李茹柳,陶玉珠,溫 鵬,涂小華,蔡佳仲,陳蔚文(廣州中醫(yī)藥大學脾胃研究所,廣東廣州 510405)
黨參和甘草糖復合物對lEC-6細胞遷移和膜電位的影響
李茹柳,陶玉珠,溫鵬,涂小華,蔡佳仲,陳蔚文
(廣州中醫(yī)藥大學脾胃研究所,廣東廣州 510405)
目的 觀察黨參糖復合物和甘草糖復合物對小腸上皮細胞IEC-6遷移和細胞膜電位的影響,探討益氣健脾中藥黨參和甘草促進胃腸黏膜損傷修復的作用機制。方法 在正常或鉀通道抑制劑4-氨基吡啶(4-AP)負荷下,分別加入黨參和甘草糖復合物(25~200 mg·L-1)與IEC-6細胞培養(yǎng)24 h,相差顯微鏡下觀察細胞遷移數(shù),流式細胞儀檢測細胞膜電位。結(jié)果 與細胞正常對照組比較,黨參和甘草糖復合物(50和100 mg·L-1)可提高細胞遷移數(shù)(P<0.01,P<0.05)。與正常對照組比較,4-AP可減少細胞遷移數(shù)(P<0.01);與4-AP模型組比較,黨參和甘草糖復合物(50~200 mg·L-1)可逆轉(zhuǎn)4-AP所致的細胞遷移抑制(P<0.01)。流式細胞儀檢測結(jié)果表明,與正常對照組比較,黨參和甘草糖復合物(50 mg·L-1)可提高細胞膜電位(P<0.01),增加細胞膜超極化水平;與正常對照組比較,4-AP模型組細胞膜電位降低(P<0.01),增加細胞膜去極化水平;與4-AP模型組比較,黨參和甘草糖復合物(100和200 mg·L-1)可逆轉(zhuǎn)4-AP所致的細胞膜去極化(P<0.01)。結(jié)論 黨參和甘草促進胃腸黏膜損傷修復的作用機制,可能與其糖復合物影響小腸上皮細胞遷移的多胺介導鉀通道激活信號通路有關。
黨參;甘草;糖復合物;腸上皮細胞;細胞遷移;膜電位
DOl:10.3867/j.issn.1000-3002.2015.06.007
黨參和甘草是益氣健脾中藥,也是常用的益氣健脾方劑如四君子湯、補中益氣湯和參苓白術散等的組成藥物。臨床和實驗研究表明,益氣健脾中藥如四君子湯等有促進消化吸收、保護胃腸黏膜、促進上皮細胞生長和黏膜損傷修復等作用[1],但其療效機制尚不十分明確。本實驗室在小腸上皮細胞IEC-6上,從胃腸黏膜損傷修復環(huán)節(jié)如細胞增殖、分化和遷移等探討益氣健脾中藥的作用機制[2-5],尤其在對細胞遷移影響方面進行了系列研究,發(fā)現(xiàn)益氣健脾中藥如黃芪、白術、黨參和甘草的提取物有促進IEC-6細胞遷移的作用,作用機制與其影響細胞遷移多胺介導鉀通道激活信號通路有關[4-12]。本研究繼續(xù)圍繞該信號通路,觀察黨參和甘草糖復合物在鉀通道抑制劑4-氨基吡啶(4-aminopyridine,4-AP)負荷下,對IEC-6細胞遷移和細胞膜電位(Em)的影響。
1.1 藥材、細胞、試劑和儀器
黨參藥材為桔??浦参稂h參〔Codonopsis pilosula(Franch.)Nannf〕。的干燥根;甘草藥材為豆科植物甘草(Glycyrrhiza uralensis Fisch.)的干燥根及根莖,均購自廣州同康藥業(yè)有限公司,由廣州中醫(yī)藥大學中藥鑒定教研室童家赟講師鑒定。
大鼠小腸隱窩細胞IEC-6細胞(Cat.No.CRL-1592,Lot.4988325),購自ATCC。高糖DMEM、胎牛血清和青-鏈霉素,美國Gibco公司;精脒(spermidine,SPD)(陽性對照),美國Calbiochem公司;4-AP,美國Sigma公司;胰酶(1∶250),美國Amresco公司;膜電位熒光探針DiBAC4(3),美國Biotium公司。FACSCalibur型流式細胞儀,美國BD公司;3111型CO2培養(yǎng)箱,美國Thermo Scientific公司;Waters E2695高效液相色譜儀和Waters 2414示差檢測器,美國Waters公司;Uvmini-1240型紫外可見分光光度計,蘇州島津公司產(chǎn)品。
