馬懿江,何慶,胡志東△,馮靖
間歇低氧合并肺氣腫大鼠模型肝臟氧化應(yīng)激及凝血功能的研究
馬懿江1,何慶2△,胡志東1△,馮靖3
目的建立肺氣腫合并間歇低氧(IH)的重疊綜合征(OS)大鼠模型,探討OS大鼠肝臟炎性損傷及其凝血功能的變化。方法將60只雄性Wistar大鼠隨機(jī)分成正常組(A組)、IH組(B組)、肺氣腫組(C組)和IH合并肺氣腫組(D組)。通過(guò)對(duì)大鼠進(jìn)行16周的熏煙暴露造成大鼠肺氣腫;從13周開(kāi)始,同時(shí)施加程控預(yù)制的間歇低氧/再氧合(IH/ROX)處理對(duì)大鼠進(jìn)行IH暴露4周。暴露結(jié)束后取各組大鼠肺和肝臟組織于光鏡下觀察并計(jì)算肝臟炎性損傷病理評(píng)分。取肝組織勻漿采用ELISA方法測(cè)定其超氧化物歧化酶(SOD)活性、過(guò)氧化氫酶(CAT)活性和丙二醛(MDA)濃度。檢測(cè)血漿纖維蛋白原(FIB),血漿因子FⅧ促凝活性(FⅧ:C)、血管性血友病因子抗原(vWF:Ag)和抗凝血酶活性(AT:A)水平。結(jié)果D組肝臟炎性損傷病理評(píng)分和凝血因子FIB、FⅧ:C、vWF:Ag水平均高于A、B、C組,而SOD和CAT活性以及AT:A水平低于其他3組(均P<0.05)。FIB、vWF:Ag、FⅧ:C、AT:A與SOD呈明顯相關(guān)(r分別為-0.905、-0.941、-0.946和0.817,均P<0.01)。結(jié)論OS動(dòng)物模型下IH和肺氣腫在導(dǎo)致氧化應(yīng)激和高凝狀態(tài)上具有一定疊加效應(yīng),可引起更強(qiáng)的肝臟炎癥反應(yīng)和血栓前狀態(tài)。
肺氣腫;間歇低氧;氧化應(yīng)激;超氧化物歧化酶;過(guò)氧化氫酶;丙二醛;凝血因子
阻塞性睡眠呼吸暫停(OSA)以上氣道周期性部分或全部關(guān)閉為主要特征,通常伴氧飽和度下降和睡眠反復(fù)覺(jué)醒[1],發(fā)病率為2%~25%,且患病率呈逐年上升趨勢(shì)[2]。慢性阻塞性肺疾病(COPD)的病理改變主要表現(xiàn)為慢性支氣管炎和肺氣腫,后者通常引起更嚴(yán)重的低氧、肺動(dòng)脈壓升高以及更高的病死率。COPD和OSA共存稱為重疊綜合征(OS),在成年人群中發(fā)病率約為1%[3]。OS患者相對(duì)單純OSA 或COPD常伴有更顯著的肺炎性損傷及血管內(nèi)皮系統(tǒng)激活狀態(tài),導(dǎo)致卒中、急性冠脈綜合征等一系列事件的發(fā)生[4]。目前認(rèn)為COPD和OSA均屬于慢性系統(tǒng)性炎癥的組成部分。間歇低氧(IH)可造成線粒體電子傳遞鏈的功能障礙,導(dǎo)致活性氧(ROS)的釋放,而再氧合(ROX)進(jìn)一步激化此過(guò)程[5],因此IH/ROX引起的氧化應(yīng)激成為COPD和OSA聯(lián)系的關(guān)鍵[6]。研究發(fā)現(xiàn)低氧造成的高凝狀態(tài)使COPD患者更容易出現(xiàn)靜脈血栓栓塞[7]。因此,本研究通過(guò)建立肺氣腫合并睡眠IH動(dòng)物模型,以探討其肝臟氧化應(yīng)激及凝血功能變化的特點(diǎn)及其相關(guān)機(jī)制。
1.1材料
1.1.1實(shí)驗(yàn)動(dòng)物及分組健康雄性4周齡Wistar大鼠60只,體質(zhì)量120~150 g,購(gòu)自中國(guó)醫(yī)學(xué)科學(xué)院放射醫(yī)學(xué)研究所實(shí)驗(yàn)動(dòng)物中心。按隨機(jī)數(shù)字表法將大鼠分為4組,每組15只:正常組(A組),IH組(B組),肺氣腫組(C組),肺氣腫合并IH組(D組)。
