• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decoupling Trajectory Tracking for Gliding Reentry Vehicles

    2015-08-11 11:57:31ZixuanLiangZhangRenandXingyueShao
    IEEE/CAA Journal of Automatica Sinica 2015年1期

    Zixuan Liang,Zhang Ren,and Xingyue Shao

    Decoupling Trajectory Tracking for Gliding Reentry Vehicles

    Zixuan Liang,Zhang Ren,and Xingyue Shao

    —A decoupling trajectory tracking method for gliding reentry vehicles is presented to improve the reliability of the guidance system.Function relations between state variables and control variables are analyzed.To reduce the coupling between control channels,the multiple-input multiple-output(MIMO) tracking system is separated into a series of two single-input single-output(SISO)subsystems.Tracking laws for both velocity and altitude are designed based on the sliding mode control (SMC).The decoupling approach is verified by the Monte Carlo simulations,and compared with the linear quadratic regulator (LQR)approach in some specific conditions.Simulation results indicate that the decoupling approach owns a fast convergence speed and a strong anti-interference ability in the trajectory tracking.

    Index Terms—Hypersonic,reentry vehicle,decoupling control, trajectory tracking,sliding mode control(SMC).

    I.INTRODUCTION

    H YPERSONIC vehicles are aircrafts with a speed of Mach 5 or higher.The two typical hypersonic vehicles are the air-breathing cruise vehicle[1?2]and the un-powered gliding reentry vehicle[3].The latter can remotely maneuver in the near space(from about100 km to 20 km in altitude[4])without any power.Since the flight environment of the near space is terrible,an advanced guidance,navigation and control(GNC) system has become one of the key technologies for the reentry flight[5].

    The reentry guidance method based on a reference trajectory is a common approach that has been successfully used in the Shuttle[6?7].The basic idea of this approach is tracking a predesigned reference trajectory onboard during the reentry flight. However,the tracking law design is usually complex mainly due to the following reasons:

    1)Strong nonlinear terms exist in the reentry dynamic model;

    2)Parameters in the aerodynamic model are with high uncertainty;

    3)The number of state variables(altitude,range-to-go, velocity,heading angle,etc.)is greater than that of control variables(only the angle of attack and the bank angle).

    To solve this tracking problem,[8]proposed an approximate receding-horizon control law based on the linearized timevarying model with six state variables.Under this control law,the three-dimensional trajectory can be tracked well when the flight initial condition is dispersed.But for large aerodynamic dispersions,it is sometimes hard for this law to own a good performance.In[9],the longitudinal trajectory consisting of three state variables was analyzed and a tracking law based on the linear quadratic regulator(LQR)was developed. Though the guidance algorithm in this approach is much more simplified,its anti-interference ability is not always perfect as the feedback matrix is designed off-line.To improve the performance of trajectory tracking,[10]investigated an adaptive control method,[11]used a prediction control approach,[12] introduced the predictive controllerinto the drag tracking,[13] studied a tracking law based on the inversion control,[14] proposed an adaptive optimal sliding mode controller,and [15]presented a flatness approach.However,most of these approaches are designed based on the multiple-inputmultipleoutput(MIMO)system where couplings exist among control channels,and significantly complex algorithm is required to overcome the couplings.

    In fact,to ensure the reliability of the control and guidance system,the trajectory tracking law should be designed under the following two principles:

    1)The tracking law is robust to any dispersion;

    2)The algorithm is simple to be employed.

    In this paper,a decoupling approach is proposed for the design of the trajectory tracking law.Different from those complex approaches mainly focusing on the first principle, this study pays attention to both principles.

    In the longitudinalplane,to simplify the tracking algorithm, the MIMO system for the multi-objective tracking is separated into a series of two single-input single-output(SISO)subsystems.The former is for velocity tracking,and the latter is for altitude tracking.In each subsystem,to overcome the model uncertainty,sliding mode control(SMC)is used in the tracking law.Finally,simulations on a gliding reentry vehicle modelare carried out to validate the proposed approach.

    II.REENTRY GUIDANCE PROBLEM

    A.Reentry Dynamics

    The three-degree-of-freedom(3 DOF)point-mass equations of an un-powered reentry vehicle over a spherical rotating Earth are as follows[16?17]:

    Here,r is the radial distance from the center of the Earth to the vehicle.θandφare longitude and latitude,respectively. v is the Earth-relative velocity.γandψare the flight path angle and the velocity heading angle,respectively.σis the bank angle.g is the gravitational acceleration,andωis the angular rate of Earth rotation.L and D are the aerodynamic lift and drag accelerations,i.e.,

    where m is the mass of the vehicle,SAis the reference area, CLand CDare the liftand drag coefficients thatdepend on the angle of attackα,andρis the atmospheric density calculated by

    whereρ0is the atmospheric density on the surface ofthe Earth, andβis a constant.h is the altitude and has the relationship with r as in(9),where R0is the radius of the Earth.

    B.Guidance Strategy

    The guidance system's mission is to provide commands with which the vehicle can travel from the initial interface to the terminal interface and the flight constraints are well satisfi ed. To simplify this system,we can design it separately in the longitudinal and lateral planes.