1.2 黨參和甘草糖復合物制備
黨參或甘草藥材飲片適量,石油醚回流1 h;藥渣揮干溶劑,80%乙醇回流2次;藥渣用蒸餾水回流2次,合并水提液,減壓濃縮至每升含0.5 kg藥材;濃縮液加無水乙醇至含醇量80%,4℃靜置過夜,過濾,沉淀加水溶解,重復上述醇沉操作3次;末次所得沉淀加水溶解,以氯仿和正丁醇(5∶1)萃取,上層水相過大孔樹脂,蒸餾水洗脫,至洗脫液與5倍量的95%乙醇混合不產(chǎn)生渾濁,洗脫液加無水乙醇至含醇量80%,所得沉淀以95%乙醇、無水乙醇、丙酮、乙醚洗滌,真空干燥,4℃保存。臨用前加PBS配制5 g·L-1黨參或甘草糖復合物,0.22 μm濾膜過濾。苯酚-硫酸法分光光度計測得黨參和甘草糖復合物平均含量(以葡萄糖計)分別為41.0%和49.3%。實驗濃度以糖復合物計算。
1.3 黨參和甘草糖復合物高效液相圖譜檢測
精密稱量黨參糖復合物和甘草糖復合物各10 mg,分別在定容瓶用純水溶解定容至10 mL,0.45 μm微孔濾膜過濾,裝入試劑瓶。色譜條件:Waters E2695高效液相色譜系統(tǒng);TSK GEL G4000 PWXL Column凝膠色譜柱(7.8 mm× 300 mm);Waters 2414示差折光檢測器檢測;柱溫箱溫度:30℃;檢測器溫度:30℃;流動相:超純水;流速:0.6 mL·min-1;進樣量:20 μL。
1.4 細胞遷移實驗[13]
細胞以4×108L-1密度,每孔2 mL接種于6孔板,培養(yǎng)液含10%胎牛血清、胰島素10 mg·L-1、青霉素100 kU·L-1-鏈霉素0.1 g·L-1,5%CO2,95%空氣,飽和濕度下37℃培養(yǎng)24 h。以刻刀沿著培養(yǎng)板底部中間輕輕劃一直線,細胞刮刀沿直線邊緣將劃痕一側(cè)的細胞刮除,PBS沖洗。迅速加藥,細胞正常對照組加DMEM,陽性對照藥組加含終濃度5 μmol·L-1精脒的DMEM,受試藥組分別加含不同濃度的黨參、甘草糖復合物的DMEM。4-AP負荷實驗中,模型組加入含4-AP 40 μmol·L-1的DMEM,陽性對照藥組加入含精脒+4-AP的DMEM,受試藥組分別加入含黨參和甘草糖復合物+4-AP的DMEM。CO2培養(yǎng)箱培養(yǎng)24 h,相差倒置顯微鏡下放大100倍,觀察細胞遷移情況,拍照,每孔沿劃痕線從左至右隨機觀察約8個視野,每組3復孔,共計約24個視野的遷移細胞數(shù)的均數(shù)為本組數(shù)據(jù)。IPP軟件計算越過劃痕的細胞數(shù)。
1.5 流式細胞儀檢測細胞膜電位[14]
細胞培養(yǎng)和給藥方法:細胞生長至80%~90%,消化細胞,制單細胞懸液4×108L-1,每孔2 mL接種于6孔板,37℃,5%CO2,飽和濕度下在CO2培養(yǎng)箱培養(yǎng)24 h,1 mL移液器吸頭沿著培養(yǎng)板的底部,在中間輕輕地劃一個“十”字劃痕,PBS沖洗,迅速加入含受試藥(4-AP負荷實驗同時加4-AP)的DMEM 2.5 mL。每組3復孔,按以上條件培養(yǎng)。
細胞懸液制備及熒光標記:受試藥加入并培養(yǎng)12 h后,用HBSS(D-Hanks緩沖液)沖洗,胰酶消化,再加等量的DMEM以終止消化;離心(302×g,5 min),棄上清液,加HBSS重懸;再離心去上清液,每個離心管(6孔板的每孔細胞收集在1個離心管內(nèi))加入含1 μmol·L-1DiBAC4(3)溶液的HBSS 1 mL。在CO2培養(yǎng)箱中培養(yǎng)8 min,離心(302×g,5 min);去上清液,HBSS重懸,再離心,HBSS重懸,轉(zhuǎn)入流式管后上機檢測。流式細胞儀檢測時,設定激發(fā)波長488 nm,發(fā)射波長520 nm,每管檢測10 000個細胞,并設不標記的空白細胞管用于調(diào)零。以各組的平均熒光強度進行統(tǒng)計分析。