1.1.2試劑和儀器大前門(mén)香煙(天津卷煙廠);混合氣體(天津六方氣體公司);HE染液、ELISA試劑盒(南京建成生物科技公司)。熏煙箱和密封箱為儲(chǔ)物箱和密封盒改制;組織勻漿器、37℃烤箱由天津醫(yī)科大學(xué)內(nèi)分泌研究所提供;氧濃度檢測(cè)儀(瑞士夏美頓公司);血?dú)夥治鰞x(瑞士羅氏AVL 995);凝血分析儀(美國(guó)貝克曼ACL9000);日本Olympus光學(xué)顯微鏡及圖像采集系統(tǒng);北京航空航天大學(xué)彩色病理圖像分析系統(tǒng)。
1.2方法
1.2.1OS大鼠模型的建立通過(guò)熏煙暴露造成大鼠肺氣腫,在此基礎(chǔ)上進(jìn)行IH暴露,方法與本組既往研究一致[8]:A組:正常飼養(yǎng);B組:從13~16周IH暴露:大鼠每天于睡眠時(shí)段(9:00~17:00)置于自制IH艙內(nèi),向艙內(nèi)循環(huán)充入N2和空氣,每一循環(huán)包括N230 s(使艙內(nèi)最低氧濃度達(dá)到5%)和空氣90 s(使艙內(nèi)氧濃度恢復(fù)至21%);C組:常氧狀態(tài),持續(xù)煙熏暴露16周,于非睡眠階段將大鼠置于自制熏箱內(nèi)熏吸香煙,2次/d,30 min/次;D組:IH暴露13~16周,持續(xù)煙熏暴露16周。
1.2.2腦電圖監(jiān)測(cè)和動(dòng)脈血?dú)夥治霰┞肚?周隨機(jī)抽取5只大鼠監(jiān)測(cè)各期睡眠腦電波。暴露結(jié)束前2 d,取此5只大鼠右股動(dòng)脈血測(cè)量其動(dòng)脈血pH值、二氧化碳分壓[p(CO2)]、氧分壓[p(O2)]和氧飽和度(SaO2)。
1.2.3血液指標(biāo)測(cè)定暴露結(jié)束后收集每組剩余10只大鼠的靜脈血8 mL,檢測(cè)白細(xì)胞(WBC)計(jì)數(shù)、淋巴細(xì)胞(LYM)分類、紅細(xì)胞(RBC)計(jì)數(shù)、血紅蛋白(HGB)濃度和血小板(PLT)計(jì)數(shù)。經(jīng)枸櫞酸鈉抗凝檢測(cè)血漿抗凝血酶活性(AT:A)、纖維蛋白原(FIB)、血漿因子FⅧ促凝活性(FⅧ:C)和血管性血友病因子抗原(vWF:Ag)。
1.2.4標(biāo)本處理取大鼠肺、肝臟組織各1 g,以4%甲醛溶液固定、石蠟包埋、切片、HE染色,光鏡下觀察。另取肝組織1 g研磨制成勻漿,采用ELISA方法檢測(cè)超氧化物歧化酶(SOD)活性、過(guò)氧化氫酶(CAT)活性和丙二醛(MDA)濃度[9]。
1.2.5肝臟炎性損傷病理評(píng)分方法觀察指標(biāo):炎細(xì)胞浸潤(rùn)程度和范圍,肝細(xì)胞水腫程度和范圍,肝細(xì)胞點(diǎn)狀壞死范圍。每項(xiàng)均按正常0分,較輕1分,輕度2分,中度3分,較重4分,重度5分進(jìn)行評(píng)分,滿分5分。每項(xiàng)指標(biāo)表示為實(shí)際得分占最高預(yù)計(jì)分?jǐn)?shù)的百分比。
1.3統(tǒng)計(jì)學(xué)方法采用SPSS 18.0軟件處理數(shù)據(jù)。計(jì)量資料以±s表示,多組間均數(shù)比較采用單因素方差分析(One-Way ANOVA),組間多重比較采用Bonferroni法,相關(guān)性分析采用Pearson法。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1動(dòng)脈血?dú)夥治鯝組結(jié)果基本符合正常生理狀態(tài);C組p(O2)輕度降低,符合大鼠肺氣腫特點(diǎn);B組和D組p(O2)<60 mmHg,符合大鼠間歇低氧的狀態(tài),見(jiàn)表1。
