• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Calcareous nannoplankton dating of the Late Quaternary deposits in Greece and the eastern Mediterranean:Case studies from terrestrial and marine sites

    2015-08-20 03:02:44MariaTriantaphyllou
    Journal of Palaeogeography 2015年4期

    Maria V.Triantaphyllou

    Faculty of Geology and Geoenvironment,University of Athens,Panepistimioupolis Zografou,157-84 Athens,Greece

    Keywords:Emiliania huxleyi Biostratigraphy Palaeoclimatic conditions Greece Eastern Mediterranean

    ABSTRACT The distribution and abundance of Emiliania huxleyi(E.huxleyi)assemblages in the marine sediments of the Aravonitsa Plateau,Greece,and from the eastern Mediterranean are used(1)to evaluate the calcareous nannoplankton NN21a and NN21b biozones and the NN21a/NN21b boundary,and(2)to analyze the palaeoenvironmental and palaeoclimatic conditions prevailing in this interval.The sediment succession displays varied E.huxleyi assemblages and these are interpreted as reflecting climatic variability during marine isotope stages MIS 1-8.

    1.Introduction

    Emiliania huxleyi(E.huxleyi)is by far the most abundant and widespread coccolithophore in the world's oceans(Winter et al.,1994;Young,1994).It was first identified using light microscopy(Lohmann,1902)whereas the complicated structure of the coccolith was initially described by Black and Barnes(1961),Braarud et al.(1952),and Deflandre and Fert(1954),using Electron Microscopy.Three types(A,B and C)of E.huxleyi are distinguished(Young and Westbroek,1991),based on heterococcolith morphology,and it was demonstrated that the size of the different morphotypes is in fluenced by ecophenotypic and genotypic factors.The phylogenetic origins of E.huxleyi are documented in the fossil recordby Gallagher(1989),Perch-Nielsen(1985),Romein(1979)and Young et al.(1992).The monospecific genus Emiliania is considered to have evolved from the genus Prinsius through Toweius,Reticulofenestra and Gephyrocapsa(Perch-Nielsen,1985;Samtleben,1980;Young et al.,1992).

    Fig.1-Location of the reviewed on-land and marine records in the eastern Mediterranean.The general circulation pattern is modified from Malanotte-Rizzoli et al.(1997).

    Amongst the extant coccolithophores,E.huxleyi has the widest distribution,dominating the living assemblages.It occasionally forms massive blooms,when water conditions are favorable,e.g.high light,limited silicate and high carbonate saturation(Tyrrell and Merico,2004).Under certain environmental conditions it sheds coccoliths(Paasche,2001).Variation in the coccolith size and morphology of E.huxleyi is frequent(Young and Westbroek,1991),being usually associated with temperature,salinity and available nutrients(e.g.,Bollmann and Herrle,2007;Paasche,1998,2001;Watabe and Wilbur,1966).The increase in atmospheric CO2partial pressure and the consequent changes in the seawater carbonate chemistry can cause a decrease in its cellular particulate inorganic carbon(PIC)/particulate organic carbon(POC)ratio as well as malformations of the coccoliths(Riebesell et al.,2000)-these might have opposing effects on the marine carbon cycle (Rostand Riebesell,2004).Recently,the morphological variability of E.huxleyi var.huxleyi(=E.huxleyi type A)has been demonstrated in the modern Aegean Sea,in respectto theenvironmental parametersof the watercolumn,providing strong evidence for seasonal variation in E.huxleyi coccoliths(Triantaphyllou et al.,2010b).A consistent pattern of increase in the size and calcification of coccoliths and coccospheres has been observed,including the thickness of the inner tube elements in the winter and spring and low seasurface temperature and moderate productivity when compared with summer time,high temperature and low productivity(Triantaphyllou et al.,2010b).

    Table 1-Aravonitsa samples:Quantitative SEM analysis of 300 coccoliths.

    The first appearance datum(FAD)of E.huxleyi in the geological records is used as a biostratigraphic marker and marks the base of the NN21 calcareous nannofossil biozone(NN21a;Martini,1971).It has been dated at~270 ka using correlation with planktonicforaminiferalδ18O records(Gartner and Emiliani,1976),at~268 ka,late in the cold marine isotopic stage 8(MIS 8;Thierstein et al.,1977),at~285 ka(Pacific ocean;Ahagon et al.,1993),and at~230 ka(Hills and Thierstein,1989).According to Kroon et al.(1998),this event is placed at 260 ka in the eastern Mediterranean,whereas the astronomically tuned biozone timescale of Lourens et al.(2005)dates the lowest occurrence of E.huxleyi and subsequently the base of the calcareous nannofossil biozone MNN21a(Raf fi,2002;Rio et al.,1990),(=NN21a;Martini,1971)at 270 ka(265 ka according to Raf fiet al.,2006).

    The blooming life-style of E.huxleyi started in warm timespans between~80 ka at the end of MIS 5 and 50 ka(MIS 3)(Kroon et al.,1998),and is associated with the E.huxleyi Acme Zone(NN21b;Martini,1971)in the fossil record.In shallow marginaland inlandseas theE.huxleyiAcmeZone beganlater;in these areas Gephyrocapsa spp.are generally more dominant(e.g.,Okadaand Honjo,1975).The base of NN21b is followed by the top of the Gephyrocapsa muellerae Acme Zone at 45.7 ka(Flores et al.,1997;Incarbona et al.,2009),characterized by a dramatic and continuous reduction in G.muellerae,which suggests that E.huxleyi may have taken over an ecological niche formerly dominated by Gephyrocapsa spp.