    In the lateral plane,the control variable is the sign of the bank angle.With a conventional heading error corridor,the bank reversal logic is designed as

    whereσk?1is the bank angle command in the previous guidance cycle,Δψ is the heading error andΔψdis the boundary of the heading error corridor.

    In the longitudinal plane,the control variables include the magnitude of the bank angle and the angle of attack.The task for longitudinal guidance is tracking the reference trajectory with the flight constraints satisfied.The three typical reentry constraints are expressed as follows[17?18]:

    where˙Q is the heating rate,n the normal aerodynamic load, q the dynamic pressure,and K˙Qis a constant.

    Generally,a reference longitudinal trajectory is planned by the off-line optimization to satisfy reentry constraints,and then a reliable tracking law is employed onboard to track this reference trajectory.

    III.DECOUPLING TRAJECTORY TRACKING

    A.Decoupling Design for Guidance System

    The main state variables in the longitudinal plane are altitude,velocity,flight path angle and range-to-go stogo.As the flightpath angle can be controlled by the stable tracking of altitude,the task for control can be simplified to tracking the altitude and velocity trajectories with stogoas the independent variable.

    Considering thatω2≈ 0 andγ≈ 0 in(4),the derivative of velocity is controlled directly by the aerodynamic drag D. Similarly,from(1)and(5),the derivative of altitude(which equals to the rate of r)is found to be controlled by L cosσ. Furthermore,L and D in(7)mainly depend onρ,v andα. Therefore,the function relations among controlvariables(the bank angle and the angle of attack)and state variables(altitude and velocity)are obtained as in Fig.1.

    Fig.1. Function relations for control variables.

    From Fig.1,itis found thatthe angle of attack has a direct effect on velocity,but the bank angle affects the velocity indirectly through flight path angle,altitude and the atmospheric density.After neglecting effects of the bank angle on velocity, the simplified relations are given by Fig.2.The velocity and the altitude are controlled by the angle of attack and bank angle,respectively,since the function from the angle of attack to the altitude can be supposed as dispersion in the lift model.

    Fig.2. Simplified function relations for control variables.

    Hence,the MIMO system for longitudinaltrajectory control can be separated into two SISO subsystems:the velocity control and the altitude control.Considering that the angle of attack has an effect on altitude,a series connection for the two controllers is employed.The control diagram is designed as in Fig.3.

    Fig.3.Diagram for decoupling tracking approach.

    In Fig.3,the reference trajectory is given by the off-line optimization and saved as several discrete sequences, i.e., [v0,v1,v2,···,vn], [h0,h1,h2,···,hn], and [s togo,0,s togo,1,s togo,2,···,s togo,n]. Given s togo ∈

    [stogo,i+1,stogo,i],the reference velocity and altitude are calculated by(12)and(13).The first or second derivatives for vrefand hrefused in the trajectory tracking law can be calculated by the numericaldifferentiation,since the optimized reference trajectory is usually smooth.

    B.Velocity Tracking Law

    The task for the velocity tracking is to track the reference velocity trajectory vrefwith the angle of attack as the control variable.First,neglecting the second order term ofω,the differential equation for the velocity in(4)can be expressed as

    whereΔD is the uncertainty in the drag model including errors ofthe atmospheric density,the liftand drag coefficients, and the vehicle mass.With the state variable x=v and the control variable u=CD(α),a first order SISO system for the velocity is obtained,which is

    Though an uncertain term exists in Bv,it is supposed to be bounded by

    where?Bvis the estimation of Bvand computed by setting ΔD to be zero in(16).

    To overcome the uncertainty,the SMC theory is to be used in the tracking law design.Define the sliding surface

    Combining with(15),we have

    Hence,the control law based on SMC is given by

    Substituting(21)into(20),we have

    where kvis designed as

    By substituting(23)into(22),it can be proved that the sliding condition is satisfied as

    To reduce the chattering,the saturation function is employed and the control law is replaced by(25),where?vis the boundary layer thickness for the velocity tracking,and is set in a time varying form?v=0.01v.

    At last,the guidance command for the angle of attack can be computed from CD(α)=u.

    C.Altitude Tracking Law

    The task for the altitude tracking is to track the reference altitude trajectory hrefwith the bank angle as the control variable.From(1),the differential equation for the altitude is

    By a further derivation and combining with(4)and(5),the second order differential of altitude is expressed as

    whereΔL andΔD are the uncertainties in the lift and drag models,respectively.

    Equation(27)establishes the relation between bank angle and altitude.With the state variable x=h and the control variable u=cosσ,a second order SISO system forthe altitude is obtained,i.e.,

    where Bhand Fhare supposed to be bounded by

    where?Bhand?Fhare estimations of Bhand Fh,and can be calculated by settingΔL andΔD to be zero in(28)and(29), respectively.

    Then,define the sliding surface

    Combining with(30),we have

    Similar to the velocity tracking law,the SMC theory and the saturation function are employed,and the tracking law for the altitude is given by

    where?his the boundary layer thickness for the altitude tracking and set in a time varying form?h=0.012v,and khis designed as

    Finally,the guidance command for bank angle is given by σ=arccos u.

