱视频hdxx| 天堂中文最新版在线下载| 国产高清国产精品国产三级| 亚洲美女黄片视频| 国产欧美日韩一区二区精品| 国产精品久久久久久精品电影小说| 日本精品一区二区三区蜜桃| 亚洲avbb在线观看| 91字幕亚洲| 交换朋友夫妻互换小说| 99精品在免费线老司机午夜| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 亚洲精品成人av观看孕妇| av有码第一页| 丰满迷人的少妇在线观看| 精品亚洲乱码少妇综合久久| 国产精品成人在线| 色老头精品视频在线观看| 国产欧美日韩精品亚洲av| 国产成人欧美在线观看 | 丁香欧美五月| 国产成人一区二区三区免费视频网站| 麻豆乱淫一区二区| 亚洲人成77777在线视频| 午夜成年电影在线免费观看| 欧美+亚洲+日韩+国产| 母亲3免费完整高清在线观看| 国产av国产精品国产| 午夜福利欧美成人| 国产成人一区二区三区免费视频网站| 一级a爱视频在线免费观看| 成人免费观看视频高清| 久久影院123| 十八禁高潮呻吟视频| 男女边摸边吃奶| 精品高清国产在线一区| 国产欧美日韩一区二区三| 日本wwww免费看| 国产精品免费视频内射| 久久人妻福利社区极品人妻图片| 国产一区二区 视频在线| 无遮挡黄片免费观看| 中文欧美无线码| 一本综合久久免费| 亚洲成人国产一区在线观看| 精品久久蜜臀av无| 欧美亚洲日本最大视频资源| 最近最新免费中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区 视频在线| 新久久久久国产一级毛片| 丝袜人妻中文字幕| 曰老女人黄片| 免费女性裸体啪啪无遮挡网站| 久久热在线av| 国产高清视频在线播放一区| 视频区欧美日本亚洲| 天天影视国产精品| 精品一品国产午夜福利视频| 亚洲精品中文字幕一二三四区 | 国产深夜福利视频在线观看| 精品福利永久在线观看| 黄色怎么调成土黄色| 亚洲成人免费av在线播放| 又大又爽又粗| 午夜老司机福利片| 日日爽夜夜爽网站| 亚洲全国av大片| 俄罗斯特黄特色一大片| 黄色丝袜av网址大全| 成人国产一区最新在线观看| 五月开心婷婷网| 一区在线观看完整版| 国产在视频线精品| 久久狼人影院| 狠狠婷婷综合久久久久久88av| 国产精品免费大片| 精品国产亚洲在线| 18禁国产床啪视频网站| 亚洲精品中文字幕一二三四区 | 精品视频人人做人人爽| 久久久久久亚洲精品国产蜜桃av| 女人被躁到高潮嗷嗷叫费观| 中文欧美无线码| 色老头精品视频在线观看| videosex国产| 淫妇啪啪啪对白视频| 一个人免费看片子| 日韩一卡2卡3卡4卡2021年| 中文亚洲av片在线观看爽 | 欧美一级毛片孕妇| 91成人精品电影| 国产熟女午夜一区二区三区| 777久久人妻少妇嫩草av网站| 老司机影院毛片| 高潮久久久久久久久久久不卡| 99re在线观看精品视频| 日韩大片免费观看网站| av天堂在线播放| 男人操女人黄网站| 动漫黄色视频在线观看| 久久天躁狠狠躁夜夜2o2o| 无限看片的www在线观看| 啦啦啦 在线观看视频| 正在播放国产对白刺激| 久热这里只有精品99| 两人在一起打扑克的视频| 精品一区二区三区视频在线观看免费 | 国产精品免费视频内射| 精品福利永久在线观看| av电影中文网址| 国产一区二区三区综合在线观看| 人人澡人人妻人| 国产高清激情床上av| 日本撒尿小便嘘嘘汇集6| 丝袜在线中文字幕| 香蕉国产在线看| 久热爱精品视频在线9| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 捣出白浆h1v1| 精品少妇久久久久久888优播| 午夜福利一区二区在线看| 亚洲第一欧美日韩一区二区三区 | 黄片大片在线免费观看| 国产精品久久久久久精品电影小说| 黄色视频,在线免费观看| 一级毛片女人18水好多| www.999成人在线观看| 男女边摸边吃奶| 亚洲色图综合在线观看| 精品少妇黑人巨大在线播放| 成人18禁高潮啪啪吃奶动态图| av在线播放免费不卡| 十分钟在线观看高清视频www| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久小说| 国产精品久久久久久精品电影小说| 国内毛片毛片毛片毛片毛片| 99久久99久久久精品蜜桃| 在线天堂中文资源库| 国产日韩一区二区三区精品不卡| a级片在线免费高清观看视频| 欧美成人免费av一区二区三区 | 欧美变态另类bdsm刘玥| 亚洲欧洲日产国产| 