    Fig.2-A-E-Gephyrocapsa protohuxleyi specimens possessing a bridge or the remains of the bases of a bridge;F-G-Small Reticulofenestra specimens that have undergone etching resulting in separation of the ends of the elements(arrows);H-I-Emiliania huxleyi with etching and/or incomplete shield formation(arrows).All samples from the on-land record of Aravonitsa Plateau,location L11.

    At the present day E.huxleyi type A,characterized by moderately elevated distal shield,robust distal shield elements and a central area covered by curved rod-like elements(Young et al.,2003),is abundant in the Mediterranean Sea.It dominates particularly the winter coccolithophore assemblages of the Aegean Sea.Overall,high cell densities are observed in winter and early spring during phases of highernutrient,well-mixed waters(Jan.:34×103cells/dm3,March:23×103cells/dm3),whereas densities are lower in the summer-early autumn oligotrophic and highly stratified water column(Aug.-Sept.:2×103cells/dm3;Dimiza et al.,2008;Triantaphyllou et al.,2010a).The analysis of sediment trap samples has shown that E.huxleyi largely dominates the total coccolith flux in the modern Aegean Sea and the eastern Mediterranean(Malinverno et al.,2009,2014;Triantaphyllou et al.,2004;Ziveri et al.,2000).

    This study is based on the analysis of the coccolithophore assemblages occurring in marine sediments belonging to the NN21a and NN21b biozones that have been recovered from theeasternMediterraneanandfrommainlandGreece.Particular attention has been given to the variations in the pattern of E.huxleyi assemblages and their use both as abiostratigraphic tool and as a means to evaluate the palaeoenvironmental and palaeoclimatic conditions prevailing in these biozones.

    Table 2-Piston core LC08,sample LC08-3(40-100 cm):Quantitative SEM analysis of 300 coccoliths.

    2.Samples and methods

    The locations of the sample sites are shown in Fig.1.The single mainland site is on the Aravonitsa Plateau,northern Peloponnese(location L11,Palyvos et al.,2010).There are deep sea gravity cores from the Libyan Sea (ADE3-23:Triantaphyllou et al.,2010a),the southeastern Aegean Sea(NS-14:Triantaphyllou et al.,2009),and the southern Crete margin(HCMR2-22:Ioakim et al.,2009;Katsouras et al.,2010)as well as a long pistoncore from the Pantelleria Trough(LC08:Anastasakis and Pe-Piper,2006).

    Samples of fine-grained marine sediments were examined by scanning electron and light microscopy for their content of calcareous nannoplankton using standard methods with counts of 300 coccolith specimens(Negri and Giunta,2001;Perch-Nielsen,1985;Thierstein et al.,1977).The definition of the E.huxleyi NN21a biozone is based on the first appearance of specimens of the species,that is the midpoint of the slope of the initial increase of the species in counts of 300 coccoliths(FAD of E.huxleyi;Rio et al.,1990;Thierstein et al.,1977),whereas the E.huxleyi Acme Zone(MNN21b)is defined as the interval where the frequency of E.huxleyi in the coccolith population exceeds 40%level(Castradori,1993;Rio et al.,1990).

    3.Results

    3.1.Terrestrial records

    Fig.3-A-NN21a biozone assemblage,sample LC08-3-100 cm;B-E.huxleyi distal,sample LC08-3-100 cm;C-E.huxleyi distal,sample LC08-3-60 cm;D-E.huxleyi proximal,sample LC08-3-40 cm;E-Gephyrocapsa muellerae coccosphere,sample LC08-3-60 cm;F-Helicosphaera carteri proximal view,sample LC08-3-60 cm;G-H-Coccolithus pelagicus distal and proximal,sample LC08-3-60 cm;I-Helicosphaera carteri HOL(Syracolithus confusus),sample LC08-3-60 cm,from piston core LC08.

    The sedimentary successions of fine-grained shallow marine deposits on the Aravonitsa Plateau are remnants preserved on a flat depositional geomorphic surface now at 500-520 m abovesea level.They werediscoveredduringthe investigation of the Pleistocene coastal uplift in the westernmost part of the Corinth Gulf(Palyvos et al.,2010).Two samples of these finegrained terrigenous sediments (location L11,samples W146A,W146B;Palyvos et al.,2010)yielded sparse nannoplankton assemblages.These contained abundant small Gephyrocapsa spp.(Table 1)including Gephyrocapsa protohuxleyi.The G.protohuxleyi specimens possess a bridge or the remains of the bases of a bridge(Fig.2A-E).It is also clear in each of these specimens that the distal shield elements are more or less tube-like with parallel sides,and there is some evidence in each instance that these had expanded ends(hammer heads)although most elements have lost at least part of their ends.In addition,small coccoliths resembling E.huxleyi occur very occasionally,and these bear platy distal shield elements in contact for much of their length and do not show any trace of hammer-heads.They have been identified as small specimens of Reticulofenestra spp.which have undergone etching resulting in separation of the ends of the elements(Fig.2F-G).Exhaustive microscopic analysis revealed the presence of rare(approximately 1%)true representatives of E.huxleyi with etching and/or incomplete shield formation(Table 1,Fig.2H-I).

