李 影,宋衛(wèi)東
(安徽師范大學(xué) 數(shù)學(xué)計算機(jī)科學(xué)學(xué)院,安徽 蕪湖 241003)
?
研究簡報
局部對稱偽Riemann流形中的緊致極大類時子流形
李 影,宋衛(wèi)東
(安徽師范大學(xué) 數(shù)學(xué)計算機(jī)科學(xué)學(xué)院,安徽 蕪湖 241003)
利用活動標(biāo)架法,得到了局部對稱偽Riemann流形中極大類時子流形的一個Simons型積分不等式,以及該子流形成為全測地類時子流形的關(guān)于其第二基本形式模長平方的拼擠定理.
偽Riemann流形;局部對稱;極大類時子流形;全測地類時子流形
本文約定各類指標(biāo)取值范圍如下:
1≤A,B,C,…≤n+p; 1≤i,j,k,…≤n;n+1≤α,β,γ,…≤n+p.
(1)
(2)
則有
(3)
(4)
類似地,曲率張量場Kαijk的共變導(dǎo)數(shù)Kαijk,l定義為
限制到Mn上時,有
(5)
(1-δ),A≠B;
(1-δ),A,B,C,D互不相同.
(6)
再由式(1),(2),(5),(6)得
(7)
(8)
(9)
(10)
由于(tr(HαHβ))p×p是實對稱矩陣,因此選取法標(biāo)架場{eα}可使之對角化,即
(11)
從而有
(12)
從而
(13)
由文獻(xiàn)[10],顯然有
(14)
由式(7)~(14),有
(15)
由于Mn是緊致無邊的,根據(jù)Stocks定理,對式(15)兩邊積分得
證畢.
(16)
證明:由已知條件式(16)可知式(15)的右邊非負(fù),而Mn是緊致無邊的,由Hopf極大值原理可知S為常數(shù).從而式(15)左邊為零.因此,式(15)右邊也為零,即
結(jié)合已知條件可知S=0,故Mn是全測地類時子流形.證畢.
[1] 孔令令,裴東河.四維Minkowski空間中類時超曲面的de Sitter Gauss映射的奇點分類 [J].中國科學(xué)A輯:數(shù)學(xué),2007,37(6):751-758.(KONG Lingling,PEI Donghe.Singularities of de Sitter Gauss Map of Timelike Hypersurface in Minkowski 4-Space [J].Science in China Series A:Mathematics,2007,37(6):751-758.)
[2] 沈一兵.關(guān)于偽Riemmann流形的極大子流形 [J].杭州大學(xué)學(xué)報:自然科學(xué)版,1991,18(4):371-376.(SHEN Yibing.On Maximal Submanifolds in Pseudo-Riemanian Manifolds [J].Journal of Hangzhou University:Natural Science,1991,18(4):371-376.)
[3] 胡有婧,紀(jì)永強(qiáng).de Sitter空間中的緊致極大類時子流形 [J].吉林大學(xué)學(xué)報:理學(xué)版,2014,52(5):895-900.(HU Youjing,JI Yongqiang.The Compact Timelike Submanifolds in the de Sitter Space [J].Journal of Jilin University:Science Edition,2014,52(5):895-900.)
[4] 胡有婧,紀(jì)永強(qiáng),汪文帥.局部對稱空間中的緊致子流形 [J].數(shù)學(xué)雜志,2013,33(6):1133-1144.(HU Youjing,JI Yongqiang,WANG Wenshuai.The Compact Submanifold in a Locally-Symmetric Space [J].Journal of Mathematics,2013,33(6):1133-1144.)
[5] 白正國,沈一兵,水乃翔,等.黎曼幾何初步 [M].北京:高等教育出版社,2004.(BAI Zhengguo,SHEN Yibing,SHUI Naixiang,et al.An Introduction to Riemann Geometry [M].Beijing:Higher Education Press,2004.)
[6] 紀(jì)永強(qiáng).子流形幾何 [M].北京:科學(xué)出版社,2004.(JI Yongqiang.Geometry of Submanifolds [M].Beijing:Science Press,2004.)
[7] 宋衛(wèi)東,江桔麗.關(guān)于局部對稱偽黎曼流形中的2-調(diào)和類空子流形 [J].系統(tǒng)科學(xué)與數(shù)學(xué),2007,27(2):170-176.(SONG Weidong,JIANG Juli.On 2-Harmonic Space-Like Submanifolds of a Locally Symmetric Preudo-Riemannian Manifold [J].Journal of Mathematics and System Science,2007,27(2):170-176.)
[8] Goldberg S L.Curvature and Homology [M].London:Academic Press,1962.
[9] 宋衛(wèi)東.關(guān)于局部對稱空間中的極小子流形 [J].數(shù)學(xué)年刊:A輯,1998,19(6):693-698.(SONG Weidong.On Minimal Submanifolds of a Locally Symmetric Space [J].Chinese Annals of Mathematics:Series A,1998,19(6):693-698.)
[10] 洪濤清,張劍鋒.偽Riemann流形中的2-調(diào)和類空子流形 [J].吉林大學(xué)學(xué)報:理學(xué)版,2009,47(2):257-260.(HONG Taoqing,ZHANG Jianfeng.2-Harmonic Space-Like Submanifolds in Pseudo-Riemann Manifold [J].Journal of Jilin University:Science Edition,2009,47(2):257-260.)
(責(zé)任編輯:趙立芹)
MaximumTimelikeSubmanifoldinaLocallySymmetricPseudo-RiemannianManifold
LI Ying,SONG Weidong
(CollegeofMathematicsandComputerScience,AnhuiNormalUniversity,Wuhu241003,AnhuiProvince,China)
Based on the moving frames,an integral inequality about maximal timelike submanifold was obtained in the locally symmetric pseudo-Riemannian manifold and a pinching theorem about the squared norm of the second fundamental form for the compact maximal timelike submanifold was gived in locally symmetric pseudo-Riemannian manifold.
pseudo-Riemannian manifold;locally symmetric;maximum timelike submanifold;totally geodesic timelike submanifold
10.13413/j.cnki.jdxblxb.2015.03.20
2014-09-15.
李 影(1991—),女,漢族,碩士研究生,從事微分幾何的研究,E-mail:909789714@qq.com.通信作者:宋衛(wèi)東(1958—),男,漢族,教授,從事微分幾何的研究,E-mail:swd56@sina.com.
國家自然科學(xué)基金(批準(zhǔn)號:11071005)和安徽省教育廳自然科學(xué)重點項目(批準(zhǔn)號:KJ2010A125).
O186.12
:A
:1671-5489(2015)03-0457-04