    IV.SIMULATIONS AND ANALYSIS

    A model for the gliding reentry vehicle is used in simulations to test the decoupling trajectory tracking method presented in this study.The reentry initial conditions are as fell h0=75 km,v0=7 200 m/s,θ0=10 deg,φ0=0 deg,γ0=?0.5 deg,ψ0=49 deg,stogo,0=11 127 km.The terminal conditions are:hf=40 km,vf=2 950 m/s,|Δψf|≤5 deg, and stogo,f=150 km.The flight constraints are:Qmax= 3 MW/m2,nmax=3 g,qmax=100 kPa.Other parameters in the trajectory tracking laws are configured asχL=χD=1.6, δh=0.5.

    A.Simulations for Robustness

    Simulations of reentry flight in dispersed cases are performed to testthe robustness ofthe trajectory tracking method. Typical dispersions for reentry initial conditions and aerodynamic parameters are configured in Table I.With these dispersions,the Monte Carlo simulations are employed for a totalof 1 000 cases ofreentry flight.The altitude and velocity histories with stogoas the independent variable are shown in Figs.4 and 5,respectively.It is seen that the decoupling method is effective on both tracking speed and tracking accuracy forboth altitude and velocity trajectories.

    Fig.4.Altitude histories for 1 000 dispersed cases.

    Fig.5. Velocity histories for 1 000 dispersed cases.

    TABLE I DISPERSIONS IN MONTE CARLO SIMULATIONS

    Fig.6 expresses the distribution for the terminal velocityaltitude errors in the 1 000 dispersed cases.The altitude errors are kept in 0.3 km,and the velocity errors are kept in 10 m/s. The ground tracks for the 1 000 dispersed cases are shown in Fig.7,which indicates that the lateral guidance performs well.The distribution for the terminal heading errors is shown in Fig.8.It is seen that the heading errors are kept within ±5 deg,which indicates that the terminal constraint is well satisfied.

    Fig.6. Terminal h?v errors for 1 000 dispersed cases.

    B.Comparison of Different Methods

    The trajectory tracking law based on LQR is another simply designed method and has been used in many studies[9,19?21]. Simulations in the same specific conditions are performed tocompare the decoupling guidance method based on SMC with the conventional guidance method based on LQR.

    Fig.7. Ground tracks for 1 000 dispersed cases.

    Fig.8.Terminal heading errors for 1 000 dispersed cases.

    Fig.9.Comparison of the altitude errors for two methods.

    First,the two methods are simulated with dispersions forthe flightinitialconditionΔh0=2 km andΔv0=50 m/s.Figs.9 and 10 record the altitude error histories for the two methods. Although both methods can reduce the altitude error and the velocity errorto zero atthe reentry terminal,the SMC method has an advantage in the convergence speed.

    Secondly,the two methods are simulated in four conditions with different dispersions for the lift and drag coefficients. Simulation results are shown in Tables II and III.For the decoupling SMC method,the terminal altitude errors are within 0.2 km and the terminal velocity errors are in within 5 m/s.However,for the conventional LQR method,the terminal errors in the first three conditions are acceptable,but divergence appears in the last condition.Hence,compared with the conventional LQR method,the proposed decoupling approach based on SMC has the better anti-interference ability for the aerodynamic dispersions.

    In summary,the new decoupling SMC approach is more effective than the conventional LQR approach.

    Fig.10.Comparison of the velocity errors for two methods.

    TABLE II SIMULATION RESULTS FOR THE DECOUPLING SMC METHOD

    TABLE III SIMULATION RESULTS FOR THE CONVENTIONAL LQR METHOD

    V.CONCLUSION

    In this paper,the traditional multi-objective tracking problem for the reentry trajectory is separated into the altitude tracking and the velocity tracking,and both of the tracking laws are designed with the SMC theory.From Monte Carlo simulations of 1 000 dispersed cases,the decoupling tracking method is shown to be robust to the uncertain reentry conditions.From the comparison with the conventional LQR method,itis indicated that the decoupling tracking law owns better performance in the convergence speed and the antiinterference ability for large dispersions.

    With the decoupling strategy presented in this paper,the trajectory tracking algorithm for the reentry vehicle is significantly simplified.In future works,other control theories for a SISO system can be applied to the altitude tracking law and the velocity tracking law based on this decoupling strategy.

    REFERENCES

    [1]Xu B,Sun F,Liu H,Ren J.Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping.IET Control Theory and Applications,2012,6(4):487?497

    [2]Yang J,Li S H,Sun C Y,Guo L.Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles.IEEE Transactions onAerospace and Electronic Systems,2013,49(2):1263?1275

    [3]Stewart J D,Greenshields D H.Entry vehicles for space programs. Journal of Spacecraft and Rockets,1969,6(10):1089?1102

    [4]Sun Chang-Yin,Mu Chao-Xu,Yu Yao.Some control problems for near space hypersonic vehicles.Acta Automatica Sinica,2013,39(11): 1901?1913(in Chinese)

    [5]Bao Wei-Min.Presentsituation and developmenttendency of aerospace control techniques.Acta Automatica Sinica,2013,39(6):697?702(in Chinese)