    The very low abundance of E.huxleyi in these samples could suggest correlation with the basal part of NN21a within the cold MIS 8 stage.Apparently,the lowest occurrence of E.huxleyi(at 270 ka)in the stratigraphic record of the eastern Mediterranean falls within the cold MIS 8,a phase of low sea levels based on sea-level curves(e.g.,Shackleton and Pisias,1985;Siddall et al.,2007).However,during this phase,the Corinth Gulf developed as a lake,isolated from the sea by a sill(e.g.,Palyvos et al.,2010).Depending on the elevation of the sill at the time,the lowest occurrence of E.huxleyi in the Corinth Gulf isthereforeexpectedto be moreor less closeto the MIS 7e highstand(i.e.a few ka before 240 ka),because only then sea water had the chance to enter the gulf(Palyvos et al.,2010).Therefore these marine deposits from the Aravonitsa Plateau(location L11)most probably belong to the warm MIS 7e stage at approx.240 ka,otherwise E.huxleyi would have been more abundant.

    This is one of the very rare records of this marine biozone preserved in Greece.Another suggested terrestrial occurrence of this marine biozone has been described from a borehole drilled in the shallow valley of Livadi separating Kefallonia from its western peninsula,Paliki,during the search for Homer's Ithaca(Underhill,2006,2008).Very well preserved specimens of E.huxleyi have been recorded in the top 40 m of sediment of this borehole.It is suggested that these very young deposits may not represent in situ sedimentation,but can be considered as consistent with the impact of a catastrophic landslide on a marine channel.This would have ejected a large volume of water out of the channel and saturated the in fill material.This interpretation has been favored,because it was thought that E.huxleyi could not have reached this location earlier than about 6000 years ago,when rising global sea levels penetrated the shallow gulf of Livadi for the first time(Underhill,2008).

    3.2.Marine cores

    Fig.4-a-Stratigraphy,MIS stages and biozonation with core ADE3-23 from the Libyan Sea.The distribution of E.huxleyi and the top of G.muellerae Acme Zone are shown(modified from Triantaphyllou et al.,2010a);b-Stratigraphy,AMS ages and biozonal assignment of core HCMR2-22 from the southern Crete margin;c-The distribution of E.huxleyi and sea surface temperature(SST)pattern within the MIS 1 stage core NS-14 from southeastern Aegean Sea(modified from Triantaphyllou et al.,2009).S1a=The lower part of sapropel S1 layer;S1b=The upper part of sapropel S1 layer;SMH=Sapropel MidHolocene layer.

    In the present study,a very clear transition between the NN21a and NN21b biozones is documented from the lower part of the long piston core LC08 in the Pantelleria Trough,Sicily Channel.This part of the core is dominated by the presence of a thick volcaniclastic interval deposited from a large gravitational flow during the Green Tuff eruption(Anastasakis and Pe-Piper,2006).The lower hemipelagic marls,immediately below the base of the volcaniclastic interval,have been examined for their nannofossil content.E.huxleyi is present in amounts of below 10%in the lower parts of this interval,and this rapidly increases upwards to 40%and more(Table 2,Fig.3).The presence of G.muellerae has been constantly recorded as more than 40%.A sample of marl from the hemipelagic interval yielded an accelerator mass spectrometry conventional radiocarbon age of 41190±1090 a BP(Beta 198833)with a calibrated radiocarbon age of 43-47±2 ka(Anastasakis and Pe-Piper,2006).Although radiocarbon dates older than 40-45 ka are questionable,the calcareous nannofossil assemblages confirm the biostratigraphic correlation of this interval(sample LC08-3-40 cm)with biozone NN21b,providing a unique chance to calibrate the base of this zone in the Mediterranean with an AMS radiocarbon age.

    A case study involving the definition of NN21a/NN21b boundary has been documented in the gravity core ADE3-23,located SW of Crete(34°45.000′N,21°52.800′E),at 2459 m water depth.The core recovered 3.49 m of gray hemipelagic mud and silty mud interlayered with three distinct dark gray sapropelic layers,i.e.,S6,S5 and S1,and a hiatus of approximately 35 ka between ~83 ka and ~118 ka(Triantaphyllou et al.,2010a).E.huxleyi displays values well below 20%(Fig.4a)during the cold MIS 6 and MIS 4 stages,although during the latter,values are comparably higher.It just exceeds 10%during the warm MIS 5(sapropel S5 depositional interval).Apparently the lower part of the core ADE3-23 corresponds to the NN21a biozone.The increase in abundance of E.huxleyi,although never reaching 20%as previously reported(e.g.,Castradori,1993;Corselli et al.,2002;Violanti et al.,1991),suggests higher fertility in the surface waters in the middle part of S5,corresponding to the timing of relaxation in the northward penetration of the African monsoon already recorded within S5 in the southeastern Mediterranean area(Rohling et al.,2002).The definition of the NN21a/NN21b boundary is marked by the increase of E.huxleyi within MIS 3 at 50ka.Thiseventis shortlyfollowedin core ADE3-23 by the top of the Gephyrocapsa muellerae Acme Zone,characterized by a dramatic and continuous reduction in G.muellerae,which points to an age of 45.7 ka(Triantaphyllou et al.,2010a).A further increase of E.huxleyi is recorded within MIS 1(Fig.4a).