1.6 統(tǒng)計學分析
2.1 黨參和甘草糖復合物高效液相圖譜
高效液相色譜圖結(jié)果(圖1)顯示,黨參糖復合物分別在8.482,11.264和20.223 min出現(xiàn)不同吸收峰(以8.482和20.223 min為2個主要吸收峰);甘草糖復合物分別在6.700,10.817和20.217 min出現(xiàn)不同吸收峰(以20.217 min為主要吸收峰);提示樣品為黨參和甘草糖的復合物。
Fig.1 High performance liquid chromatography image of Codonopsis glycoconjugates(A)and Glycyrrhiza glycoconjugates(B).
2.2 黨參和甘草糖復合物對lEC-6細胞遷移的影響
2.2.1 對正常lEC-6細胞遷移的影響
與細胞正常對照組比較,黨參糖復合物(50~100 mg·L-1)(圖2和表1)和甘草糖復合物(50~100 mg·L-1)(圖3和表2)可增加細胞遷移數(shù)(即圖中從劃痕左側(cè)向右側(cè)遷移的細胞數(shù)量)(P<0.01,P<0.05),表明黨參糖復合物和甘草糖復合物可促進IEC-6細胞遷移。
Fig.2 Effect of Codonopsis glycoconjugates on lEC-6 cells migration observed by phase contrast microscope(×100).IEC-6 cells were cultured with Codonopsis glycoconjugates and spermidine for 24 h,respectively.Cell migration was measured by the number of migrated cells from the left of the scratch to the right.A:normal control;B:spermidine 5 μmol·L-1;C,D and E:Codonopsis glycoconjugates 25,50 and 100 mg·L-1groups,respectively.
Tab.1 Effect of Codonopsis glycoconjugates on lEC-6 cell migration
Fig.3 Effect of Glycyrrhiza glycoconjugates on lEC-6 cell migration observed by phase contrast microscope(×100).IEC-6 cells were cultured with Glycyrrhiza glycoconjugates and spermidine for 24 h,respectively.Cell migration was measured by the number of migrated cells from the left of the scratch to the right.A:normal control group;B:spermidine 5 μmol·L-1;C,D and E:Glycyrrhiza glycoconjugates 25,50 and 100 mg·L-1groups,respectively.