    [6]Harpold J C,Graves C A.Shuttle entry guidance.Journal of the Astronautical Sciences,1979,27(3):239?268

    [7]Lu P.Entry guidance and trajectory controlfor reusable launch vehicle. Journal of Guidance,Control,and Dynamics,1997,20(1):143?149

    [8]Lu P.Regulation about time-varying trajectories:precision entry guidance illustrated.Journal of Guidance,Control,and Dynamics,1999, 22(6):784?790

    [9]Dukeman G A.Profile-following entry guidance using linear quadratic regulator theory.In:Proceedings of the 2002 AIAA Guidance,Navigation,and Control Conference and Exhibit.Monterey,USA:AIAA, 2002.2002-4457

    [10]Mooij E.Model reference adaptive guidance for re-entry trajectory tracking.In:Proceedings of the 2004 AIAA Guidance,Navigation,and Control Conference and Exhibit.Providence,USA:AIAA,2004.2004-4900

    [11]Zhang Jun,Xiao Yu-Zhi,Bi Zhen-Fa.Guidance method based on multimodel prediction for re-entry vehicles.Acta Aeronautica et Astronautic Sinica,2008,29(Sup):S20?S25(in Chinese)

    [12]Benito J,Mease K D.Nonlinearpredictive controllerfordrag tracking in entry guidance.In:Proceedings of the 2008 AIAA/AAS Astrodynamics Specialist Conference and Exhibit.Honolulu,USA:AIAA,2008.2008-7350

    [13]Pu Z Q,Tan X M,Fan G L,Yi J Q.Design of entry trajectory tracking law for a hypersonic vehicle via inversion control.In:Proceedings ofthe 10th World Congress on Intelligent Control and Automation.Beijing, China:IEEE,2012.1092?1097

    [14]Zhu Kai.Study of Reentry Guidance and Control Algorithm for Glide Missile[Ph.D.dissertation],Harbin Institute of Technology,China, 2011.(in Chinese)

    [15]Desiderio D,Lovera M.Guidance and control for planetary landing: flatness-based approach.IEEE Transactions on Control Systems Technology,2013,21(4):1280?1294

    [16]Vinh N X,Busemann A,Culp R D.Hypersonic and Planetary Entry Flight Mechanics.Ann Arbor,MI:University of Michigan Press,1980. 26?28

    [17]Xue S B,Lu P.Constrained predictor-corrector entry guidance.Journal of Guidance,Control,and Dynamics,2010,33(4):1273?1281

    [18]Li H F,Zhang R,Li Z Y,Zhang R.New method to enforce inequality constraints of entry trajectory.Journalof Guidance,Control,and Dynamics,2012,35(5):1662?1667

    [19]Li Yu.Study of Trajectory Optimization and Guidance Algorithm for Boost-Glide Missile[Ph.D.dissertation],Harbin Institute of Technology, China,2009(in Chinese)

    [20]Liang Z X,Ren Z,Bai C.Lateral reentry guidance for maneuver glide vehicles with geographic constraints.In:Proceedings of the 32nd Chinese Control Conference.Xi'an,China:IEEE,2013.5187?5192

    [21]Zhou W,Tan S,Chen H.A simple reentry trajectory generation and tracking scheme for common aero vehicle.In:Proceedings of the 2012 AIAA Guidance,Navigation,and Control Conference.Minneapolis, USA:AIAA,2012.2012-4709

    Zixuan Liang Ph.D.candidate at the Science and Technology on Aircraft Control Laboratory,Beihang University.His research interests include guidance and control technology for the reentry vehicles.Corresponding author of this paper.

    Zhang Ren Professoratthe Science and Technology on Aircraft Control Laboratory,Beihang University.His research interests include precision guidance, optimal control,adaptive control,computer control and simulation.

    Xingyue Shao Ph.D.candidate at the Science and Technology on Aircraft Control Laboratory,Beihang University.His research interests include guidance and control technology for the reentry vehicles.

    t

    September 9,2013;accepted May 28,2014.This work was supported by National Natural Science Foundation of China(91116002, 91216034,61333011,61121003).Recommended by Associate Editor Bin Xian

    :Zixuan Liang,Zhang Ren,Xingyue Shao.Decoupling trajectory tracking for gliding reentry vehicles.IEEE/CAAJournalofAutomaticaSinica, 2015,2(1):115?120

    Zixuan Liang,Zhang Ren,and Xingyue Shao are with the Science and Technology on Aircraft Control Laboratory,Beihang University,Beijing 100191,China(e-mail:aliang@buaa.edu.cn;renzhang@buaa.edu.cn; shao86830@163.com).