    Fig.5-A-B-E.huxleyi Acme Zone assemblage,sample 67-68 cm;C-Gephyrocapsa muellerae,G.muellerae Acme Zone,samples 145-146 cm,and 173-174 cm;D-H-G.muellerae Acme Zone assemblage,samples 118-119 cm,145-146 cm,and 173-174 cm;I-Small Reticulofenestra spp.,sample 173-174 cm.Samples from gravity core HCMR2-22.

    The top of the G.muellerae Acme Zone(45.7 ka BP)has also been recognized in the lower part of one additional sediment succession from gravity core HCMR2-22(34°33.968′N,24°53.770′E,water depth 2211 m,length 175 cm)from the southern Crete margin(Ioakim et al.,2009;Katsouras et al.,2010).Based on calcareous nannofossil biostratigraphy,most of this sedimentary succession has been proved to span the last approximately 50 ka and can be correlated with the E.huxleyi Acme Zone NN21b(Figs.4b and 5).

    Very detailed information for the distribution of E.huxleyi during theLate Glacial-Holoceneintervalin thewarmMIS 1 is provided from a high-resolution record in the southeastern Aegean Sea(gravity core NS14;Triantaphyllou et al.,2009).The high surface nutrient indicator E.huxleyi(Young,1994)is the most abundant placolith within the coccolithophore assemblages from~13 to 10.6 ka BP(Fig.4c;Triantaphyllou et al.,2009).This points to cool surface-water conditions,as E.huxleyi is a species that prevails in the Aegean surface waters mainly in winter(Dimiza et al.,2008)and displays more heavily calcified E.huxleyi morphotypes(Triantaphyllou et al.,2010b).Following this interval,E.huxleyi decreases during the warm and wet phase during the deposition of sapropel S1.There is a prominent reduction starting at 8.5 ka BP with minimum values of 25%at the base of the upper part of sapropel S1(S1b),implying low surface productivity and strong stratification of the water column(Triantaphyllou et al.,2009).E.huxleyi increases again from 7.3 ka BP presenting three main negative shifts at~6.8,6.0 and 4.8 ka BP within the Sapropel Mid Holocene layer(SMH;Triantaphyllou et al.,2009,2014)associated with fluctuating sea-surface temperatures.(Fig.4c;Triantaphyllou et al.,2009).

    4.Conclusions

    The sediment records reveal variations in the E.huxleyi assemblages during marine isotope stages MIS 1-8.These appear to be linked with climatic variability.

    In particular,based on E.huxleyi assemblages:

    1)The E.huxleyi assemblage from the lowermost part of biozone NN21a is described from the Aravonitsa Plateau in the northern Peloponnese and most probably represents the warm phase MIS 7e at approx.240 ka.This is the first marine representative of this biozone onshore.The E.huxleyi coccoliths in the Kefallonia deposits are considered to be redeposited material.

    2)The lower part of the long piston core LC08 from the Pantelleria Trough,Sicily Channel,displaysthe transition from biozone NN21a to NN21b.A radiocarbon(AMS)age of 41190±1090 a BP from this core provides a temporal calibration for the basal part of biozone NN21b in the eastern Mediterranean.

    3)E.huxleyi displays values well below 20%of the total nannofossil assemblage during the cold stages MIS 6 and MIS 4 in the marine core ADE3-23 from the Libyan Sea,although during the latter stage,values are comparably higher.They exceed slightly 10%during the middle part of sapropel S5,within the warm MIS 5.

    4)The biozone NN21a/NN21b boundary is marked by an abrupt increase of E.huxleyi within the relatively warm stage MIS 3 at 50 ka.Overlying this boundary in core ADE3-23 from the eastern Mediterranean is the top of the Gephyrocapsa muellerae Acme Zone at 45.7 ka;this has also been recognized in the lower part of the succession in core HCMR2-22 from the southern Crete margin.

    5)A further increase and considerable fluctuations in E.huxleyi are recognized within warm stage MIS 1 in the core NS-14 from the southeastern Aegean Sea.This is thought to reflect continuous climate variability during this stage in the Late Glacial-Holocene.

    Acknowledgements

    G.Anastasakis is kindly thanked for providing the study material of piston core LC08.The manuscript benefited by the criticism of Christopher Jeans and two anonymous reviewers.