Tab.2 Effect of Glycyrrhiza glycoconjugates on lEC-6 cell migration
2.2.2 對4-AP負荷下lEC-6細胞遷移的影響
與正常對照組比較,4-AP模型組出現(xiàn)細胞遷移抑制,表明造模成功;與4-AP模型組比較,黨參和甘草糖復合物(50~200 mg·L-1)可逆轉(zhuǎn)4-AP所致的細胞遷移抑制(P<0.01)(表3和表4)。
Tab.3 Effect of Codonopsis glycoconjugates on lEC-6 cell migration inhibited by 4-aminopyridine(4-AP)
Tab.4 Effect of Glycyrrhiza glycoconjugates on lEC-6 cell migration inhibited by 4-AP
2.3 黨參和甘草糖復合物對lEC-6細胞膜電位的影響
2.3.1 對正常lEC-6細胞膜電位的影響
表5和圖4結(jié)果顯示,黨參和甘草糖復合物組(50 mg·L-1)細胞平均熒光強度低于正常對照組(P<0.01),即其細胞膜超極化水平高于正常對照組,提示細胞膜電位增加。表明黨參和甘草糖復合物可增加細胞膜超極化水平,提高細胞膜電位。
Tab.5 Effect of Codonopsis and Glycyrrhiza glycoconjugates on lEC-6 cell membrane potential
2.3.2 對4-AP負荷下lEC-6細胞膜電位的影響
圖5和表6結(jié)果顯示,4-AP模型組細胞平均熒光強度高于正常對照組(P<0.01),說明4-AP模型組細胞膜去極化水平高于正常對照組,細胞膜電位降低,說明造模成功;與4-AP模型組比較,黨參和甘草糖復合物(100~200 mg·L-1)能逆轉(zhuǎn)4-AP所致細胞膜去極化(P<0.01)。
Fig.4 Effect of Codonopsis and Glycyrrhiza glycoconjugates on lEC-6 cell membrane potential detected by flow cytometry.See Tab.5 for the cell treatment.A:normal control;B:spermidine 5 μmol·L-1;C and D:Codonopsis glycoconjugates 50 and 100 mg·L-1;E and F:Glycyrrhiza glycoconjugates 50 and 100 mg·L-1.
Fig.5 Effect of Codonopsis and Glycyrrhiza glycoconjugates on lEC-6 cell membrane potential inhibited by 4-AP detected by flow cytometry.IEC-6 cells were pretreated with 4-AP alone or with Codonopsis glycoconjugates,Glycyrrhiza glycoconjugates and spermidine for 12 h,respectively before they were incubated with DiBAC4(3)1 μmol·L-1for 8 min. Mean fluorescence intensity was detected by flow cytometry. A:normal control;B:4-AP 40 μmol·L-1;C:4-AP+spermidine 5 μmol·L-1;D:4-AP+Codonopsis glycoconjugates 100 mg·L-1;E:4-AP+Codonopsis glycoconjugates 200 mg·L-1;F:4-AP+ Glycyrrhiza glycoconjugates 100 mg·L-1;G:4-AP+Glycyrrhiza glycoconjugates 200 mg·L-1.
Tab.6 Effect of Codonopsis and Glycyrrhiza glycoconjugates on lEC-6 cell membrane potential inhibited by 4-AP
益氣健脾中藥是中醫(yī)藥臨床最廣泛應用的中藥種類之一,如四君子湯和補中益氣湯等在臨床調(diào)理多種病證的脾胃虛損方面有顯著療效,對促進胃腸黏膜損傷修復也有很好療效,但其作用機制特別是分子水平的療效機制還不是很清楚。而胃腸黏膜損傷修復的環(huán)節(jié)復雜,步驟較多,本研究團隊目前主要在其對細胞遷移影響方面開展工作。