    97人妻精品一区二区三区麻豆 | 日韩欧美一区视频在线观看| 国产精品影院久久| 国产精品综合久久久久久久免费| 亚洲精品在线美女| 欧美成人午夜精品| 又紧又爽又黄一区二区| av免费在线观看网站| 欧美不卡视频在线免费观看 | 久热爱精品视频在线9| 欧美日韩精品网址| 国产精品一区二区精品视频观看| 白带黄色成豆腐渣| 亚洲熟女毛片儿| 12—13女人毛片做爰片一| 国产爱豆传媒在线观看 | 国产免费av片在线观看野外av| 一a级毛片在线观看| 中文字幕人成人乱码亚洲影| 亚洲成人精品中文字幕电影| 此物有八面人人有两片| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美 国产精品| 身体一侧抽搐| 999精品在线视频| 妹子高潮喷水视频| 国产视频一区二区在线看| 侵犯人妻中文字幕一二三四区| 老熟妇乱子伦视频在线观看| 日本熟妇午夜| 中文字幕精品免费在线观看视频| 国产伦一二天堂av在线观看| av电影中文网址| 一二三四在线观看免费中文在| 成人永久免费在线观看视频| 成人永久免费在线观看视频| 国产熟女xx| 成人永久免费在线观看视频| 757午夜福利合集在线观看| 亚洲最大成人中文| 黑人操中国人逼视频| 熟妇人妻久久中文字幕3abv| 婷婷精品国产亚洲av| 久久精品91蜜桃| 久久国产精品影院| 999久久久精品免费观看国产| 成人国产综合亚洲| 在线观看66精品国产| 久久国产精品影院| 熟女电影av网| 精品不卡国产一区二区三区| 亚洲色图av天堂| 国产亚洲精品久久久久久毛片| 亚洲人成网站在线播放欧美日韩| 精品国产超薄肉色丝袜足j| 好男人电影高清在线观看| 亚洲自拍偷在线| 国产精品,欧美在线| 亚洲,欧美精品.| 成人亚洲精品一区在线观看| 满18在线观看网站| 欧美成狂野欧美在线观看| 人人妻人人澡人人看| 久久草成人影院| 日本三级黄在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲av中文字字幕乱码综合 | 免费高清在线观看日韩| 免费搜索国产男女视频| 国产亚洲av嫩草精品影院| 欧美色视频一区免费| 欧美日韩一级在线毛片| 国产视频内射| 国产精品久久电影中文字幕| 免费在线观看日本一区| 两性午夜刺激爽爽歪歪视频在线观看 | 一区二区日韩欧美中文字幕| 日本 av在线| 国产精品二区激情视频| 淫秽高清视频在线观看| 精品久久久久久久末码| 最近在线观看免费完整版| 中出人妻视频一区二区| 91大片在线观看| 国产在线精品亚洲第一网站| 91九色精品人成在线观看| 少妇熟女aⅴ在线视频| 亚洲国产精品合色在线| 激情在线观看视频在线高清| 黄网站色视频无遮挡免费观看| 欧美日韩黄片免| 伊人久久大香线蕉亚洲五| www.自偷自拍.com| 国产精品久久久人人做人人爽| or卡值多少钱| 亚洲国产毛片av蜜桃av| 日韩欧美 国产精品| 国产在线观看jvid| 国产91精品成人一区二区三区| 19禁男女啪啪无遮挡网站| av视频在线观看入口| 真人一进一出gif抽搐免费| 最新在线观看一区二区三区| 国产精品 欧美亚洲| 国产成人av激情在线播放| 国产成人精品久久二区二区免费| 国产精品98久久久久久宅男小说| 日本免费一区二区三区高清不卡| 午夜福利欧美成人| 天堂√8在线中文| 老鸭窝网址在线观看| 国产麻豆成人av免费视频| 成人18禁在线播放| 亚洲中文日韩欧美视频| 色婷婷久久久亚洲欧美| 国产一级毛片七仙女欲春2 | 久久九九热精品免费| 国产单亲对白刺激| 正在播放国产对白刺激| 黑人操中国人逼视频| 黄网站色视频无遮挡免费观看| 亚洲国产毛片av蜜桃av| 日韩三级视频一区二区三区| 香蕉丝袜av| a在线观看视频网站| 女警被强在线播放| 欧美国产日韩亚洲一区| 亚洲 欧美一区二区三区| 国产精品乱码一区二三区的特点| 国产午夜福利久久久久久| 国产又爽黄色视频| 琪琪午夜伦伦电影理论片6080| 日日干狠狠操夜夜爽| 欧美成狂野欧美在线观看| 色综合欧美亚洲国产小说| 国产激情欧美一区二区| 亚洲精品一卡2卡三卡4卡5卡| 此物有八面人人有两片| 香蕉av资源在线| 嫩草影院精品99| 国产色视频综合| 亚洲一区高清亚洲精品| 日韩欧美国产在线观看| 亚洲专区字幕在线| 亚洲 欧美 日韩 在线 免费| 色在线成人网| 欧美激情 高清一区二区三区| av在线天堂中文字幕| 亚洲五月天丁香| 两人在一起打扑克的视频| 久久人妻av系列| www日本在线高清视频| 99久久久亚洲精品蜜臀av| 