• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Engaging Characteristics of Wet Clutch in Automatic Transmission

    2015-08-11 14:01:04LIUYanfang劉艷芳GUOWeiZHANGJingXUXiangyang徐向陽(yáng)
    關(guān)鍵詞:向陽(yáng)

    LIU Yan-fang(劉艷芳),GUO Wei(郭 偉),ZHANG Jing(張 婧),XU Xiang-yang(徐向陽(yáng))

    1 School of Transportation Science&Engineering,Beihang University,Beijing 100191,China

    2 International Education College,Hefei University,Hefei 230001,China

    3 National PCAT Engineering Research Center,Weifang 2612206,China

    Dynamic Engaging Characteristics of Wet Clutch in Automatic Transmission

    LIU Yan-fang(劉艷芳)1*,GUO Wei(郭 偉)1,3,ZHANG Jing(張 婧)2,XU Xiang-yang(徐向陽(yáng))1

    1 School of Transportation Science&Engineering,Beihang University,Beijing 100191,China

    2 International Education College,Hefei University,Hefei 230001,China

    3 National PCAT Engineering Research Center,Weifang 2612206,China

    Wetclutch isan importantshifting componentin automatic transmission,and its properties will affect the gear shift performance.By comparing the calculated and test results,the static friction torque model was proved to be capable of describing the real pressure and torque only in the situation of high-energy engagement.Therefore,a dynamic torque model was proposed on basis of hydrodynamic properties between friction surfaces,in which the clutch engagement was divided into three phases for hydrodynamic lubrication,mixed lubrication, and mechanicalcontact.The proposed dynamic torque model was validated by comparing the calculated and test results.The effects of temperature,pressure,and pressure changing rate of automatic transmission fluid(ATF)on the clutch torque were analyzed.Based on these results,the clutchto-clutch torque control during shifting in automatic transmission was optimized,and as a result,the shifting comfort was significantly improved since the problems such as the fluctuation and sudden drop of the engine rotating speed during shifting were eliminated.

    automatic transmission; wet clutch; dynamic characteristics;torque control;friction

    Introduction

    Hydraulic automatic transmission with wet clutches is widely used owing to its smooth shift.By engaging or opening some clutches,a new gear is shifted so as to change the power flow in automatic transmission and satisfy the vehicle's torque and speed requirements.The shift quality is determined by the friction torque of wet clutches,and thus it is necessary to build up a precise model to describe the dynamic clutch torque during shifting.

    Berger et al.proposed a finite element model[1]and an analytical solution[2]to model the torque response of the grooved wet clutch during engagement.Yang et al.[3]proposed an axial symmetric model to describe the heat transfer in a wet clutch.The temperature prediction based on the above models is consistent favorably with experimental measurements.Jang and Khonsari[4]put forward a comprehensive Reynolds equation considering thepermeability,roughness,wavinessofthe friction material,and the deformability and centrifugal force in wet clutches.Experimental methods are commonly used to characterize wet clutches.The aeration at high rotational speed was confirmed by experiment[5].It was pointed out that the deficit of the fluid film was due to the cavitations and gas entering from inner radius of clutches[6].However,the pressure can barely be enough low for cavitations at clutch speed less than 4000 r/min,and the deficit of the fluid film starts from the out radius.

    Static torque model is often used in clutch control.An adaptive temperature compensation method based on the static torque model was proposed to reduce the shift shock under low temperature[7].The oncoming clutch speed slip can be controlled with fuzzy logic,which is used to optimize the target fill pressure in fill phase and shorten the shifting time[8-10].

    In this paper,the static toque model is tested by experiment first.Based on the Reynolds equation,the dynamic clutch torque model is built up,which is proved to be capable of precisely describing the dynamic characteristics of clutch torque during the course of engagement.According to the dynamic characteristics,a pressure correction method is proposed based on the transmission end of line test when the clutch is engaging.The optimized pressure control is adjusted to reduce the transmission's shift impact and shift time.

    1 Structure and Working Principle of Clutch

    Figure 1 shows the basic structure of a wet clutch in automatic transmissions.The hydraulic system of automatic transmission feeds oil from the hole into the cylinder.The piston is pulled to overcome the resistance of the return spring and the friction force until the gap between friction discs is eliminated and the clutch is engaged;and vice versa.Because of the friction between clutch discs,the torque is transmitted.Therefore,the pressure force on clutch friction discs can be calculated as:

    where P is the pressure of active oil cylinder;S is the area of piston;FCFAand FCFBare the centrifugal forces of the active and balance cylinders,respectively;k is the stiffness of the return spring;Fsealis the friction force of sealing materials;Δx is the displacement;and sgn()is the sign function.

    Fig.1 Schematic of a wet clutch in an automatic transmission

    2 The Static Torque Model of Clutch

    According to coulomb friction law,the friction torquebetween friction and steel discs can be calculated as:

    where N is the number of friction surfaces;Fappis the pressure force;μ is the friction coefficient described with Stribeck's equation[11];Rmis the equivalent frictional radius;Roand Riare the externaland internaldiameters of friction surface,respectively.