細胞遷移是胃腸黏膜損傷修復的重要步驟,在IEC-6細胞遷移多胺介導鉀通道激活信號通路中,多胺增加增強鉀通道蛋白的表達,K+外流,導致細胞膜超極化,增強Ca2+內(nèi)流驅(qū)動力而提高細胞內(nèi)游離鈣離子([Ca2+]i)水平,后者增加了GTP結(jié)合蛋白RhoA活性,使Rho激酶激活,增加了肌球蛋白輕鏈磷酸化,從而刺激了應力纖維形成和細胞遷移[15]。
DiBAC4(3)是細胞膜電位敏感的親脂性陰離子熒光染料,根據(jù)其在細胞內(nèi)外的重新分布,可無損測定膜電位的變化情況。DiBAC4(3)本身不發(fā)熒光,進入細胞與胞漿內(nèi)蛋白質(zhì)結(jié)合后可以發(fā)出熒光。當DiBAC4(3)進入細胞內(nèi)增多,熒光增強時,表明膜電位負值減小,膜去極化;相反地,當細胞內(nèi)的熒光強度降低時,則提示細胞膜超極化[16]。
電壓門控鉀離子(voltage-gated K+,Kv)通道是一組膜蛋白,在腸上皮細胞中對調(diào)控靜息Em起重要作用。激活Kv通道引起膜的超極化,抑制Kv通道則引起膜的去極化。4-AP是特異性的鉀離子通道抑制劑,加入4-AP能減少Kv通道α亞單位Kv1.1 mRNA及蛋白表達,從而減少了細胞K+外流,使膜去極化[15,17-18]。膜去極化降低了Ca2+內(nèi)流驅(qū)動力,抑制了Ca2+內(nèi)流,則減少RhoA蛋白的合成和穩(wěn)定,抑制損傷后細胞遷移[19]。表明多胺通過調(diào)控Kv通道蛋白表達和膜電位及K+外流,進而調(diào)控損傷后細胞遷移。
本研究表明,黨參和甘草糖復合物能促進IEC-6細胞遷移,逆轉(zhuǎn)4-AP所致的細胞遷移抑制;能增加細胞膜超極化水平而提高膜電位,逆轉(zhuǎn)4-AP所致的細胞膜去極化,說明對鉀通道及相關指標的影響是其調(diào)節(jié)細胞遷移的作用機制之一。本課題組的另一研究發(fā)現(xiàn),黨參和甘草糖復合物可提高細胞遷移過程鉀通道Kv1.1蛋白表達,改善二氟甲基鳥氨酸(α-difluoromethylornithine,DFMO,多胺合成抑制劑)所致Kv1.1蛋白表達下降;可提高細胞遷移過程膜超極化水平,逆轉(zhuǎn)DFMO所致的膜去極化;可提高細胞遷移過程細胞[Ca2+]i水平,其中黨參糖復合物可逆轉(zhuǎn)DFMO所致細胞[Ca2+]i水平降低;可增加細胞遷移過程RhoA蛋白表達,改善DFMO所致RhoA蛋白表達減少[20]。結(jié)合本研究結(jié)果提示,黨參和甘草糖復合物在正常(無負荷)時能促進細胞遷移,并對多胺調(diào)控信號通路的相關指標產(chǎn)生正向作用;在多胺合成抑制或鉀通道抑制的負向影響下,能恢復細胞遷移至正常水平,對受到抑制的信號通路相關指標有改善作用。實驗結(jié)果從正、負兩方面說明益氣健脾中藥黨參和甘草能促進細胞遷移,發(fā)揮胃腸黏膜損傷修復的作用,其機制與其影響多胺介導鉀通道激活信號通路有關。
[1] Ye FQ,Chen WW.Pharmological study on the effect of SiJunZiTang on gastrointestinal tract[J]. Lishizhen Med Mater Med Res(時珍國醫(yī)國藥),2005,16(1):73-74.
[2]Hu C,Li RL,Mo QY,Wang ZP,Lin CQ,Chen WX,et al.Effects of different extract parts from Rhizoma Atractylodis Macrocephalae and Radix Astragali on proliferation of intestinal epithelial cells[J]. Tradit Chin Drug Res Clin Pharmacol(中藥新藥與臨床藥理),2010,21(2):156-160.
[3]Wang Z,Li RL,Xu SF,Chen WW.Effectsof AtractylodesMacrocephalamonosaccharide compositiononcytodifferentiationandvillin expression of IEC-6 cells in vitro[J].J Chin eMed Mater(中藥材),2010,33(6):938-944.
[4]Hu C,Li RL,Wang J,Xu SF,Chen WW.Effects of Astragalus and Atractylodes extracts on IEC-6 cell migration[J].Tradit Chin Drug Res Clin Pharmacol(中藥新藥與臨床藥理),2011,22(1):60-65.