国产精品久久久久久精品电影 | 真人做人爱边吃奶动态| 侵犯人妻中文字幕一二三四区| 丁香欧美五月| 视频区欧美日本亚洲| 给我免费播放毛片高清在线观看| 性欧美人与动物交配| 怎么达到女性高潮| 在线观看免费视频日本深夜| 波多野结衣av一区二区av| 啦啦啦 在线观看视频| 午夜福利在线观看吧| 99久久精品国产亚洲精品| 久久人妻av系列| 美女国产高潮福利片在线看| 男人舔女人的私密视频| 他把我摸到了高潮在线观看| 亚洲精品中文字幕一二三四区| 很黄的视频免费| 丁香六月欧美| 日本黄色视频三级网站网址| 男人舔女人下体高潮全视频| 久久中文字幕人妻熟女| 操出白浆在线播放| 脱女人内裤的视频| 侵犯人妻中文字幕一二三四区| 亚洲国产看品久久| 日韩欧美免费精品| 热99re8久久精品国产| 精品国内亚洲2022精品成人| 亚洲专区国产一区二区| 搡老岳熟女国产| 成在线人永久免费视频| 日韩有码中文字幕| 91大片在线观看| 无限看片的www在线观看| 午夜视频精品福利| 91麻豆精品激情在线观看国产| 亚洲狠狠婷婷综合久久图片| 久99久视频精品免费| 一本精品99久久精品77| 老熟妇乱子伦视频在线观看| 免费看a级黄色片| 国产av不卡久久| 后天国语完整版免费观看| 黄色丝袜av网址大全| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久亚洲av鲁大| 变态另类丝袜制服| 俺也久久电影网| www.精华液| 超碰成人久久| 女人高潮潮喷娇喘18禁视频| 日本精品一区二区三区蜜桃| 视频在线观看一区二区三区| 国产亚洲欧美精品永久| 熟妇人妻久久中文字幕3abv| 午夜免费成人在线视频| 精品久久久久久久毛片微露脸| 久久香蕉激情| 久久久久精品国产欧美久久久| 女人爽到高潮嗷嗷叫在线视频| 悠悠久久av| 欧美激情 高清一区二区三区| 免费看十八禁软件| 校园春色视频在线观看| 国产免费男女视频| 最好的美女福利视频网| 午夜福利免费观看在线| 久久香蕉激情| 亚洲欧美日韩高清在线视频| 婷婷精品国产亚洲av| 日本 av在线| 视频在线观看一区二区三区| 国产精品一区二区免费欧美| 精品一区二区三区视频在线观看免费| 国产欧美日韩一区二区三| 日本 欧美在线| 国产精品 欧美亚洲| 亚洲欧美精品综合一区二区三区| 久久国产精品男人的天堂亚洲| 人成视频在线观看免费观看| svipshipincom国产片| 久久国产精品影院| 国产蜜桃级精品一区二区三区| 亚洲五月天丁香| 中文字幕最新亚洲高清| 熟女电影av网| 中文字幕人妻丝袜一区二区| 国产欧美日韩一区二区精品| 窝窝影院91人妻| 精品国产超薄肉色丝袜足j| 一二三四社区在线视频社区8| 一本一本综合久久| 脱女人内裤的视频| 人人妻,人人澡人人爽秒播| 露出奶头的视频| xxxwww97欧美| www日本在线高清视频| 久久亚洲精品不卡| 国产91精品成人一区二区三区| 波多野结衣av一区二区av| 国产爱豆传媒在线观看 | 在线播放国产精品三级| 中文字幕精品亚洲无线码一区 | 又大又爽又粗| 国产伦人伦偷精品视频| 国产熟女午夜一区二区三区| 人人澡人人妻人| 久久精品91蜜桃| 亚洲精品美女久久久久99蜜臀| 桃红色精品国产亚洲av| 91大片在线观看| 麻豆久久精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 国产熟女午夜一区二区三区| 真人做人爱边吃奶动态| 男人舔奶头视频| 国产精品精品国产色婷婷| 成熟少妇高潮喷水视频| 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 亚洲黑人精品在线| 欧洲精品卡2卡3卡4卡5卡区| 精品福利观看| 欧美午夜高清在线| 两性夫妻黄色片| 国产在线精品亚洲第一网站| 日韩中文字幕欧美一区二区| 男女床上黄色一级片免费看| tocl精华| 久久 成人 亚洲| 韩国精品一区二区三区| 欧美激情高清一区二区三区| 很黄的视频免费| 日韩国内少妇激情av| 亚洲欧美日韩无卡精品| 亚洲aⅴ乱码一区二区在线播放 | 欧美另类亚洲清纯唯美| 老司机在亚洲福利影院| 国产欧美日韩一区二区三| 欧美色视频一区免费| 中文字幕高清在线视频| 国产精品综合久久久久久久免费| 琪琪午夜伦伦电影理论片6080| 三级毛片av免费| 久久久久久久久中文| av中文乱码字幕在线| av在线天堂中文字幕| 人妻久久中文字幕网| 国产精品国产高清国产av| 国产av一区二区精品久久| 成年人黄色毛片网站| 