Tab.1 Blood gas analysis between all four groups表1 動(dòng)脈血?dú)夥治鼋Y(jié)果 (n=5,±s)
Tab.1 Blood gas analysis between all four groups表1 動(dòng)脈血?dú)夥治鼋Y(jié)果?。╪=5,±s)
1 mmHg=0.133 kPa
組別A組B組C組D組p(O2)(mmHg)94.30±2.61 51.52±1.18 73.02±2.18 45.36±2.33 p(CO2)(mmHg)41.86±2.34 37.02±0.91 48.86±2.89 42.34±3.15 SaO20.971±0.003 0.869±0.018 0.918±0.006 0.837±0.028 pH值7.41±0.01 7.42±0.01 7.36±0.01 7.41±0.01
2.2肺組織光鏡特征C、D組大鼠肺氣腫病理特征顯著,表現(xiàn)為肺組織間質(zhì)增厚和薄壁組織炎癥,其中D組伴有炎細(xì)胞大量浸潤(rùn),肺泡平均截距增高和平均肺泡數(shù)下降,見(jiàn)圖1。
2.3肝臟組織光鏡特征A組動(dòng)物肝臟病理基本正常,B組有輕微炎癥,而C、D組可見(jiàn)明顯炎細(xì)胞浸潤(rùn)、肝細(xì)胞腫脹和氣球樣變,提示其肝臟炎性損傷嚴(yán)重,見(jiàn)圖2。
2.4肝臟病理?yè)p傷和氧化應(yīng)激水平肝臟炎性損傷病理評(píng)分和MDA濃度為D組>C組>B組>A組(均P<0.05),SOD和CAT活性為D組<C組<B組<A組(均P<0.05),見(jiàn)表2。
2.5血常規(guī)檢查結(jié)果WBC、LYM、RBC、HGB和PLT水平均是D組>C組>B組>A組(均P<0.05),見(jiàn)表3。
Tab.2 Comparison of hepatic histological scores and indicators of oxidative stress among four groups表2 4組的肝臟炎性損傷病理評(píng)分和氧化應(yīng)激指標(biāo)比較?。╪=10,±s)
Tab.2 Comparison of hepatic histological scores and indicators of oxidative stress among four groups表2 4組的肝臟炎性損傷病理評(píng)分和氧化應(yīng)激指標(biāo)比較?。╪=10,±s)
*P<0.05;a與A組比較,b與B組比較,c與C組比較,P<0.05
組別A組B組C組D組F肝臟炎性損傷病理評(píng)分(%)8.00±1.49 13.60±2.95a58.00±4.62ab80.00±6.33abc672.494*SOD (U/mg protein)88.30±4.51 79.17±2.63a73.97±2.24ab63.86±3.73abc90.206*CAT (U/mg protein)113.82±6.31 92.46±5.31a79.03±5.06ab49.85±3.62abc270.257*MDA (nmol/mg protein)0.74±0.10 1.71±0.15a3.31±0.36ab6.73±1.47abc118.267*
Tab.3 Hematologic analysis表3 4組血常規(guī)指標(biāo)比較?。╪=10,±s)
Tab.3 Hematologic analysis表3 4組血常規(guī)指標(biāo)比較?。╪=10,±s)
*P<0.05;a與A組比較,b與B組比較,c與C組比較,P<0.05
