• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experiment on Adiabatic Film Cooling Effectiveness in Front Zone of Effusion Cooling Configuration*

    2014-05-05 22:55:40YangZhimin楊志民ZhangJingzhou張靖周
    關(guān)鍵詞:志民

    Yang Zhimin(楊志民),Zhang Jingzhou(張靖周)

    1.School of Energy and Power Engineering,Beihang University,Beijing,100191,P.R.China;2.Shenyang Engine Design and Research Institute,Aviation Industry Corporation of China,Shenyang,110015,P.R.China;3.Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;4.Collaborative Innovation Center of Advanced Aero-engine,Beijing,100191,P.R.China

    1 Introduction

    As a matter of fact,the inlet and exit temperature levels are progressively getting higher in modern gas-turbine combustors while the percentage of compressed air available for cooling purpose becomes more limited.Undoubtedly,the decrease of the quantity of cooling air available and the increase of the gas temperature in the combustor are contradictory elements of the problem,which presents a great challenge for engineers to design an efficient cost-effective cooling system to meet combustor durability requirement.

    In order to improve the reliability of the combustor liner exposed to hot gas,two technical routes are obligatory for satisfying this requirement.One is to improve the combustor liner material characteristics,and the other is to develop advanced combustor liner cooling configuration.As far as the latter is concerned,effusion cooling or fully coverage film cooling has shown advantage to protect and increase the lifetime of combustor liner for contributing high cooling effectiveness,aswell as uniform temperature distribution[1-4].

    A lot of investigations on the mechanism of enhanced cooling of an effusion cooling scheme have been performed by many researchers.In reality,an effusion cooling scheme consists of three cooling effects:(1)the reduction of the wall temperature for an adiabatic wall as a direct result of the coolant jets;(2)the conduction of heat through the wall due to the thermal conductivity of the wallmaterial and the heat transfer to the backside flow;(3)the heat trans-fer to the coolant flow from the inner surface of the injection holes when coolant passes through the holes.The relative importance of each effect depends critically on the geometrical features of the wall and the operating conditions of the cooling system.

    Although many studies have been conducted to investigate the effects of main geometric and aerothermal factors on the thermal and aerodynamic performances of effusion cooling scheme[5-16],such as the arrangement of effusion holes,hole shape,hole diameter and hole inclination angle,and blowing ratio,etc.,there is few concentration on the cooling characteristics in the front zone of effusion configuration.Previous works have shown that the forming of“continuous”or“developed”coverage film layer comes through a developing process of the coolant jets injected from the front rows of film holes[17-19].The effusion cooling feature in the developing zone is significantly different from that in the developed zone.Themotivation of the presented experimental study is to explore the cooling characteristics in the front zone of effusion configuration.Effects of blowing ratio,multi-holes arrangementmode,hole-to-hole pitch and jet orientation angle on the adiabatic film cooling effectiveness are concentrated on.

    2 Experimental Procedures

    2.1 Experimental setup

    Fig.1 Schematic diagram of experimental setup

    The experimental setup is sketched in Fig.1.The primary stream comes from compressed air supply(0.8 MPa)and passes through a calibrated orifice flow meter,after being heated by a 60 kW heater,which can heat the air to a free-stream temperature of 80 °C.The heated stream is then routed through a section with baffles to ensure adequate mixing of the hot air to obtain a uniform temperature at the crosssection of 150 mm width and 60 mm height.This cross-section makes the primary stream flow at25 m/s.The primary stream temperature is continuously monitored at the inlet of the test section by a thermocouple.The secondary stream or coolant air is provided from a separate compressed air supply and routed through a buoyage flow meter,which is controlled by a gate valve and introduced into the plenum cavity.To eliminate the impingement effect of the coolant air at the plenum inlet,multiple layers of grids are placed in the plenum cavity.The coolant stream is then ejected through the effusion cooling holes into the primary flow passage.The test section ismade of transparent plastic plate with thickness of 5 mm.The length of the test section is300 mm.An infrared viewing window,which is 80 mm wide and 120 mm long,ismounted on the test section for directly viewing themeasured surface by an infrared camera.