    亚洲自拍偷在线| 久久久久九九精品影院| 亚洲精品国产一区二区精华液| 中文字幕av电影在线播放| 婷婷亚洲欧美| 午夜福利18| 岛国视频午夜一区免费看| 欧美在线一区亚洲| 亚洲男人的天堂狠狠| 好看av亚洲va欧美ⅴa在| 亚洲国产欧美日韩在线播放| 亚洲熟妇熟女久久| 在线观看免费午夜福利视频| 人人澡人人妻人| 一级黄色大片毛片| 宅男免费午夜| 久久九九热精品免费| 日韩欧美在线二视频| 国产免费男女视频| 日韩 欧美 亚洲 中文字幕| 亚洲狠狠婷婷综合久久图片| 亚洲成a人片在线一区二区| 人人澡人人妻人| 中文亚洲av片在线观看爽| 亚洲片人在线观看| 亚洲欧美一区二区三区黑人| 欧美中文综合在线视频| 少妇 在线观看| av欧美777| 国产黄色小视频在线观看| 中文字幕精品亚洲无线码一区 | 日本黄色视频三级网站网址| 18禁国产床啪视频网站| 久久性视频一级片| 制服人妻中文乱码| 亚洲精品国产区一区二| 19禁男女啪啪无遮挡网站| 国产精华一区二区三区| 啦啦啦观看免费观看视频高清| 亚洲三区欧美一区| 美女高潮喷水抽搐中文字幕| 久久久国产成人免费| 男女那种视频在线观看| ponron亚洲| 亚洲熟妇中文字幕五十中出| 日本一区二区免费在线视频| 精品国产国语对白av| 大型黄色视频在线免费观看| 久久中文字幕人妻熟女| 丝袜人妻中文字幕| 精品久久久久久久久久免费视频| 日本黄色视频三级网站网址| 88av欧美| 欧美日韩一级在线毛片| 亚洲国产欧美网| 好男人电影高清在线观看| 国产精品日韩av在线免费观看| 麻豆国产av国片精品| 国产精品一区二区免费欧美| 亚洲全国av大片| АⅤ资源中文在线天堂| 欧美zozozo另类| 欧美另类亚洲清纯唯美| 国产黄片美女视频| 久久久久久久久久黄片| 午夜福利高清视频| av在线天堂中文字幕| 午夜激情福利司机影院| 好看av亚洲va欧美ⅴa在| 免费看a级黄色片| 亚洲狠狠婷婷综合久久图片| 午夜福利成人在线免费观看| 日本成人三级电影网站| 免费高清视频大片| 免费在线观看成人毛片| 国产精品国产高清国产av| 国产又爽黄色视频| 丝袜人妻中文字幕| 真人做人爱边吃奶动态| 久久国产乱子伦精品免费另类| 精品免费久久久久久久清纯| 欧美大码av| 亚洲成人免费电影在线观看| 在线天堂中文资源库| 18禁黄网站禁片午夜丰满| 黄片播放在线免费| 男人舔奶头视频| videosex国产| 精品欧美一区二区三区在线| 黑人巨大精品欧美一区二区mp4| 少妇被粗大的猛进出69影院| 最近在线观看免费完整版| 成人欧美大片| 免费看a级黄色片| 久久中文字幕一级| 国产av一区在线观看免费| 白带黄色成豆腐渣| 亚洲久久久国产精品| 99在线视频只有这里精品首页| 啦啦啦观看免费观看视频高清| 悠悠久久av| 天堂√8在线中文| bbb黄色大片| 精品高清国产在线一区| 在线观看一区二区三区| 91国产中文字幕| 午夜免费鲁丝| 国产野战对白在线观看| www.www免费av| xxx96com| 人人妻,人人澡人人爽秒播| 亚洲中文av在线| 久久久精品国产亚洲av高清涩受| 欧美精品啪啪一区二区三区| 国产成年人精品一区二区| 真人一进一出gif抽搐免费| 精品国内亚洲2022精品成人| 美女大奶头视频| 母亲3免费完整高清在线观看| 天堂影院成人在线观看| 国内少妇人妻偷人精品xxx网站 | 亚洲第一av免费看| 久久精品91无色码中文字幕| 日日夜夜操网爽| 此物有八面人人有两片| 亚洲一码二码三码区别大吗| www.熟女人妻精品国产| 欧美日韩黄片免| 啦啦啦 在线观看视频| 国产日本99.免费观看| 在线十欧美十亚洲十日本专区| 国产高清激情床上av| 十八禁人妻一区二区| 黄色a级毛片大全视频| 日韩欧美 国产精品| videosex国产| 国产av一区在线观看免费| 欧美日韩黄片免| 90打野战视频偷拍视频| 欧美中文日本在线观看视频| 亚洲专区国产一区二区| 亚洲无线在线观看| 成人亚洲精品av一区二区| 午夜两性在线视频| 中文字幕另类日韩欧美亚洲嫩草| 中文在线观看免费www的网站 | 亚洲熟妇中文字幕五十中出| 狂野欧美激情性xxxx| 老熟妇乱子伦视频在线观看| 亚洲精品粉嫩美女一区| 成熟少妇高潮喷水视频| 亚洲成人久久性| 嫩草影院精品99| 熟女少妇亚洲综合色aaa.