組別A組B組C組D組F WBC(×109/L)3.34±0.21 3.52±0.26a4.64±0.55ab6.48±0.61abc106.16*LYM 0.425±0.029 0.577±0.055a0.649±0.030ab0.837±0.045abc169.03*組別A組B組C組D組F RBC(×1012/L)7.01±0.09 7.46±0.07a8.04±0.29ab8.60±0.21abc134.38*HGB(g/L)122.20±6.25 136.30±5.06a145.90±5.80ab157.20±8.07abc53.91*PLT(×109/L)829.80±23.90 974.40±30.46a1 134.80±73.78ab1 352.60±92.35abc130.02*
2.6凝血/抗凝因子檢測(cè)凝血因子FIB、vWF:Ag 和FⅧ:C為D組>C組>B組>A組,而AT:A則為D組<C組<B組<A組(均P<0.05),見(jiàn)表4。
Tab.4 Comparision of coagulant/anticoagulant factors between all groups表4 各組大鼠凝血/抗凝因子水平比較?。╪=10,±s)
Tab.4 Comparision of coagulant/anticoagulant factors between all groups表4 各組大鼠凝血/抗凝因子水平比較?。╪=10,±s)
*P<0.05;a與A組比較,b與B組比較,c與C組比較,P<0.05
組別A組B組C組D組F AT:A(%)123.10±3.28 117.10±2.89a105.37±5.78ab96.12±5.35abc71.57*FIB(mg/L)1 347.3±64.8 1 531.2±68.6a1 757.9±78.1ab2 013.3±66.3abc171.07*vWF:Ag(%)48.89±2.50 57.52±2.36a65.31±2.37ab72.57±3.83abc129.45*FⅧ:C(%)116.35±3.83 198.68±7.91a231.03±13.52ab315.92±26.13abc289.05*
2.7相關(guān)性分析SOD與FIB、vWF:Ag和FⅧ:C水平呈負(fù)相關(guān),與AT:A呈正相關(guān);CAT與FIB、vWF: Ag和FⅧ:C水平呈負(fù)相關(guān),與AT:A呈正相關(guān);MDA 與FIB、vWF:Ag和FⅧ:C水平呈正相關(guān),與AT:A呈負(fù)相關(guān),見(jiàn)表5。
Tab.5 Correlations between inflammatory parameters and coagulant/anticoagulant factors表5 肝臟氧化應(yīng)激指標(biāo)和凝血因子的相關(guān)系數(shù)
本實(shí)驗(yàn)通過(guò)對(duì)大鼠進(jìn)行煙熏和IH暴露,成功建立了肺氣腫合并睡眠IH的動(dòng)物模型。在IH模型中,低氧與再氧合重復(fù)進(jìn)行,細(xì)胞內(nèi)氧急劇降低,產(chǎn)生大量ROS引起機(jī)體氧化應(yīng)激及炎性損傷,且主要發(fā)生在再氧合階段[10]。其中脂質(zhì)過(guò)氧化產(chǎn)物MDA可間接反映細(xì)胞氧化應(yīng)激水平;SOD及時(shí)清除超氧陰離子自由基,其活性可間接反映細(xì)胞清除氧自由基的能力;CAT催化分解過(guò)氧化氫,可保護(hù)細(xì)胞免受ROS造成的氧化應(yīng)激損傷。本研究中,D組SOD和CAT活性均為最低,MDA濃度為最高,提示肝臟炎癥可能由氧化應(yīng)激始動(dòng)的級(jí)聯(lián)放大反應(yīng)而引起。據(jù)文獻(xiàn)報(bào)道,將高脂飲食小鼠暴露于IH環(huán)境中,出現(xiàn)比非暴露小鼠更嚴(yán)重的肝臟炎癥,且伴有丙氨酸轉(zhuǎn)氨酶(ALT)水平升高[11]。Barnes等[12]也證實(shí),肝細(xì)胞經(jīng)過(guò)低氧/再氧合的刺激之后,胞內(nèi)ROS累積明顯增加。因此,可能存在某種共同途徑調(diào)節(jié)氧化應(yīng)激和炎癥反應(yīng),促使OS的抗氧化應(yīng)激失衡。