中文字幕av电影在线播放| 日本免费一区二区三区高清不卡| 日韩欧美免费精品| 色av中文字幕| 日本成人三级电影网站| 1024香蕉在线观看| 黄色片一级片一级黄色片| 久久国产亚洲av麻豆专区| 精品电影一区二区在线| 午夜福利免费观看在线| 成年免费大片在线观看| 在线十欧美十亚洲十日本专区| 一区二区日韩欧美中文字幕| 亚洲五月婷婷丁香| 中文字幕高清在线视频| 久久国产乱子伦精品免费另类| 人成视频在线观看免费观看| 国产aⅴ精品一区二区三区波| 丝袜在线中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 首页视频小说图片口味搜索| 国产亚洲精品综合一区在线观看 | 亚洲国产精品sss在线观看| 欧美在线一区亚洲| 精品久久久久久久久久久久久 | 国产精品久久久久久精品电影 | 黄色成人免费大全| 亚洲片人在线观看| 久久性视频一级片| 香蕉久久夜色| 国产精品久久久久久精品电影 | 欧美日韩黄片免| 亚洲久久久国产精品| 18禁黄网站禁片午夜丰满| 日韩国内少妇激情av| 色综合亚洲欧美另类图片| 国产精品 国内视频| 久久热在线av| 亚洲全国av大片| 最近最新中文字幕大全免费视频| 久久国产精品人妻蜜桃| 神马国产精品三级电影在线观看 | 亚洲av第一区精品v没综合| 欧美国产日韩亚洲一区| 麻豆久久精品国产亚洲av| 免费看美女性在线毛片视频| 国产v大片淫在线免费观看| 麻豆成人av在线观看| 琪琪午夜伦伦电影理论片6080| av片东京热男人的天堂| 国产精品99久久99久久久不卡| 欧美激情极品国产一区二区三区| 性欧美人与动物交配| 黑人巨大精品欧美一区二区mp4| 啦啦啦 在线观看视频| 日本一区二区免费在线视频| 欧美国产精品va在线观看不卡| 欧美午夜高清在线| 精品无人区乱码1区二区| 777久久人妻少妇嫩草av网站| 欧美激情 高清一区二区三区| 麻豆国产av国片精品| 一级毛片精品| 久久国产乱子伦精品免费另类| 亚洲国产精品成人综合色| 怎么达到女性高潮| 日韩成人在线观看一区二区三区| 日韩高清综合在线| 亚洲国产欧美网| 国产av一区二区精品久久| 人人妻人人澡人人看| 亚洲专区字幕在线| 日韩欧美三级三区| 97超级碰碰碰精品色视频在线观看| 亚洲色图av天堂| 亚洲精品美女久久久久99蜜臀| 久久草成人影院| 精品国产超薄肉色丝袜足j| 免费观看人在逋| 国产av一区在线观看免费| 欧美+亚洲+日韩+国产| 久久亚洲真实| 好看av亚洲va欧美ⅴa在| 在线免费观看的www视频| 成人国语在线视频| 亚洲一区二区三区色噜噜| 免费看美女性在线毛片视频| 久久久久精品国产欧美久久久| 国产三级在线视频| 91国产中文字幕| 国产伦在线观看视频一区| 1024香蕉在线观看| 老司机午夜十八禁免费视频| 一级a爱视频在线免费观看| 淫秽高清视频在线观看| 午夜久久久久精精品| 99久久久亚洲精品蜜臀av| 免费看美女性在线毛片视频| 在线播放国产精品三级| 伊人久久大香线蕉亚洲五| 一本久久中文字幕| 国产伦一二天堂av在线观看| 88av欧美| 精品午夜福利视频在线观看一区| 成人特级黄色片久久久久久久| 成在线人永久免费视频| 黄色丝袜av网址大全| 久久久久亚洲av毛片大全| 久久精品91无色码中文字幕| 亚洲av片天天在线观看| 91麻豆精品激情在线观看国产| 最新在线观看一区二区三区| 一区二区三区激情视频| 制服丝袜大香蕉在线| 国产激情欧美一区二区| 国产不卡一卡二| 免费在线观看黄色视频的| 一二三四在线观看免费中文在| 欧美性猛交╳xxx乱大交人| 国产伦人伦偷精品视频| 又紧又爽又黄一区二区| 久久香蕉国产精品| 亚洲avbb在线观看| 波多野结衣高清无吗| 视频在线观看一区二区三区| 国产成人精品久久二区二区免费| 久久99热这里只有精品18| 成年免费大片在线观看| 免费在线观看影片大全网站| 老鸭窝网址在线观看| 好看av亚洲va欧美ⅴa在| 亚洲精品美女久久久久99蜜臀| 性欧美人与动物交配| 成人国产一区最新在线观看| 一边摸一边抽搐一进一小说| 一本大道久久a久久精品| 黄片小视频在线播放| 特大巨黑吊av在线直播 | 日本免费一区二区三区高清不卡| 欧美zozozo另类| 国产激情欧美一区二区| 在线永久观看黄色视频| 三级毛片av免费| 亚洲中文字幕日韩| 99riav亚洲国产免费| av片东京热男人的天堂| 老汉色∧v一级毛片| 男女视频在线观看网站免费 | 亚洲av成人一区二区三| 精品乱码久久久久久99久播| 狂野欧美激情性xxxx| www.