80岁老熟妇乱子伦牲交| 亚洲精品国产一区二区精华液| 一个人免费看片子| 中文字幕色久视频| videos熟女内射| 国产精品秋霞免费鲁丝片| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 黄网站色视频无遮挡免费观看| 最近最新免费中文字幕在线| 久热爱精品视频在线9| 欧美在线一区亚洲| a级毛片黄视频| 性色av乱码一区二区三区2| 精品国内亚洲2022精品成人 | 久久人妻福利社区极品人妻图片| 国产亚洲精品一区二区www | aaaaa片日本免费| 亚洲国产成人一精品久久久| 欧美精品一区二区免费开放| 超碰97精品在线观看| 免费人妻精品一区二区三区视频| 精品福利观看| 人妻一区二区av| 日本撒尿小便嘘嘘汇集6| 黄网站色视频无遮挡免费观看| 性色av乱码一区二区三区2| 欧美日韩国产mv在线观看视频| 久久久国产精品麻豆| 免费一级毛片在线播放高清视频 | 欧美国产精品va在线观看不卡| 久久中文字幕一级| 国产成+人综合+亚洲专区| 亚洲av电影在线进入| 丁香六月欧美| 国产精品.久久久| 窝窝影院91人妻| 日本黄色日本黄色录像| 中文字幕av电影在线播放| www.999成人在线观看| 淫妇啪啪啪对白视频| 美女高潮喷水抽搐中文字幕| 日本av手机在线免费观看| 亚洲av美国av| 99精品在免费线老司机午夜| videosex国产| 精品久久久精品久久久| 日本a在线网址| 亚洲自偷自拍图片 自拍| 欧美激情极品国产一区二区三区| 国产激情久久老熟女| 亚洲专区中文字幕在线| 最近最新中文字幕大全免费视频| 在线观看舔阴道视频| 老司机影院毛片| 99久久99久久久精品蜜桃| 免费高清在线观看日韩| 又黄又粗又硬又大视频| 亚洲七黄色美女视频| 热99国产精品久久久久久7| 日本a在线网址| 欧美精品啪啪一区二区三区| 欧美精品一区二区大全| 亚洲精品成人av观看孕妇| 日韩大码丰满熟妇| 老汉色∧v一级毛片| 国产欧美日韩一区二区精品| 好男人电影高清在线观看| 国产成人av教育| 伊人久久大香线蕉亚洲五| bbb黄色大片| 99久久人妻综合| 操美女的视频在线观看| 久久国产精品男人的天堂亚洲| 人妻久久中文字幕网| avwww免费| 午夜成年电影在线免费观看| 久久毛片免费看一区二区三区| 久久ye,这里只有精品| 1024香蕉在线观看| 淫妇啪啪啪对白视频| 国产在线视频一区二区| 99国产精品99久久久久| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品啪啪一区二区三区| 1024视频免费在线观看| 日韩中文字幕欧美一区二区| 精品熟女少妇八av免费久了| 精品少妇一区二区三区视频日本电影| 国产成人精品久久二区二区91| 欧美日韩av久久| 中亚洲国语对白在线视频| 一级黄色大片毛片| 如日韩欧美国产精品一区二区三区| 悠悠久久av| 99精品久久久久人妻精品| 男人舔女人的私密视频| 久久香蕉激情| 麻豆成人av在线观看| 高清黄色对白视频在线免费看| 在线观看免费高清a一片| 一二三四社区在线视频社区8| 国产av国产精品国产| 一个人免费在线观看的高清视频| 久久精品亚洲熟妇少妇任你| 中国美女看黄片| 精品一区二区三区视频在线观看免费 | 自线自在国产av| av片东京热男人的天堂| 久久精品熟女亚洲av麻豆精品| 高清在线国产一区| 十八禁网站网址无遮挡| 丰满少妇做爰视频| 亚洲黑人精品在线| 动漫黄色视频在线观看| 精品国产一区二区久久| 丁香欧美五月| 欧美大码av| 亚洲成av片中文字幕在线观看| 黄色毛片三级朝国网站| 狠狠婷婷综合久久久久久88av| 国产精品国产高清国产av | 欧美精品av麻豆av| 日韩三级视频一区二区三区| 一区二区三区乱码不卡18| 亚洲欧美一区二区三区黑人| 国产视频一区二区在线看| 免费观看a级毛片全部| 亚洲av成人不卡在线观看播放网| 一本色道久久久久久精品综合| 91字幕亚洲| 人人妻人人澡人人看| 精品人妻1区二区| 精品欧美一区二区三区在线| 国产不卡av网站在线观看| 两个人看的免费小视频| 90打野战视频偷拍视频| 欧美激情久久久久久爽电影 | 国产欧美日韩一区二区三区在线| 女人精品久久久久毛片| 两个人免费观看高清视频| 精品一区二区三区av网在线观看 | 青青草视频在线视频观看| 美女高潮到喷水免费观看| 丰满少妇做爰视频| 久久天躁狠狠躁夜夜2o2o| 亚洲精品中文字幕在线视频| 日本撒尿小便嘘嘘汇集6| 