[5]Zhao SQ,Wen P,Li RL,Lu WB,Chen WW. EffectsofflavonoidsandsaponinsofRadix Codonopsis and Glycyrrhiza on IEC-6 cell migration [J].Pharmacol Clin Chin Mater Med(中藥藥理與臨床),2012,28(2):78-81.
[6]Wen P,Sui JJ,Li RL,Zhao SQ,Lu WB,Chen WW. Effect of polysaccharides from Radix Glycyrrhiza on migration and polyamines contents of IEC-6 cell [J].J Chin Med Mater(中藥材),2012,35(7):1112-1116.
[7]Li RL,Nian LQ,Zhao SQ,Wen P,Sui JJ,Tao YZ,et al.Effect of Radix Codonopsis on stress ulcer,cell migration and polyamine content in rats[J].J Guangzhou Univ Tradit Chin Med(廣州中醫(yī)藥大學學報),2013,30(4):519-524,604.
[8]Li RL,Tao YZ,Wen P,Zhao SQ,Xu SF,Chen WW. Effectofflavonoidfrom Glycyrrhiza Radix on small intestine epithelium IEC-6 cell migration and intracellular polyamine content[J].Chin Tradit Herb Drugs(中草藥),2013,44(19):2722-2726.
[9]Li RL,Zeng D,Wen P,Tao YZ,Zhao SQ,Chen WX,et al.Effect of Radix Codonopsis flavonoids on intestinal epithelial cell 6 migration and polyamines content[J].Tradit Chin Drug Res Clin Pharmacol(中藥新藥與臨床藥理),2014,25(5):523-526.
[10]Li RL,Hu C,Sui JJ,Lu WB,Wen P,Gao XL,et al.Effects of polysaccharides from Rhizoma Atractylodis Macrocephalae and from Radix Astragali on polyamine-mediated K+channels in the IEC-6 migration[J].Cell Biol Int,2010,34(8):S2.
[11]Song HP,Li RL,Chen X,Wang YY,Cai JZ,Liu J,et al.Atractylodes macrocephala Koidz promotes intestinal epithelial restitution via the polyaminevoltage-gatedK+channel pathway[J].J Ethnopharmacol,2014,152(1):163-172.
[12]Song HP,Li RL,Wang YY,Zeng D,Zhang L,Deng J,et al.Effects of Atractylodes macrocephala Koidz.extract on polyamine mediated calcium signaling pathway during intestinal epithelial cell migration[J].China J Tradit Chin Med Pharm(中華中醫(yī)藥雜志),2014,29(5):1361-1367.
[13]Hu C,Li RL,Lu WB,Yang YQ,Wang J,Chen WW. Studies on cell migration model in intestinal epithelial restitutionforpharmacologicalresearch[J].J Chin Med Mater(中藥材),2011,34(5):738-746.
[14]Song HP,Li RL,Wang YY,Chen WX,Chen X,Xu SF,et al.Establishment and application of membrane potential detection method for intestinal epithelial cell migration[J].Chin Pharmacol Bull(中國藥理學通報),2013,29(12):1758-1761.
[15]Wang JY.Cellular signaling in rapidintestinal epithelial restitution:implication of polyamines and K+channels[J].Acta Physiol Sin(生理學報),2003,55(4):365-372.
[16]Yang SM,Jiang SC,Yang WY,Gu R,Han DY. Optical recording of membrane potential using voltage-sensitive dyes[J].Prog Physiol Sci(生理科學進展),2002,33(2):106-110.
[17]Rao JN,Platoshyn O,Li L,Guo X,Golovina VA,Yuan JX,et al.Activation ofK+channelsand increasedmigrationofdifferentiatedintestinal epithelial cells after wounding[J].Am J Physiol Cell Physiol,2002,282(4):C885-C898.
[18]Wang JY,Wang J,Golovina VA,Li L,Platoshyn O,Yuan JX.Role of K+channel expression in polyamine-dependent intestinal epithelial cell migration [J].Am J Physiol Cell Physiol,2000,278(2):C303-C314.