本實(shí)驗(yàn)中C組和D組動(dòng)物經(jīng)同等程度的熏煙暴露,而后者炎細(xì)胞浸潤(rùn)和平均肺泡數(shù)下降程度均更為嚴(yán)重,推斷IH可能加重肺氣腫的程度。同時(shí)D組肝臟炎性損傷程度高于B、C組,提示IH和肺氣腫在導(dǎo)致肝臟炎癥上可能產(chǎn)生一定的疊加效應(yīng)。肝臟反復(fù)的低氧/再氧合以及兒茶酚胺介導(dǎo)的系統(tǒng)性代謝異常使肝臟代謝向低氧性線粒體呼吸轉(zhuǎn)變[13]。并且,肺組織所產(chǎn)生的炎癥介質(zhì)可能通過(guò)循環(huán)系統(tǒng)播散到全身各處,并激活肝臟釋放更多炎性因子,對(duì)其他靶器官造成損害,最后引起系統(tǒng)性炎癥[14]。
D組的WBC、LYM水平高于其余3組,提示外周血中白細(xì)胞尤其是淋巴細(xì)胞在系統(tǒng)性炎癥中的重要作用。在炎癥之初,激活的淋巴細(xì)胞通過(guò)釋放ROS和蛋白酶導(dǎo)致炎性損傷和肺氣腫的進(jìn)展。D組升高的RBC和HGB水平還提示IH可加重由肺氣腫引起的紅細(xì)胞增多癥和血液高黏滯狀態(tài)。在低氧環(huán)境中,HGB的自身氧化更易進(jìn)行,結(jié)果產(chǎn)生更多超氧自由基。由此可見(jiàn),OS可能通過(guò)炎癥和氧化應(yīng)激的途徑加強(qiáng)高凝狀態(tài),從而促使毛細(xì)血管內(nèi)血栓的形成。
血液中FⅧ通過(guò)共價(jià)鍵與vWF形成復(fù)合物,當(dāng)凝血酶被激活后,F(xiàn)Ⅷ與復(fù)合物解離,在作用于因子IXa之后被迅速清除。本實(shí)驗(yàn)中,建立了肺氣腫的組別(C、D組)凝血因子水平顯著升高,而抗凝因子則明顯抑制。所以同單純IH組相比,煙熏暴露導(dǎo)致的肺氣腫(不論是否合并IH)不但可造成炎癥前狀態(tài),還能導(dǎo)致較強(qiáng)程度的血栓前狀態(tài)和高凝狀態(tài),使血管事件的風(fēng)險(xiǎn)增高,同既往研究相一致[15]。Bendz等[16]首次提出低氧可能是靜脈血栓風(fēng)險(xiǎn)升高的原因之一,并證明低氧能直接調(diào)節(jié)微循環(huán)的內(nèi)皮系統(tǒng)、屏障系統(tǒng)和凝血功能。據(jù)尸檢研究報(bào)道,死于COPD惡化的患者有30%存在肺血栓栓塞[17]。
本研究證實(shí),肝臟氧化應(yīng)激指標(biāo)(SOD、CAT、MDA)同凝血因子和抗凝因子具有相關(guān)性。既往有報(bào)道稱炎癥和凝血過(guò)程受某種共同的激活途徑和反饋調(diào)節(jié)的控制[18]。一方面炎癥可影響血栓的形成過(guò)程,另一方面凝血亢進(jìn)和纖溶抑制可導(dǎo)致更嚴(yán)重的炎性反應(yīng),如此惡性循環(huán)。提示IH和肺氣腫在導(dǎo)致氧化應(yīng)激損傷和破壞凝血功能兩方面呈現(xiàn)出疊加效應(yīng)[19-20]。
(圖1、2見(jiàn)插頁(yè))
[1]Harding SM.Complications and consequences of obstructive sleep apnea[J].Curr Opin Pulm Med,2000,6(6):485-489.