    To verify the above model,three types of tests are completed considering the variations of initial clutch slip ω0,the oil pressure rise time Δt,and the final apply pressure Papp1.Figure 2 shows the data of calculated and experimental torque.Clearly,there is a delay between the real torque and the calculated torque,which can be reduced by increasing the clutch pressure during the engagement with small clutch slip(Figs.2 (a)and(d)).The large difference between the calculated and experimental torques is due to the low applied pressure(Fig.2 (a)),because the oil between the clutch discs cannot be extruded in a short time.Then the friction characteristics are quite different by comparing the clutch condition with complete contact.The real torque is obviously overshoot with large clutch slip(low pressure)or high pressure changing rate(Figs.2(b) and(c)).The calculated static torque matches the real torque well at high clutch pressure(Figs.2(d),(e),and(f)).The calculated torque matches the real torque well at low pressure changing rate(Figs.2(c)and(f)).Therefore,it can be deduced that the static torque model of clutch is suitable only for high-energy engagement since the hydrodynamic characteristics of the automatic transmission fluid(ATF)in clutch discs are neglected.Therefore,a more accurate dynamic clutch model is required to characterize the real clutch torque.

    Fig.2 Comparison of the calculated clutch torque with the static torque model with experimental data

    3 The Dynamic Torque Model of Clutch

    While a wet clutch is open and has relative rotational speed,there are fluid films between clutch discs,which lead to resistance forces.With the pressure Fappshown in Fig.3,the clutch starts to engage and the clutch torque varies with the thickness of the fluid film[12].

    Initially,the film thickness is so large that there is only viscous friction between discs.With the clutch discs pressed increasingly tighter,the fluid between discs will be exhausted gradually,which leads to larger viscous friction.The above process is called hydrodynamic lubrication phase.

    When the fluid film thickness reaches the friction disc's coarse surface and when there is relative rotational speed between discs,the clutch torque would be dominated by coarse contact friction and viscous friction.This above process is called the mixed lubrication phase.

    When there is no relative rotational speed,there is only contact friction that can generate clutch torque,and this process is called the mechanical contact phase.

    The delay and overshoot of torque would occur in the dynamic lubrication phase and the mixed lubrication phase.

    Thus,the clutch torque T is the sum of the viscosity torque Tvand the contact torque Tc:

    Fig.3 Schematic of plate-type wet clutch

    To calculate the changing rate of fluid film thickness,two assumptions are used here.

    (1)The thickness of the fluid film is constant within normal contact area,and the pressure in the grooves is equal to zero.

    (2)The temperature of ATF is constant within normal clutch contact area,and the kinematic viscosity is irrelative withpolar coordinates r and θ.

    Thus,the changing rate of fluid film thickness in this phase can be described by Reynolds equation,

    where h is the thickness of fluid film,Φ is the osmosis of friction material,φ(h)is the flow factor,η is the dynamic viscosity of ATF,θ2is the angle of ungrooved friction discs (Fig.3),Ngis the number of grooves for each clutch disc,A is the area of friction plates,d is the thickness of friction materials (Fig.3),Q is the fluid flow,pc(h)is the contact pressure,ηBJis the Beavars-Joseph coefficient,and erf()is the error function.

    According to the Greenwood and Williamson model[13],pc(h)can be expressed as:

    where E is the Young modulus of friction material,ρ is the asperity density,σ is the standard deviation of roughness,and β is the asperity tip radius,and erfc()is complementary error function.

    The viscosity torque can be expressed as

    where φfand φfsare Patir factor and Cheng factor,respectively; Nfis the number of friction surfaces;and r2and r1are the outside and the inside radiuses,respectively.

    The contact torque can be expressed as

    where μcis the sliding friction coefficient.

    4 Simulation and Discussion

    Figure 4 shows the calculated fluid film thickness during the course of clutch engagement under varying pressure and viscosity of ATF.Obviously,the film thickness decreases quickly in the hydrodynamic lubrication phase(PP*)and then gradually in the mixed lubrication phase(PM*),and finally keeps constant in the mechanical contact phase(PC*).Larger pressure or viscosity both can lead to smaller film thickness.With varying pressure and viscosity of ATF,the duration of each phase isspecific,which infectsthe clutch torque significantly.

    Fig.4 Thickness of the fluid film during the course of engaging a clutch

    Figure 5 shows the calculated clutch torque in three phases marked as I-III when engaging a clutch.In phase I,there is no asperity contact,so the clutch torque is equal to the viscosity torque although it is small.The viscosity torque increases slightly even with the severe reduction of fluid film thickness and thus the clutch slip decreases slightly too.In phase II,in addition to the viscosity friction,there is also asperity contact which leads to quick growth of the contact torque until reaching the steady state.The viscosity torque would peak first,which leads to an overshoot of the clutch torque,and then decrease gradually because of the changing of fluid film thickness.Under the increasing clutch torque,the clutch slip decreases significantly till it becomes very small.In phase III,the clutch is engaged completely and there is only the contact friction torque.

    Fig.5 Clutch torque when engaging a clutch

    5 Test Validation

    To verify the above model,experiment is conducted by an SAE#2 machine Greening Inc.,which considers different engaging conditions.Figure 6 illustrates both the calculated and the experimental clutch torques.In Fig.6,ω0is the initial clutch slip,Δt is the pressure ramp time,and τ is the ATF temperature.Obviously,the dynamic model predicts the torque precisely for all conditions while the static models are different.