国产不卡一卡二| 国产一区二区 视频在线| 成人免费观看视频高清| 免费日韩欧美在线观看| 18在线观看网站| 中文字幕制服av| 一本色道久久久久久精品综合| 人妻 亚洲 视频| 怎么达到女性高潮| 精品国产乱码久久久久久男人| 九色亚洲精品在线播放| 亚洲熟女精品中文字幕| 无遮挡黄片免费观看| 亚洲欧洲日产国产| 精品人妻熟女毛片av久久网站| 精品卡一卡二卡四卡免费| 18禁美女被吸乳视频| 在线十欧美十亚洲十日本专区| 久久人妻福利社区极品人妻图片| 欧美性长视频在线观看| 超色免费av| 亚洲精品在线美女| 国产精品熟女久久久久浪| 中国美女看黄片| 亚洲国产成人一精品久久久| 婷婷丁香在线五月| 中文字幕人妻丝袜一区二区| 国产在视频线精品| 高清毛片免费观看视频网站 | 精品卡一卡二卡四卡免费| 男女下面插进去视频免费观看| 妹子高潮喷水视频| 国产精品亚洲av一区麻豆| 在线永久观看黄色视频| 中文字幕av电影在线播放| 51午夜福利影视在线观看| 麻豆乱淫一区二区| 日本撒尿小便嘘嘘汇集6| 精品人妻在线不人妻| 啦啦啦中文免费视频观看日本| 少妇裸体淫交视频免费看高清 | 黑人欧美特级aaaaaa片| 老司机影院毛片| 国产精品免费视频内射| 三级毛片av免费| avwww免费| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜制服| 精品国产超薄肉色丝袜足j| 两人在一起打扑克的视频| 国产精品国产av在线观看| 日日爽夜夜爽网站| 天天操日日干夜夜撸| 成人av一区二区三区在线看| 老司机福利观看| 99re6热这里在线精品视频| 国产成+人综合+亚洲专区| 夜夜爽天天搞| 精品福利观看| 免费看十八禁软件| 天堂俺去俺来也www色官网| 国产精品秋霞免费鲁丝片| 国产高清激情床上av| 一级毛片精品| 一级片免费观看大全| 亚洲全国av大片| 国产成人啪精品午夜网站| 亚洲中文av在线| 五月天丁香电影| 欧美人与性动交α欧美精品济南到| 国产日韩欧美在线精品| 精品国产乱子伦一区二区三区| 国产有黄有色有爽视频| 一区二区三区激情视频| 亚洲成国产人片在线观看| 深夜精品福利| 又黄又粗又硬又大视频| 欧美日韩视频精品一区| 亚洲欧美色中文字幕在线| 国产精品一区二区免费欧美| 久久中文字幕一级| 妹子高潮喷水视频| 亚洲国产欧美在线一区| 黄色视频不卡| 欧美精品亚洲一区二区| 一区二区av电影网| 1024香蕉在线观看| 夜夜骑夜夜射夜夜干| 桃红色精品国产亚洲av| 亚洲国产毛片av蜜桃av| 看免费av毛片| 啪啪无遮挡十八禁网站| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲午夜精品一区二区久久| 国产亚洲欧美在线一区二区| 变态另类成人亚洲欧美熟女 | 久热这里只有精品99| 亚洲成人手机| 99riav亚洲国产免费| 国产野战对白在线观看| 精品第一国产精品| 亚洲七黄色美女视频| 老熟妇仑乱视频hdxx| 国产成人啪精品午夜网站| 国产精品一区二区在线观看99| 日韩一区二区三区影片| 可以免费在线观看a视频的电影网站| 精品人妻熟女毛片av久久网站| 国产精品国产高清国产av | 精品卡一卡二卡四卡免费| 日韩大码丰满熟妇| 国产精品麻豆人妻色哟哟久久| 久久青草综合色| 夜夜爽天天搞| 十八禁高潮呻吟视频| 国产在线精品亚洲第一网站| 亚洲av第一区精品v没综合| 老熟妇仑乱视频hdxx| www.熟女人妻精品国产| 精品国产乱码久久久久久男人| 国产成人欧美| 亚洲精品国产一区二区精华液| 人人妻人人澡人人爽人人夜夜| 亚洲成人免费电影在线观看| 狂野欧美激情性xxxx| 成年人免费黄色播放视频| 黄色成人免费大全| 精品一区二区三区四区五区乱码| a级片在线免费高清观看视频| 热99国产精品久久久久久7| 日本一区二区免费在线视频| 国产欧美日韩一区二区三| 国产精品久久久久成人av| 日韩有码中文字幕| 国产一卡二卡三卡精品| 亚洲va日本ⅴa欧美va伊人久久| 国产精品美女特级片免费视频播放器 | 在线av久久热| 啦啦啦 在线观看视频| 在线观看66精品国产| 精品人妻1区二区| 亚洲精品久久午夜乱码| 中亚洲国语对白在线视频| 久久久国产欧美日韩av| 国产99久久九九免费精品| 色精品久久人妻99蜜桃| 午夜视频精品福利| 亚洲成国产人片在线观看| 另类亚洲欧美激情| 久久国产亚洲av麻豆专区| 国产免费福利视频在线观看| 麻豆乱淫一区二区| av网站在线播放免费|