[2]Li X,Li YP,Wu HJ,et al.What is the most important factor affecting the cognitive function of obstructive sleep apnea syndrome patients: a single center study[J].Chinese Journal of Contemporary Neurolo?gy and Neurosurgery,2013,13(5):416-422.[李想,李雁鵬,吳惠涓,等.阻塞性睡眠呼吸暫停綜合征患者認(rèn)知功能評(píng)價(jià)及影響因素分析[J].中國(guó)現(xiàn)代神經(jīng)疾病雜志,2013,13(5):416-422].doi:10.3969/j.issn.1672?6731.2013.05.012.
[3]Ioachimescu OC,Teodorescu M.Integrating the overlap of obstruc?tive lung disease and obstructive sleep apnoea:OLDOSA syndrome [J].Respirology,2013,18(3):421-431.
[4]Verbraecken J,McNicholas WT.Respiratory mechanics and ventila?tory control in overlap syndrome and obesity hypoventilation[J]. Respir Res,2013,14:132.
[5]van Eeden SF,Sin DD.Chronic obstructive pulmonary disease:a chronic systemic inflammatory disease[J].Respiration,2008,75(2): 224-238.
[6]Thomsen M,Dahl M,Lange P,et al.Inflammatory biomarkers and comorbidities in chronic obstructive pulmonary disease[J].Am J Respir Crit Care Med,2012,186(10):982-988.
[7]Rizkallah J,Man SF,Sin DD.Prevalence of pulmonary embolism in acute exacerbations of COPD:a systematic review and meta analysis [J].Chest,2009,135(3):786-793.
[8]Wang Y,Cao J,Yang QC,et al.Systematic and endothelial inflam?mation status and endothelial progenitor cell levels in peripheral blood in intermittent hypoxia and emphysema rat model[J].Tianjin Medical Journal,2014,42(5):427-431.[王彥,曹潔,楊慶嬋,等.間歇低氧合并肺氣腫大鼠系統(tǒng)與內(nèi)皮炎癥狀態(tài)及外周血內(nèi)皮祖細(xì)胞水平研究[J].天津醫(yī)藥,2014,42(5):427-431].
[9]Feng J,Chiang AA,Wu Q,et al.Sleep-related hypoxemia aggra?vates systematic inflammation in emphysematous rats[J].Chin Med J(Engl),2010,123(17):2392-2399.
[10]Lavie L.Obstructive sleep apnoea syndrome--an oxidative stress disorder[J].Sleep Med Rev,2003,7(1):35-51.
[11]Polotsky VY,Patil SP,Savransky V,et al.Obstructive sleep apnea,insulin resistance,and steatohepatitis in severe obesity[J].Am J Respir Crit Care Med,2009,179(3):228-234.
[12]Barnes PJ.Chronic obstructive pulmonary disease:effects beyond the lungs[J].PLoS Med,2010,7(3):e1000220.
[13]Sookoian S,Rosselli MS,Gemma C,et al.Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease:impact of liver methylation of the peroxisome proliferator-activated receptor gam?ma coactivator 1alpha promoter[J].Hepatology,2010,52(6):1992-2000.
[14]Sundaram SS,Sokol RJ,Capocelli KE,et al.Obstructive sleep ap?nea and hypoxemia are associated with advanced liver histology in pediatric nonalcoholic fatty liver disease[J].J Pediatr,2014,164(4): 699-706 e1.
[15]Eid AA,Ionescu AA,Nixon LS,et al.Inflammatory response and body composition in chronic obstructive pulmonary disease[J].Am J Respir Crit Care Med,2001;164(8 Pt 1):1414-8.