| 亚洲成人免费电影在线观看| 国产一区二区三区在线臀色熟女| svipshipincom国产片| 国产99白浆流出| 亚洲av日韩精品久久久久久密| 成人国语在线视频| 亚洲电影在线观看av| 欧美激情极品国产一区二区三区| 精品欧美一区二区三区在线| 免费在线观看影片大全网站| 制服丝袜大香蕉在线| 国产成人啪精品午夜网站| 欧美三级亚洲精品| 成在线人永久免费视频| 成人18禁在线播放| 欧美+亚洲+日韩+国产| 久久中文字幕人妻熟女| 级片在线观看| 久久久久久人人人人人| 日韩视频一区二区在线观看| 观看免费一级毛片| 国产在线观看jvid| 国产熟女午夜一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区三区四区久久 | 夜夜躁狠狠躁天天躁| 亚洲 国产 在线| 少妇裸体淫交视频免费看高清 | 国产激情欧美一区二区| 搡老岳熟女国产| 禁无遮挡网站| 又黄又爽又免费观看的视频| 午夜福利免费观看在线| 亚洲天堂国产精品一区在线| 欧美av亚洲av综合av国产av| 别揉我奶头~嗯~啊~动态视频| 一本大道久久a久久精品| 一进一出好大好爽视频| 在线av久久热| 亚洲成人久久性| 亚洲七黄色美女视频| 50天的宝宝边吃奶边哭怎么回事| 午夜影院日韩av| 又大又爽又粗| 国产免费男女视频| 欧美日韩中文字幕国产精品一区二区三区| 国产精品永久免费网站| 午夜福利18| 一区二区三区精品91| 国产亚洲精品综合一区在线观看 | 亚洲五月天丁香| 日日爽夜夜爽网站| 日韩欧美一区二区三区在线观看| 日韩欧美一区二区三区在线观看| 久久久国产成人精品二区| 动漫黄色视频在线观看| 大型av网站在线播放| 成人一区二区视频在线观看| 日韩欧美一区视频在线观看| 99热6这里只有精品| 精品福利观看| 国产一区二区在线av高清观看| 91麻豆av在线| 免费无遮挡裸体视频| 长腿黑丝高跟| 美女扒开内裤让男人捅视频| 嫩草影视91久久| 99久久无色码亚洲精品果冻| netflix在线观看网站| 日韩欧美一区二区三区在线观看| 精品欧美一区二区三区在线| 日韩欧美国产一区二区入口| 久久久久九九精品影院| 免费无遮挡裸体视频| 琪琪午夜伦伦电影理论片6080| 一卡2卡三卡四卡精品乱码亚洲| 国内少妇人妻偷人精品xxx网站 | 成人免费观看视频高清| 精品一区二区三区av网在线观看| 97人妻精品一区二区三区麻豆 | 免费无遮挡裸体视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲天堂国产精品一区在线| 午夜a级毛片| 三级毛片av免费| 一级a爱视频在线免费观看| 90打野战视频偷拍视频| 99精品在免费线老司机午夜| 色综合亚洲欧美另类图片| 夜夜夜夜夜久久久久| 亚洲中文字幕日韩| 男女视频在线观看网站免费 | 亚洲真实伦在线观看| 18禁裸乳无遮挡免费网站照片 | 视频区欧美日本亚洲| 黄色丝袜av网址大全| www.自偷自拍.com| 亚洲国产欧美一区二区综合| 不卡av一区二区三区| АⅤ资源中文在线天堂| 两个人看的免费小视频| 黄色女人牲交| 美女扒开内裤让男人捅视频| 97人妻精品一区二区三区麻豆 | 黄网站色视频无遮挡免费观看| 叶爱在线成人免费视频播放| 麻豆一二三区av精品| 啦啦啦免费观看视频1| 亚洲色图 男人天堂 中文字幕| 欧美日韩瑟瑟在线播放| 黄片小视频在线播放| 狂野欧美激情性xxxx| 日韩免费av在线播放| 国产精品久久久久久人妻精品电影| 欧美大码av| 啦啦啦免费观看视频1| 午夜福利视频1000在线观看| 久久久久国产精品人妻aⅴ院| 欧美黑人精品巨大| 99久久综合精品五月天人人| 男女午夜视频在线观看| 在线观看午夜福利视频| 中文在线观看免费www的网站 | 一夜夜www| 国内精品久久久久精免费| 男女做爰动态图高潮gif福利片| 老司机午夜十八禁免费视频| 伊人久久大香线蕉亚洲五| 国产成人影院久久av| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩中文字幕国产精品一区二区三区| 成人一区二区视频在线观看| 国产成年人精品一区二区| 日韩欧美在线二视频| 亚洲精品一区av在线观看| 一区二区三区精品91| 色婷婷久久久亚洲欧美| 99国产综合亚洲精品| 亚洲在线自拍视频| 深夜精品福利| 久久伊人香网站| 久久久国产欧美日韩av| 欧美丝袜亚洲另类 | 国产1区2区3区精品| 久久精品国产清高在天天线| 色尼玛亚洲综合影院| 国产成人系列免费观看| 少妇的丰满在线观看| 18禁观看日本| 国产极品粉嫩免费观看在线| 悠悠久久av| 午夜福利视频1000在线观看| 日本黄色视频三级网站网址| 国产精品久久视频播放| 