    Fig.6 Simulation and test validations of the clutch torque under different engaging conditions

    Comparing Figs.6(a),(d),and(g)with Figs.6(b),(e),and(h),a significant torque overshoot appears which will increase with higher pressure ramp rate.Meanwhile,a higher pressure ramp rate would lead to shorter time delay.Larger pressure would decrease the clutch slip of clutch quickly.However,the real torque was unstable initially(Figs.6(g),(h),and(i)).Comparing with Fig.5,the torque also has an overshoot in the phase II because of the characteristics of viscosity torque.The torque delay at the beginning of pressure ramp-up originates from the oil film compression speed,which can affect the viscosity torque.Higher temperature can reduce the viscosity of ATF and thus slow down the increase of the viscosity torque.Thus,the overshoot torque in Figs.6(c),(g),and(i)is more smooth.Higher viscosity torque appears with larger initial clutch slip and thus the total clutch torque increases more quickly than that with smaller clutch slip.Therefore,it can be deduced that the clutch torque can be significantly affected by temperature,pressure force and clutch slip,and thus these parameters must be considered in clutch torque prediction so as to improve the control accuracy.

    6 Optimization ofClutch-to-Clutch Torque Control

    Gear shifting of automatic transmission is operated by engaging one on-coming clutch and opening one off-going clutch[14-16].Figure 7 shows the equivalent driveline,in which C1 is the low-gear clutch and C2 is the high-gear clutch.Figure 8 shows the speed and torque characteristics of the power-on upshift type.The shift process is generally divided into a fill phase to eliminate the gap,a torque phase to transfer the turbine torque from C1 to C2,and a speed phase to synchronize C2.The clutch-to-clutch power on up-shifting is controlled by filling the oncoming clutch C2 while ramping down the pressure of the off-going clutch C1.Because the engine torque is active,a torque has to be reduced by the engine to let C2 pull down the engine speed.The torque capacity and pressure of C2 and C1 are controlled by the closed loop proportion integration differentiation(PID)system with reference to the clutch slip speed.Except for the fill phase for C2 because zero torque is required,all the command torque is calculated based on the engine toque and clutch slip.To make the engine speed change smoothly,the real clutch torque should follow the commandtorque.Otherwise,the engines may flare and tire up,causing poor shift quality.Therefore,the torque-to-pressure relationship is very important for ensuring high shift quality.

    Fig.7 Equivalent scheme of the driveline

    Fig.8 Speed and torque characteristics of power-on up-shift type

    6.1 Test of transmission clutch torque-pressure characteristics

    The clutch torque-pressure characteristics(T2P curve)are important for controlling the clutch of automatic transmission,which can be obtained by the test rig.Massive heat would be produced when there is high-pressure and high-speed difference,which may burn out the clutch within short time,so it is usually difficult to test under this condition.The T2P characteristics of clutches can be achieved by the comprehensive dynamic test bench in Fig.9.This test bench consists of one input motor and two output motors which can be controlled separately.The test steps are as follows:

    (1)lock up two clutches and open the third clutch(tested clutch);

    (2)set the input motor to 2000 r/min,and set the output motor to a certain speed which makes the clutch slip at 40 r/min (small slip);

    (3)increase the control pressure to the clutch,and record the clutch's pressure and the input motor torque;

    (4)according to the transmission structure,the input motor torque can be equivalent to the clutch torque.The clutch T2P characteristics can be obtained.

    Fig.9 Comprehensive dynamic test bench for automatic transmission

    Figure 10 shows the experimental T2P curves for C1 at 80℃.With increasing pressure,two different pressure rates are used.Low pressure rate is used to check the clutch kiss point pressure.Kiss point pressure is the pressure that can eliminate the clutch gap and start the clutch to transfer torque along with the increasing pressure.It can be checked by detecting the inflection point(point A)of input torque because the viscosity torque Tvand the contact torque Tcwill increase fast(Fig.5).High pressure rate is used to check the T2P characteristics.The test results in Fig.10(b)show that the clutch T2P characteristic is linear in fixed clutch slip and stable pressure change.This T2P test data can be the base curve for the clutch control.

    Fig.10 Test result for clutch T2P characteristics

    6.2 Clutch torque control

    According to Fig.6,the pressure change rate and clutch slip can affect the clutch transfer torque.Therefore,these two factors should be considered for the clutch control pressure.Otherwise the shift quality may be influenced.Figure 11 shows the clutch control results with and without correction during shifting.During the clutch oil fill stage,the slip of oncoming clutch C1 is large while its pressure is still small.If clutch pressure increases too fast,the clutch torque would fluctuate and affect the engine load(Figs.6(g)-(i)),thus affecting the shift quality(curve En2 in Fig.11).In torque exchange stage,pressure P2 for engaging clutch increases linearly so quickly that the torque is overshot,which leads to sudden rise of engine load and thus sudden drop of engine speed(curve En2).To optimize the clutch torque control,the pressure correction offset based on pressure change rate and clutch slip is added during the pressure control.The pressure offset correction map is shown in Fig.12.P'is the pressure change rate during the shifting.If the clutch slip and P'are larger,the pressure offset correction value is also larger.The final optimized pressure offset can be obtained from the vehicle calibration test.The engine speed En1 is stable and does not cause tie-up or judder during the shifting according to clutch pressure correction P1(Fig.11).With the pressure correction,the clutch transfer torque can respond to the pressure control more accurately and stably,which will makethe engine load match with the engine input torque and improve the shift quality.