[16]Bendz B,Rostrup M,Sevre K,Andersen TO,Sandset PM.Associa?tion between acute hypobaric hypoxia and activation of coagulation in human beings[J].Lancet,2000;356(9242):1657-8.
[17]Sabit R,Thomas P,Shale DJ,et al.The effects of hypoxia on mark?ers of coagulation and systemic inflammation in patients with COPD [J].Chest,2010,138(1):47-51.
[18]Poredos P,Jezovnik MK.The role of inflammation in venous throm?boembolism and the link between arterial and venous thrombosis[J]. Int Angiol,2007,26(4):306-311.
[19]Feng J,Wang QS,Chiang A,et al.The effects of sleep hypoxia on co?agulant factors and hepatic inflammation in emphysematous rats[J]. PloS One,2010;5(10):e13201.
[20]Liu YM,Gao ML,Cao J,et al.Hepatic oxidative stress and inflam?mation in emphysema and intermittent hypoxia rat model[J].Tianjin Medical Journal,2014,42(2):147-150.[劉亞萌,高夢(mèng)麗,曹潔,等.肺氣腫合并間歇低氧大鼠模型肝臟的氧化應(yīng)激及炎癥損傷[J].天津醫(yī)藥,2014,42(2):147-150].
(2014-10-01收稿2014-10-31修回)
(本文編輯閆娟)
Hepatic oxidative stress and coagulation status in rat model of pulmonary emphysema combined with intermittent hypoxia
MA Yijiang1,HE Qing2△,HU Zhidong1△,F(xiàn)ENG Jing3
1 Department of Laboratory,2 Department of Endocrinology,3 Department of Pneumology,General Hospital of Tianjin Medical University,Tianjin 300052,China
ObjectiveTo establish the rat overlap syndrome(OS)model of intermittent hypoxia(IH)combined with pulmonary emphysema and to explore its connection with hepatic oxidative stress,inflammatory status in the live and coagu?lation profile.MethodsMale Wistar rats(n=60)were randomly divided into four groups:control group(A),IH group(B),pulmonary emphysema group(C)and OS group(D).The rat model of pulmonary emphysema was established by exposing rats in smoke for 16 weeks.From the 13thweek,pre-programmed intermittent hypoxia/re-oxygenation(IH/ROX)exposure was given in the meantime of smoke exposure in OS group.Liver tissues were sectioned or triturated for pathological scoring or for detecting expression levels of superoxide dismutase(SOD),catalase(CAT)and malondialdehyde(MDA)respectively.Se?rum levels of coagulant/anticoagulant factors such as antithrombin(AT),fibrinogen(FIB),von Willebrand factor(vWF)and FactorⅧ(FⅧ)were also evaluated using biochemistry analysis.ResultsThe levels of pathological scores and coagulant factors(FIB,F(xiàn)Ⅷ:C and vWF:Ag)were significantly higher in group D than those in group A,B and C.The values of SOD,CAT and AT were significantly lower in group D than those in other three groups.Serum levels of FIB,vWF:Ag,F(xiàn)Ⅷ:C and AT:A correlated with SOD(r equal to-0.905、-0.941、-0.946 and 0.817 respective,P<0.01).ConclusionIn rat overlap syndrome when IH combined with pulmonary emphysema,hepatic inflammation and coagulability present mutual promotion effect and produce a more significant liver-derivative inflammatory and prothrombotic status.
pulmonary emphysema;intermittent hypoxia;oxidative stress;superoxide dismutase;catalase;malondialde?hyde;blood coagulation factors
R563.3
ADOI:10.11958/j.issn.0253-9896.2015.02.002
國(guó)家自然科學(xué)基金資助(81270144,30800507,81170071)
1天津醫(yī)科大學(xué)總醫(yī)院檢驗(yàn)科(郵編300052),2內(nèi)分泌科,3呼吸科
馬懿江(1987),女,碩士在讀,主要從事睡眠低氧性疾病研究
△E-mail:hech69@hotmail.com;huzhidong27@163.com