一二三四在线观看免费中文在| 中文字幕另类日韩欧美亚洲嫩草| 在线国产一区二区在线| 亚洲av电影在线进入| 精品国产乱子伦一区二区三区| 草草在线视频免费看| 欧美成人免费av一区二区三区| 日韩欧美国产一区二区入口| x7x7x7水蜜桃| 欧美+亚洲+日韩+国产| 久9热在线精品视频| 一级黄色大片毛片| 99riav亚洲国产免费| 国语自产精品视频在线第100页| 精品国产乱码久久久久久男人| 在线国产一区二区在线| 女性生殖器流出的白浆| 国产精品野战在线观看| 久久久久久国产a免费观看| 久久久久久久久免费视频了| 99热只有精品国产| 欧美一级a爱片免费观看看 | 亚洲色图 男人天堂 中文字幕| 亚洲人成网站在线播放欧美日韩| 桃红色精品国产亚洲av| 变态另类成人亚洲欧美熟女| 又大又爽又粗| 一级黄色大片毛片| 一区二区三区精品91| 精品少妇一区二区三区视频日本电影| 精品久久久久久久末码| 亚洲欧美精品综合一区二区三区| 夜夜爽天天搞| 精品少妇一区二区三区视频日本电影| 色精品久久人妻99蜜桃| 熟女电影av网| 久久九九热精品免费| 亚洲熟女毛片儿| 国产精品久久视频播放| 亚洲中文字幕日韩| 制服诱惑二区| ponron亚洲| 99精品久久久久人妻精品| 丝袜在线中文字幕| 可以在线观看的亚洲视频| 欧美日韩黄片免| 欧美成狂野欧美在线观看| 久久精品91蜜桃| 日韩大码丰满熟妇| 成人特级黄色片久久久久久久| 国产精品久久视频播放| 亚洲三区欧美一区| 后天国语完整版免费观看| 欧美三级亚洲精品| 久久香蕉激情| 久久欧美精品欧美久久欧美| 很黄的视频免费| 91字幕亚洲| 国产精品美女特级片免费视频播放器 | 大香蕉久久成人网| 丝袜在线中文字幕| 国产成人一区二区三区免费视频网站| 波多野结衣高清无吗| x7x7x7水蜜桃| 亚洲国产精品999在线| 国产99久久九九免费精品| 国产精品二区激情视频| 免费一级毛片在线播放高清视频| 国产一区二区三区在线臀色熟女| 国产伦在线观看视频一区| 日韩欧美免费精品| 亚洲午夜精品一区,二区,三区| 狠狠狠狠99中文字幕| 超碰成人久久| 99国产精品一区二区蜜桃av| 国产黄片美女视频| 一区二区三区精品91| 精品一区二区三区视频在线观看免费| 后天国语完整版免费观看| 黄色 视频免费看| 好男人在线观看高清免费视频 | 成人国语在线视频| 男人舔女人下体高潮全视频| 国产人伦9x9x在线观看| 免费高清视频大片| 亚洲国产欧美网| 叶爱在线成人免费视频播放| 色老头精品视频在线观看| 一级片免费观看大全| 黄色成人免费大全| 欧美成狂野欧美在线观看| 亚洲国产欧美日韩在线播放| 精品一区二区三区四区五区乱码| 国产亚洲精品第一综合不卡| 校园春色视频在线观看| 亚洲激情在线av| 18禁黄网站禁片午夜丰满| 久久久久久免费高清国产稀缺| 亚洲成人久久爱视频| 国产av在哪里看| 日韩欧美一区视频在线观看| 天堂动漫精品| 在线观看免费午夜福利视频| 啦啦啦观看免费观看视频高清| 韩国精品一区二区三区| 免费高清在线观看日韩| 欧美另类亚洲清纯唯美| 精品国产亚洲在线| 叶爱在线成人免费视频播放| 在线观看免费午夜福利视频| 久久久久国产一级毛片高清牌| 精品少妇一区二区三区视频日本电影| 亚洲精品美女久久av网站| 黄片大片在线免费观看| 最近最新中文字幕大全电影3 | 精品国产一区二区三区四区第35| 搡老妇女老女人老熟妇| 国产精品 欧美亚洲| 欧美+亚洲+日韩+国产| 91av网站免费观看| 中文字幕最新亚洲高清| 日韩欧美国产一区二区入口| av超薄肉色丝袜交足视频| 久久国产亚洲av麻豆专区| av欧美777| 日本一区二区免费在线视频| 白带黄色成豆腐渣| 淫秽高清视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 日本免费一区二区三区高清不卡| а√天堂www在线а√下载| 在线十欧美十亚洲十日本专区| 国产精品 国内视频| 欧美成人午夜精品| 国产真实乱freesex| 久久精品人妻少妇| 性欧美人与动物交配| 国产一区在线观看成人免费| 国产片内射在线| 日韩欧美三级三区| 国产1区2区3区精品| 听说在线观看完整版免费高清| 国产伦一二天堂av在线观看| 国产精品久久久久久人妻精品电影| 欧美精品啪啪一区二区三区| 中文字幕精品免费在线观看视频| 18禁美女被吸乳视频| 国产精品国产高清国产av| 中亚洲国语对白在线视频| 亚洲成人免费电影在线观看| 日韩有码中文字幕| 亚洲成人精品中文字幕电影| www.