    Fig.11 Clutch control results during shift

    Fig.12 Pressure offset correction MAP for varying clutch slip and pressure rate

    7 Conclusions

    (1)The static model for prediction of wet clutch torque is suitable only for the engaging condition with high clutch slip and pressure.

    (2)By characterizing the fluid flow during the course of engaging a wet clutch with three phases:fluid lubrication,mixed lubrication,and mechanical contact phase,a dynamic model is proposed to predict the clutch torque.

    (3)Based on the dynamic characteristics of clutch torque,the clutch pressure controlwasmodified,and thusthe fluctuation and sudden drop of engine speed could be eliminated and the shift quality be improved.

    [1]Berger E J,Sadeghi F,Krousgrill C M.Finite Element Modeling of Engagement of Rough and Grooved Wet Clutches[J].ASME Journal of Tribology,1996,118(1):137-146.

    [2]Berger E J,Sadeghi F,Krousgrill C M.Analytical and Numerical Modeling of Engagement of Rough,Permeable,Grooved Wet Clutches[J].ASME Journal of Tribology,1997,119(1):143-148.

    [3]Yang Y B,Lam R C,Chen Y F,et al.Modeling of Heat Transfer and Fluid Hydrodynamics for a Multidisk Wet Clutch[C].Society of Automotive Engineers,Warrendale,USA,1995:950898.

    [4]Jang J Y,Khonsari M M.Thermal Characteristics of a Wet Clutch[J].ASME Journal of Tribology,1999,121(3):610-617.

    [5]Razzaque M M,Kato T.Effect of a Groove on the Behavior of a Squeeze Film between a Grooved and a Plain Rotating Annular Disk[J].ASME Journal of Tribology,1999,121(4):808-815.

    [6] Razzaque M M,Kato T.Effects of Groove Orientation on Hydrodynamic Behavior of Wet Clutch Coolant Films[J].ASME Journal of Tribology,1999,121(1):56-61.

    [7]Marano J E,Moorman S P,Whitton M D,et al.Clutch to Clutch Transmission Control Strategy [C]. Society of Automotive Engineers,Warrendale,USA,2007:2007-01-1313.

    [8]Montanari M,Ronchi F,Rossi C,et al.Control and Performance Evaluation of a Clutch Servo System with Hydraulic Actuation[J].Control Engineering Practice,2004,12(11):1369-1379.

    [9]Song X Y,Zulkefli M A M,Sun Z X.Automotive Transmission Clutch Fill Optimal Control:an Experimental Investigation[C].American Control Conference,Baltimore,MD,2010:2478-2753.

    [10] Song X Y,Sun Z X.Pressure-Based Clutch Control for Automotive Transmissions Using a Sliding-Mode Controller[J].IEEE/ASME Transactions on Mechatronics,2012,17(3):534-546

    [11]Ompusunggu A P,Janssens T,Al-Bender F,et al.Engagement Behavior of Degrading Wet Friction Clutches[C].2011 IEEE/ ASME International Conference on Advanced Intelligent Mechatronics(AIM),Budapest,2011:271-276.

    [12]Josko D,Josko P,Jahan A,et al.Modeling of Wet Clutch Engagement Including a Thorough Experimental Validation[J].SAE Transactions,2005,114(6):1013-1028.

    [13]Yang Y B,Lam R C,F(xiàn)ujji T.Prediction of Torque Response during the Engagement of Wet Friction Clutch[C].Society of Automotive Engineers,Warrendale,USA,1998:981097.

    [14]Minowa T,Ochi T,Kuroiwa H,et al.Smooth Gear Shift Control Technology for Clutch-to-Clutch Shifting[C].Society of Automotive Engineers,Warrendale,USA,1999:1999-01-1054.

    [15]Bai S S,Moses R L,Schanz T,et al.Development of a New Clutch-to-Clutch Shift Control Technology[C].Society of Automotive Engineers,Warrendale,USA,2002:2002-01-1252.

    [16]Vasca F,Iannelli L,Senatore A,et al.Torque Transmissibility Assessment for Automotive Dry-Clutch Engagement[J].IEEE/ ASME Transactions on Mechatronics,2010,16(3):564-573.