自偷自拍.com| 欧美成人一区二区免费高清观看 | 一区二区三区精品91| 曰老女人黄片| av在线天堂中文字幕| 啦啦啦观看免费观看视频高清| 久久精品夜夜夜夜夜久久蜜豆 | 欧美日韩乱码在线| 一级毛片高清免费大全| 免费电影在线观看免费观看| 精品午夜福利视频在线观看一区| 成人国产一区最新在线观看| 一本一本综合久久| 午夜激情av网站| 国产成人精品久久二区二区91| 亚洲av成人一区二区三| 亚洲精品美女久久av网站| 国产在线精品亚洲第一网站| 国产私拍福利视频在线观看| 特大巨黑吊av在线直播 | 国产麻豆成人av免费视频| 亚洲中文字幕日韩| 亚洲精华国产精华精| 欧美性长视频在线观看| 极品教师在线免费播放| 国产1区2区3区精品| 十八禁网站免费在线| 午夜免费鲁丝| 午夜免费观看网址| 日本在线视频免费播放| 巨乳人妻的诱惑在线观看| x7x7x7水蜜桃| ponron亚洲| 欧美日韩一级在线毛片| 亚洲中文字幕一区二区三区有码在线看 | 一进一出抽搐动态| 亚洲三区欧美一区| 久久精品成人免费网站| 婷婷亚洲欧美| 香蕉丝袜av| 在线观看舔阴道视频| 国产亚洲欧美在线一区二区| 免费在线观看日本一区| 国产免费av片在线观看野外av| 校园春色视频在线观看| 国产成人系列免费观看| 精品无人区乱码1区二区| 神马国产精品三级电影在线观看 | 亚洲第一欧美日韩一区二区三区| 午夜福利在线在线| 国产成人一区二区三区免费视频网站| 亚洲精品中文字幕在线视频| 桃红色精品国产亚洲av| 日本成人三级电影网站| 一个人观看的视频www高清免费观看 | 亚洲中文字幕日韩| 国产精品久久视频播放| 欧美日韩精品网址| 日本 欧美在线| 国语自产精品视频在线第100页| 亚洲aⅴ乱码一区二区在线播放 | 在线观看66精品国产| 性色av乱码一区二区三区2| 国产亚洲精品av在线| 99国产综合亚洲精品| av电影中文网址| 亚洲性夜色夜夜综合| 精品卡一卡二卡四卡免费| 美女高潮到喷水免费观看| 日日爽夜夜爽网站| 国产av不卡久久| 啦啦啦韩国在线观看视频| 久久精品国产清高在天天线| 日本三级黄在线观看| 91麻豆精品激情在线观看国产| 精品久久久久久久久久久久久 | 99在线视频只有这里精品首页| 久久久久久免费高清国产稀缺| 桃红色精品国产亚洲av| 亚洲 欧美 日韩 在线 免费| 桃红色精品国产亚洲av| 不卡一级毛片| 最近在线观看免费完整版| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区视频在线观看免费| 午夜精品在线福利| 老司机靠b影院| 三级毛片av免费| 色在线成人网| 少妇的丰满在线观看| 欧美在线黄色| 国产精品永久免费网站| 国产欧美日韩一区二区三| 黄片播放在线免费| 十八禁网站免费在线| 精品国内亚洲2022精品成人| 国产三级黄色录像| 波多野结衣巨乳人妻| 精品久久久久久久毛片微露脸| 久久精品国产综合久久久| 国内毛片毛片毛片毛片毛片| 老司机深夜福利视频在线观看| 国产亚洲精品久久久久5区| 欧美 亚洲 国产 日韩一| 母亲3免费完整高清在线观看| 久久国产精品影院| 桃红色精品国产亚洲av| 日本免费一区二区三区高清不卡| 亚洲欧美激情综合另类| 国产又爽黄色视频| 国产激情久久老熟女| 国产精品,欧美在线| 国产精品一区二区免费欧美| 国产av不卡久久| 亚洲中文日韩欧美视频| 久久人妻福利社区极品人妻图片| 女性被躁到高潮视频| 麻豆av在线久日| 一边摸一边做爽爽视频免费| 国产精品久久视频播放| 妹子高潮喷水视频| 午夜激情福利司机影院| 午夜福利18| 亚洲av电影不卡..在线观看| 久久精品aⅴ一区二区三区四区| 国产av一区在线观看免费| 88av欧美| 一区二区三区国产精品乱码| 欧美日韩亚洲综合一区二区三区_| 老司机深夜福利视频在线观看| 丝袜美腿诱惑在线| 日本熟妇午夜| a级毛片在线看网站| 亚洲国产高清在线一区二区三 | 日日摸夜夜添夜夜添小说| 90打野战视频偷拍视频| 色婷婷久久久亚洲欧美| 午夜福利在线观看吧| 丝袜在线中文字幕| 夜夜夜夜夜久久久久| 午夜a级毛片| 精品久久久久久久久久免费视频| 国产精品九九99| 超碰成人久久| 国产精品影院久久| 国产区一区二久久| 日韩欧美一区视频在线观看| 精品第一国产精品| 女性生殖器流出的白浆| 两性午夜刺激爽爽歪歪视频在线观看 | 久热这里只有精品99| 91大片在线观看| 视频区欧美日本亚洲| 免费观看精品视频网站| 动漫黄色视频在线观看| 国产麻豆成人av免费视频| 欧美 亚洲 国产 日韩一|