精华液| 久久中文看片网| 亚洲 欧美一区二区三区| 亚洲无线在线观看| 99国产精品一区二区三区| 色播亚洲综合网| 欧美成人午夜精品| 久久久精品国产亚洲av高清涩受| 一级a爱片免费观看的视频| 欧美中文综合在线视频| 日本精品一区二区三区蜜桃| 中文字幕高清在线视频| 狠狠狠狠99中文字幕| 在线观看66精品国产| 久久午夜亚洲精品久久| 午夜福利在线在线| 熟女少妇亚洲综合色aaa.| 国产私拍福利视频在线观看| 免费在线观看日本一区| 99国产综合亚洲精品| 国产精品国产高清国产av| 国产亚洲av嫩草精品影院| 亚洲专区中文字幕在线| 老司机午夜福利在线观看视频| 婷婷六月久久综合丁香| 中文字幕久久专区| 亚洲欧美精品综合久久99| 久久99热这里只有精品18| 淫妇啪啪啪对白视频| 天天添夜夜摸| 国产乱人伦免费视频| 两性夫妻黄色片| 波多野结衣高清无吗| 老司机福利观看| 欧美黄色片欧美黄色片| 亚洲av成人一区二区三| 免费人成视频x8x8入口观看| 国产一区二区三区视频了| 亚洲人成伊人成综合网2020| avwww免费| 人人澡人人妻人| 亚洲人成77777在线视频| 岛国在线观看网站| 两性夫妻黄色片| 久久人人精品亚洲av| 午夜成年电影在线免费观看| 国产黄a三级三级三级人| 亚洲一区二区三区不卡视频| 色精品久久人妻99蜜桃| 国产精品综合久久久久久久免费| 久久久国产成人精品二区| 日韩欧美一区二区三区在线观看| 一级毛片高清免费大全| 大型av网站在线播放| 精品国产亚洲在线| 国产精品亚洲av一区麻豆| 国产免费av片在线观看野外av| 中文字幕久久专区| av视频在线观看入口| 欧美亚洲日本最大视频资源| 成人国语在线视频| 宅男免费午夜| 黑人操中国人逼视频| 老鸭窝网址在线观看| 少妇粗大呻吟视频| 欧美一级毛片孕妇| 99精品欧美一区二区三区四区| 亚洲国产日韩欧美精品在线观看 | 国产精品98久久久久久宅男小说| 可以在线观看的亚洲视频| 国产精品久久久av美女十八| 黑人欧美特级aaaaaa片| 亚洲性夜色夜夜综合| 国产精品免费视频内射| 亚洲成人久久爱视频| 一区福利在线观看| 一级毛片精品| 日韩av在线大香蕉| 国产高清视频在线播放一区| 校园春色视频在线观看| 国产精品日韩av在线免费观看| 午夜激情av网站| 亚洲人成电影免费在线| 亚洲国产看品久久| 欧美一级a爱片免费观看看 | 欧美成人免费av一区二区三区| 88av欧美| 无限看片的www在线观看| 俺也久久电影网| 国产野战对白在线观看| 中文在线观看免费www的网站 | 日韩一卡2卡3卡4卡2021年| 国产av一区二区精品久久| 国产激情偷乱视频一区二区| 国产精品久久久久久人妻精品电影| 18禁观看日本| 法律面前人人平等表现在哪些方面| 日韩三级视频一区二区三区| 国产精品国产高清国产av| 女警被强在线播放| 久久天堂一区二区三区四区| 国产亚洲精品av在线| 丝袜人妻中文字幕| 国产三级在线视频| 黑人欧美特级aaaaaa片| 欧美成人性av电影在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩亚洲国产一区二区在线观看| 成人免费观看视频高清| 国产精品免费视频内射| 桃色一区二区三区在线观看| 日韩欧美三级三区| 久久久久国产精品人妻aⅴ院| 一级作爱视频免费观看| 国产精品香港三级国产av潘金莲| 中文字幕av电影在线播放| 夜夜爽天天搞| 日韩欧美国产一区二区入口| 精品第一国产精品| 黄频高清免费视频| 国产成人欧美| 熟女少妇亚洲综合色aaa.| 露出奶头的视频| 在线观看免费视频日本深夜| 国产97色在线日韩免费| 亚洲成av片中文字幕在线观看| 天天一区二区日本电影三级| 别揉我奶头~嗯~啊~动态视频| 日韩精品免费视频一区二区三区| 国产1区2区3区精品| 十八禁人妻一区二区| 日韩成人在线观看一区二区三区| 精品国产乱子伦一区二区三区| 成人午夜高清在线视频 | 成熟少妇高潮喷水视频| 国产三级黄色录像| 侵犯人妻中文字幕一二三四区| e午夜精品久久久久久久| 亚洲男人天堂网一区| 在线十欧美十亚洲十日本专区| 国产国语露脸激情在线看| 黄片小视频在线播放| 欧美性长视频在线观看| 在线观看免费午夜福利视频| 国产私拍福利视频在线观看| 在线十欧美十亚洲十日本专区| 无人区码免费观看不卡| 久热这里只有精品99| 美国免费a级毛片| 1024手机看黄色片| 欧美黑人精品巨大| 亚洲国产日韩欧美精品在线观看 | 村上凉子中文字幕在线| 怎么达到女性高潮| 1024视频免费在线观看|