    U463.22

    A

    1672-5220(2015)03-0357-06

    date:2013-11-19

    National Science and Technology Support Program,China(No.2011BAG09B00)

    *Correspondence should be addressed to LIU Yan-fang,E-mail:liuyf@buaa.edu.cn

    猜你喜歡
    向陽(yáng)
    向陽(yáng)而生
    “舌”從口出
    絢爛的“光”
    三月頭 驚蟄到
    臘月里來聊“臘”字
    向陽(yáng)而生
    電閃雷鳴
    說“南”道“北”
    閱讀(低年級(jí))(2021年2期)2021-04-08 02:16:27
    字海拾“貝”
    嫩草影院入口| 看十八女毛片水多多多| 午夜日本视频在线| 男女下面插进去视频免费观看| 精品卡一卡二卡四卡免费| 久久久久久久久免费视频了| 少妇的丰满在线观看| 日韩一卡2卡3卡4卡2021年| 日韩人妻精品一区2区三区| 女性生殖器流出的白浆| 亚洲欧美成人精品一区二区| 电影成人av| 大码成人一级视频| 国产片特级美女逼逼视频| 免费黄频网站在线观看国产| 免费高清在线观看日韩| 女人精品久久久久毛片| av不卡在线播放| 自线自在国产av| 捣出白浆h1v1| 亚洲av成人精品一二三区| 91在线精品国自产拍蜜月| 激情视频va一区二区三区| 午夜免费男女啪啪视频观看| 久久精品亚洲av国产电影网| 黄色怎么调成土黄色| 黄网站色视频无遮挡免费观看| 久热这里只有精品99| 天堂中文最新版在线下载| 久久久久久伊人网av| av国产久精品久网站免费入址| 999精品在线视频| 人人妻人人爽人人添夜夜欢视频| 婷婷色综合大香蕉| 国产成人免费无遮挡视频| 久久久久久久大尺度免费视频| 免费在线观看完整版高清| 亚洲一区二区三区欧美精品| 国产高清国产精品国产三级| 国产精品免费视频内射| 国产色婷婷99| 亚洲一区二区三区欧美精品| av天堂久久9| 一级a爱视频在线免费观看| 久久狼人影院| 汤姆久久久久久久影院中文字幕| 国产精品一区二区在线不卡| 国产亚洲一区二区精品| 九草在线视频观看| 亚洲av男天堂| 成年人午夜在线观看视频| 男人添女人高潮全过程视频| 午夜日本视频在线| 人人妻人人添人人爽欧美一区卜| 成年av动漫网址| 成人免费观看视频高清| 女人精品久久久久毛片| 国产 精品1| 久久婷婷青草| 2022亚洲国产成人精品| 亚洲av.av天堂| 日韩三级伦理在线观看| 亚洲精品av麻豆狂野| 97人妻天天添夜夜摸| 另类精品久久| 最近2019中文字幕mv第一页| 丰满饥渴人妻一区二区三| 国产老妇伦熟女老妇高清| 亚洲国产精品成人久久小说| 不卡av一区二区三区| 一本久久精品| 性色avwww在线观看| av不卡在线播放| 日韩免费高清中文字幕av| 一级黄片播放器| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品久久成人aⅴ小说| 国产精品二区激情视频| 大话2 男鬼变身卡| 天堂中文最新版在线下载| 亚洲人成电影观看| 亚洲美女视频黄频| 一级毛片 在线播放| 久久女婷五月综合色啪小说| 欧美激情极品国产一区二区三区| 黄片小视频在线播放| 不卡视频在线观看欧美| 久久精品人人爽人人爽视色| 成人毛片a级毛片在线播放| 免费高清在线观看视频在线观看| 国产精品秋霞免费鲁丝片| 我的亚洲天堂| 精品人妻一区二区三区麻豆| 精品福利永久在线观看| 人人澡人人妻人| 美女视频免费永久观看网站| 久久久久国产网址| 爱豆传媒免费全集在线观看| 下体分泌物呈黄色| 精品少妇黑人巨大在线播放| 久久久久久伊人网av| 99久国产av精品国产电影| 国产成人精品一,二区| 国产女主播在线喷水免费视频网站| 国产一区亚洲一区在线观看| 99热全是精品| 久久女婷五月综合色啪小说| 男女边吃奶边做爰视频| 18禁动态无遮挡网站| 亚洲av电影在线进入| 桃花免费在线播放| 老司机亚洲免费影院| 久久精品国产鲁丝片午夜精品| 中国国产av一级| 又大又黄又爽视频免费| av免费观看日本| 日韩三级伦理在线观看| 免费观看无遮挡的男女| av女优亚洲男人天堂| 在线亚洲精品国产二区图片欧美| 亚洲av综合色区一区| 黄网站色视频无遮挡免费观看| 男女午夜视频在线观看| 蜜桃在线观看..