[19]Fukata M,Nakagawa M,Kaibuchi K.Roles of Rho-family GTPases in cell polarisation and directional migration[J].Curr Opin Cell Biol,2003,15(5):590-597.
[20] Tao YZ.Studies on the effects of Codonopsis and Licoriceonpolyamine-mediatedsignaling pathway in the intestinal epithelial cell migration(黨參和甘草提物對IEC-6細胞遷移多胺調(diào)控信號通路作用的研究)[D].Guangzhou:Guangzhou University of Chinese Medicine(廣州中醫(yī)藥大學),2013.
(本文編輯:齊春會)
Effect of Codonopsis and Glycyrrhiza glycoconjugates on migration and membrane potential of lEC-6 cells
LI Ru-liu,TAO Yu-zhu,WEN Peng,TU Xiao-hua,CAI Jia-zhong,CHEN Wei-wen
(Piwei Institute of Guangzhou University of Chinese Medicine,Guangzhou 510405,China)
OBJECTlVE To observe the effect of Codonopsis and Glycyrrhiza glycoconjugates on migration and membrane potential of small intestinal epithelial cells(IEC-6),and to explore the promoting effects of Yiqi jianpi herb Codonopsis and Glycyrrhiza on gastrointestinal mucosal injury repair and the underlying mechanisms.METHODS Under normal conditions or loaded with the inhibitor of potassium channel 4-aminopyridine(4-AP),IEC-6 cells were treated with Codonopsis and Glycyrrhiza glycoconjugates (25-200 mg·L-1)for 24 h,respectively.IEC-6 cell migration was observed by the phase contrast microscope and cell membrane potential was detected by flow cytometry.RESULTS Codonopsis and Glycyrrhiza glycoconjugates(50 and 100 mg·L-1)increased the number of migrated IEC-6 cell compared with normal control group(P<0.01,P<0.05).Compared with normal control group,4-AP reduced the number of migrated IEC-6 cell(P<0.01).Codonopsis and Glycyrrhiza glycoconjugates (50-200 mg·L-1)reversed cell migration inhibited by 4-AP significantly when compared with 4-AP model group(P<0.01).The results of flow cyometry analysis showed that the cell membrane potential was increased after treatment with Codonopsis and Glycyrrhiza glycoconjugates(50 mg·L-1)compared with normal control group and resulted in an increase in cell membrane hyperpolarization(P<0.01). Compared with normal control group,4-AP decreased the cell membrane potential(P<0.01)and resulted in cell membrane depolarization.Also,compared with 4-AP model group,cell membrane depolarization induced by 4-AP was reversed by treatment with Codonopsis and Glycyrrhiza glycoconjugates(100 and 200 mg·L-1).CONCLUSlON Codonopsis and Glycyrrhiza glycoconjugates may promote gastrointestinal mucosal injury repair and the mechanisms may involve the activation of signaling pathways by affecting polyamine-dependent intestinal epithelial cell migration voltage-gated K+channels.
Codonopsis;Glycyrrhiza;glycoconjugates;intestinal epithelial cells;cell migration;membrane potential
The project supported by National Natural Science Foundation of China(30772753);National Natural Science Foundation of China(81173254);Special Funds from Central Finance of China in Support of the Development of Local Colleges and Universities[Educational Finance Grant 338(2013)];and South China Chinese Medicine Collaborative Innovation Center(E1-KFD015141K03)
LI Ru-liu,E-mail:lrl@gzucm.edu.cn,Tel:(020)36585444
R285.5
A
1000-3002(2015)06-0917-07
國家自然科學基金項目(30772753);國家自然科學基金項目(81173254);中央財政支持地方高校發(fā)展專項資金項目(財教[2013]338號);華南中醫(yī)藥協(xié)同創(chuàng)新中心項目(E1-KFD015141K03)
李茹柳,博士,教授,主要從事調(diào)理脾胃中藥作用機制研究。
李茹柳,E-mail:lrl@gzucm.edu.cn,Tel:(020)36585444
(2015-06-08接受日期:2015-11-15)