| 中文字幕另类日韩欧美亚洲嫩草| 国产男女内射视频| 日本欧美国产在线视频| 成年人午夜在线观看视频| 欧美日韩一级在线毛片| 久久久久精品久久久久真实原创| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久成人av| 久久国产精品男人的天堂亚洲| 边亲边吃奶的免费视频| 我的亚洲天堂| 国产日韩欧美亚洲二区| 日产精品乱码卡一卡2卡三| 啦啦啦在线免费观看视频4| 99久久人妻综合| 免费观看在线日韩| 两个人看的免费小视频| 国产野战对白在线观看| 在线观看免费日韩欧美大片| 王馨瑶露胸无遮挡在线观看| 国产精品香港三级国产av潘金莲 | 精品人妻熟女毛片av久久网站| 亚洲欧美成人综合另类久久久| 国产在视频线精品| 深夜精品福利| 十分钟在线观看高清视频www| 黄色视频在线播放观看不卡| 在线精品无人区一区二区三| 精品午夜福利在线看| 亚洲欧美精品综合一区二区三区 | 高清av免费在线| 国产精品国产三级国产专区5o| 岛国毛片在线播放| 夫妻午夜视频| 亚洲国产精品国产精品| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 丝袜喷水一区| 欧美人与性动交α欧美精品济南到 | 久久久久久久大尺度免费视频| 99国产综合亚洲精品| 午夜久久久在线观看| 婷婷色av中文字幕| 纵有疾风起免费观看全集完整版| 免费观看无遮挡的男女| 国产精品国产av在线观看| 美女主播在线视频| 国产精品久久久久久精品电影小说| 亚洲,欧美,日韩| 亚洲国产av新网站| 亚洲精品在线美女| 最近最新中文字幕大全免费视频 | 国产精品 欧美亚洲| 丝袜在线中文字幕| 日韩av不卡免费在线播放| av国产精品久久久久影院| tube8黄色片| 在线观看免费日韩欧美大片| 国语对白做爰xxxⅹ性视频网站| 精品人妻在线不人妻| 99香蕉大伊视频| 亚洲四区av| 伦精品一区二区三区| 免费在线观看黄色视频的| 啦啦啦在线免费观看视频4| 人妻人人澡人人爽人人| 国产野战对白在线观看| 在线天堂最新版资源| 久久99蜜桃精品久久| 中国三级夫妇交换| 一级毛片电影观看| 性色avwww在线观看| 国产精品免费视频内射| 亚洲图色成人| 亚洲第一青青草原| 美女高潮到喷水免费观看| 成年美女黄网站色视频大全免费| 麻豆av在线久日| 亚洲av男天堂| 街头女战士在线观看网站| 久久精品人人爽人人爽视色| 亚洲美女黄色视频免费看| 9色porny在线观看| 天堂俺去俺来也www色官网| 国产毛片在线视频| 国产极品天堂在线| 成人国语在线视频| 热re99久久国产66热| 久久久久久免费高清国产稀缺| 岛国毛片在线播放| 七月丁香在线播放| 黄片播放在线免费| 男人舔女人的私密视频| 国产在线免费精品| av福利片在线| 色播在线永久视频| 巨乳人妻的诱惑在线观看| 午夜日本视频在线| 国产免费视频播放在线视频| 免费黄网站久久成人精品| 欧美日韩一区二区视频在线观看视频在线| 爱豆传媒免费全集在线观看| 国产免费视频播放在线视频| 男女午夜视频在线观看| 亚洲欧美一区二区三区黑人 | 天堂俺去俺来也www色官网| 免费黄网站久久成人精品| 欧美黄色片欧美黄色片| 满18在线观看网站| 国产成人91sexporn| 午夜日韩欧美国产| 精品人妻一区二区三区麻豆| 成人毛片60女人毛片免费| 丰满迷人的少妇在线观看| 国产精品免费视频内射| 免费少妇av软件| 纵有疾风起免费观看全集完整版| 我的亚洲天堂| 国产又色又爽无遮挡免| 一本—道久久a久久精品蜜桃钙片| 成人二区视频| 亚洲av国产av综合av卡| 在线 av 中文字幕| 最近中文字幕2019免费版| 美女xxoo啪啪120秒动态图| av在线老鸭窝| 少妇人妻久久综合中文| 女人被躁到高潮嗷嗷叫费观| 在线观看免费日韩欧美大片| 少妇人妻精品综合一区二区| 大话2 男鬼变身卡| 夜夜骑夜夜射夜夜干| 99re6热这里在线精品视频| 在线观看三级黄色| 丝袜喷水一区| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区激情视频| 日韩av在线免费看完整版不卡| 久久精品国产综合久久久| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| 国产色婷婷99| 日韩三级伦理在线观看| 新久久久久国产一级毛片| 成人手机av| 久久久久精品性色| 亚洲av日韩在线播放| 少妇猛男粗大的猛烈进出视频| 免费少妇av软件| av网站免费在线观看视频| 搡女人真爽免费视频火全软件| 日本av手机在线免费观看| 99热全是精品| 欧美黄色片欧美黄色片| 久久久精品国产亚洲av高清涩受| 在线观看免费高清a一片| 老汉色∧v一级毛片| 久久亚洲国产成人精品v| 欧美激情极品国产一区二区三区| 天天操日日干夜夜撸| av免费在线看不卡| 99久久人妻综合| 欧美日韩视频精品一区| 一边摸一边做爽爽视频免费| 肉色欧美久久久久久久蜜桃| 午夜福利影视在线免费观看| 久久女婷五月综合色啪小说| 91精品伊人久久大香线蕉| 免费在线观看完整版高清| 国产男女内射视频| 男女无遮挡免费网站观看| 极品人妻少妇av视频| 欧美成人精品欧美一级黄| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品电影小说| 最近中文字幕2019免费版| 啦啦啦在线免费观看视频4| 日韩在线高清观看一区二区三区| 色哟哟·www| 久久久久久久亚洲中文字幕| 成人国语在线视频| 久久精品国产鲁丝片午夜精品| 大香蕉久久成人网| 日韩中文字幕欧美一区二区 | 成年人免费黄色播放视频| 精品一区在线观看国产| 亚洲人成网站在线观看播放| 高清av免费在线| 日本91视频免费播放| av福利片在线| 狠狠精品人妻久久久久久综合| 国产精品成人在线| 另类精品久久| 国产 一区精品| 久久久久国产精品人妻一区二区| 午夜福利网站1000一区二区三区| 亚洲国产色片| 成年美女黄网站色视频大全免费| 2021少妇久久久久久久久久久| www.av在线官网国产| 国产综合精华液| 国产精品国产av在线观看| 2018国产大陆天天弄谢| 欧美97在线视频| 一本色道久久久久久精品综合| 亚洲精品国产av蜜桃| 大香蕉久久成人网| 亚洲成人一二三区av| 亚洲精品久久久久久婷婷小说| 水蜜桃什么品种好| 国产女主播在线喷水免费视频网站| 我要看黄色一级片免费的| 亚洲成人av在线免费| 热re99久久国产66热| 欧美激情极品国产一区二区三区| 啦啦啦视频在线资源免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久久久久免| 黄片无遮挡物在线观看| 人妻系列 视频| 这个男人来自地球电影免费观看 | 久久婷婷青草| 欧美少妇被猛烈插入视频| 欧美97在线视频| 大码成人一级视频| 日韩电影二区| 男女高潮啪啪啪动态图| 国产不卡av网站在线观看| 在线观看三级黄色| 成人二区视频| 国产免费现黄频在线看| 免费在线观看黄色视频的| 日日爽夜夜爽网站| 黄色 视频免费看| 90打野战视频偷拍视频| 欧美精品一区二区大全| 亚洲精品久久久久久婷婷小说| 观看美女的网站| 亚洲精品第二区| 少妇被粗大的猛进出69影院| 久久精品国产亚洲av高清一级| 国产男女内射视频| videossex国产| 欧美在线黄色| 满18在线观看网站| 亚洲综合色网址| 国产黄色视频一区二区在线观看| 国产免费又黄又爽又色| 久久99一区二区三区| 黑人猛操日本美女一级片| 三上悠亚av全集在线观看| 亚洲精品自拍成人| 婷婷色综合www| 亚洲在久久综合| 十分钟在线观看高清视频www| 91精品国产国语对白视频| 欧美在线黄色| 日韩伦理黄色片| 午夜91福利影院| 97在线人人人人妻| 国产精品无大码| 天美传媒精品一区二区| 九九爱精品视频在线观看| 日韩人妻精品一区2区三区| 好男人视频免费观看在线| 欧美变态另类bdsm刘玥| 成人黄色视频免费在线看| 国产乱来视频区| 日本-黄色视频高清免费观看| 亚洲综合色惰| 天天躁日日躁夜夜躁夜夜| 丝袜喷水一区| 亚洲成人av在线免费| 自拍欧美九色日韩亚洲蝌蚪91| 欧美人与性动交α欧美软件| 亚洲第一青青草原| 亚洲美女视频黄频| 在线观看www视频免费| 国产福利在线免费观看视频| 午夜福利视频精品| 亚洲精品美女久久久久99蜜臀 | 丝袜美腿诱惑在线| 卡戴珊不雅视频在线播放| 国产午夜精品一二区理论片| 夫妻午夜视频| 亚洲国产毛片av蜜桃av| 国产国语露脸激情在线看| 蜜桃国产av成人99| 婷婷色麻豆天堂久久| 午夜激情av网站| 男女下面插进去视频免费观看| 又黄又粗又硬又大视频| 国产白丝娇喘喷水9色精品| 欧美日韩视频高清一区二区三区二| 两个人免费观看高清视频| 少妇的丰满在线观看| 国产亚洲av片在线观看秒播厂| 国产成人91sexporn| 男人舔女人的私密视频| 99香蕉大伊视频| 欧美亚洲日本最大视频资源| 视频在线观看一区二区三区| 五月天丁香电影| 免费女性裸体啪啪无遮挡网站| videossex国产| 亚洲av电影在线进入| 最近中文字幕高清免费大全6| 成人午夜精彩视频在线观看| 人人妻人人澡人人看| 热99国产精品久久久久久7| 亚洲男人天堂网一区| 久久久久久伊人网av| 香蕉精品网在线| 这个男人来自地球电影免费观看 | 国产日韩欧美视频二区| 国产成人精品久久二区二区91 | 久久久久久久国产电影| 一本色道久久久久久精品综合| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲精品一区二区精品久久久 | 国产野战对白在线观看| 亚洲综合色网址| 久久久久久久亚洲中文字幕| 麻豆乱淫一区二区| 日韩欧美一区视频在线观看| 成人黄色视频免费在线看| 日韩 亚洲 欧美在线| 国产精品二区激情视频| av网站在线播放免费| 一区二区三区激情视频| 午夜福利在线免费观看网站| 黑人欧美特级aaaaaa片| 男人添女人高潮全过程视频| 日韩伦理黄色片| 丝袜脚勾引网站| 美女脱内裤让男人舔精品视频| 91精品国产国语对白视频| 老汉色av国产亚洲站长工具| 久久人人爽av亚洲精品天堂| 久久久欧美国产精品| 欧美另类一区| 秋霞伦理黄片| 亚洲一级一片aⅴ在线观看| 国产无遮挡羞羞视频在线观看| 满18在线观看网站| 又黄又粗又硬又大视频| 国产成人精品久久久久久| 免费日韩欧美在线观看| 免费观看av网站的网址| 精品卡一卡二卡四卡免费| 十八禁网站网址无遮挡| 搡老乐熟女国产| 久久这里有精品视频免费| 中文精品一卡2卡3卡4更新| 久久久a久久爽久久v久久| 精品一区二区三区四区五区乱码 | 搡老乐熟女国产| 女性生殖器流出的白浆| 男人爽女人下面视频在线观看| 久久99精品国语久久久| 伊人久久国产一区二区| www.熟女人妻精品国产| 国产在线免费精品| 不卡av一区二区三区| 欧美亚洲 丝袜 人妻 在线| 免费黄网站久久成人精品| 欧美精品国产亚洲| 91精品三级在线观看| 国语对白做爰xxxⅹ性视频网站| 日韩一本色道免费dvd| 久久久久久人人人人人| 又粗又硬又长又爽又黄的视频| 国产成人一区二区在线| 午夜福利影视在线免费观看| 2022亚洲国产成人精品| 日日啪夜夜爽| 欧美精品av麻豆av| 女性生殖器流出的白浆| 黄色视频在线播放观看不卡| 日韩伦理黄色片| 国产免费又黄又爽又色| 久久久久久久精品精品| 永久网站在线| 久久精品久久久久久久性| 亚洲av男天堂| 国产精品不卡视频一区二区| 亚洲国产最新在线播放| 免费高清在线观看视频在线观看| 极品少妇高潮喷水抽搐| 男女高潮啪啪啪动态图| 国产精品一区二区在线观看99| 国产 精品1| 26uuu在线亚洲综合色| 日韩电影二区| 日日摸夜夜添夜夜爱| 寂寞人妻少妇视频99o| 国产亚洲一区二区精品| 一本—道久久a久久精品蜜桃钙片| 男人舔女人的私密视频| 一边亲一边摸免费视频| 精品酒店卫生间| 久久久久精品性色| 最新中文字幕久久久久| 秋霞伦理黄片| 午夜日韩欧美国产| 最新的欧美精品一区二区| 精品亚洲乱码少妇综合久久| 国产高清国产精品国产三级| 99国产综合亚洲精品| 三级国产精品片| 女人精品久久久久毛片| 尾随美女入室| 欧美 亚洲 国产 日韩一| 91aial.com中文字幕在线观看| 丝袜喷水一区| 国产精品一区二区在线不卡| 国产av码专区亚洲av| 国产亚洲一区二区精品| 成年女人毛片免费观看观看9 | 欧美成人精品欧美一级黄| 亚洲综合色网址| 久久久久国产网址| 777久久人妻少妇嫩草av网站| 日韩精品有码人妻一区| 国产午夜精品一二区理论片| 亚洲国产最新在线播放| 青草久久国产| av在线老鸭窝| 看免费av毛片| 国产女主播在线喷水免费视频网站| 国产欧美日韩一区二区三区在线| 午夜久久久在线观看| 亚洲成色77777| 一边摸一边做爽爽视频免费| 日韩大片免费观看网站| 亚洲精品美女久久久久99蜜臀 | xxx大片免费视频| 国产免费又黄又爽又色| 一级片'在线观看视频| 日韩精品免费视频一区二区三区| 亚洲国产精品一区三区| 亚洲精品美女久久久久99蜜臀 | 国产探花极品一区二区| 久久影院123| 尾随美女入室| 久久综合国产亚洲精品| 黄片小视频在线播放| 日韩成人av中文字幕在线观看| 中文字幕人妻丝袜一区二区 | 国语对白做爰xxxⅹ性视频网站| 亚洲欧美精品自产自拍| 黄色视频在线播放观看不卡| 欧美日韩成人在线一区二区| 久久久久久人人人人人| 少妇人妻久久综合中文| 男人添女人高潮全过程视频| 久久韩国三级中文字幕| 18在线观看网站| 午夜福利视频在线观看免费| 91在线精品国自产拍蜜月| 久久免费观看电影| 涩涩av久久男人的天堂| 亚洲精品久久午夜乱码| 久久免费观看电影| 老女人水多毛片| av在线播放精品| 视频在线观看一区二区三区| 少妇精品久久久久久久| 久久 成人 亚洲| 国产精品国产三级专区第一集| 在线观看一区二区三区激情| 啦啦啦视频在线资源免费观看| 这个男人来自地球电影免费观看 | 午夜福利网站1000一区二区三区| 久久精品国产亚洲av天美| 黑人欧美特级aaaaaa片| 边亲边吃奶的免费视频| 国产日韩欧美亚洲二区| 亚洲 欧美一区二区三区| 久久久亚洲精品成人影院| 久久久国产欧美日韩av| 高清不卡的av网站| 国产精品国产三级专区第一集| 亚洲第一av免费看| 精品少妇内射三级| 免费人妻精品一区二区三区视频| 精品一区二区三卡| 久久精品国产综合久久久| av免费观看日本| 国产又色又爽无遮挡免| 免费日韩欧美在线观看|