    2.2 Experimentalmodels

    The experimental model for an effusion cooling configuration is shown in Fig.2(a).The effusion plate ismade of epoxy resin with thickness of 3 mm.The holes inside the perforated plate are arranged in the staggered mode or the inline mode,as shown in Figs.2(b,c).In the present study,the effusion holes have the same diameter(d=2 mm).The streamwise pitch ratio(S/d)and spanwise pitch ratio(P/d)are varied from 3 to 5.The inclined angle(α)is setas35°and 90°,respectively.The effusion plate has length of 120 mm and width of 150 mm,which ismounted inside the test section.

    The geometries of the effusion plates are summarized in Table 1.

    Fig.2 Schematic diagram of effusion cooling scheme

    Table 1 Effusion plate geometries

    2.3 M easurement and parameter definition

    To study the effect of various amount of coolant flow on the film cooling for a fixed mainstream flow,a parameter known as the blowing ratio(M)is defined as

    whereρcand ucare the density and velocity of the secondary flow or coolant flow at the effusion hole exit,respectively;and ρ∞and u∞are the density and velocity of the primary flow,respectively.

    The adiabatic wall cooling effectiveness(ηad)is defined as

    where Tcis the coolant flow temperature,T∞the primary flow temperature,T∞the primary flow temperature,Tawthe adiabatic wall temperature at the effusion surface suffering the primary flow.Since the thermal conductivity of effusion plate is about 0.4 W/(m·K),the heat transfer on the backside surface and inside effusion holes of the effusion plate is very weak.Therefore,the temperature on the effusion surface may be regarded approximately as the adiabatic temperature.

    The temperature distributions on the face of the effusion plate aremeasured by an infrared camera operating in themiddle infrared band(8~14 m)of the infrared spectrum.The test surface is viewed through the infrared camera window(Fig.1).The infrared camera calibration is conducted using a series of thermocouples placed on the black painted test surface to act as the benchmark[20-22].These thermocouples are used to estimate the emissivity of the test surface.The emissivity of the black painted test when viewed without thewindow is about0.96.The calibrated transmissivity for the infrared camera window is about0.85.

    To eliminate the effect of the edge area on the data treatment,the laterally-averaged adiabatic cooling effectiveness is determined on the centric zone of effusion plate.

    Experimental uncertainty in the overall film effectiveness measurement is estimated to be about ± 8.4%using the methodology of Moffat[23].The individual uncertainties of primary mainstream temperature(T∞),coolant temperature(Tc),and surface temperature(Taw)are ±1 °C,±0.5 °C,±2.0 °C,respectively.

    3 Results and Discussion

    Fig.3 presents the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction at different blowing ratios.Here the original coordinate is located at the centre of the first row film holes.

    For either the staggered mode or inline mode,the film flow displays an obvious“developing”feature in the front zone of effusion cooling configuration.The film outflows injected from the front rows do notmerge together to form a uniform film layer,therefore the laterally-averaged adiabatic cooling effectiveness increases or the adiabatic temperature decreases rapidly along the streamwise direction.By comparison,the varying gradient of the laterally-averaged adiabatic cooling effectiveness along the streamwise direction is greater in the staggered mode than that in the inline mode.Thismeans that the staggered mode will benefit the development of film flow and is capable of achieving full film coverage by fewer number of effusion cooling-holes rows.

    For the staggered arrangement,the laterally-averaged adiabatic film cooling effectiveness originated from the first few rows is higher under the lower blowing ratio,which agrees well with the results of discrete film cooling from early studies[24,25].Under a lower blowing ratio,the coolant jet has the lower penetration capacity,which is helpful tomake the coolant jet covering the downstream surface of the holes.But formulti-rows of film cooling holes,themaintainance capacity of jet spreading along streamwise direction under lower blowing ratio is also lower,thus leading to a slower growth of film layer.Also,the vigorous film layer is provided with the ability of suppressing coolant jet penetration.Therefore,the laterally-averaged adiabatic film cooling effectiveness originated from the last few rows is higher under a bigger blowing ratio.

    For the inline arrangement,the film coverage in the lateral direction is seriously weaker than that of the staggered mode.The inlinemode thus needs longer developing stage to realize the full film coverage.The laterally-averaged adiabatic film cooling effectiveness in the front zone of effusion cooling configuration decreases with the increase of blowing ratio.

    Fig.3 Laterally-averaged adiabatic cooling effectiveness distributions at different blowing ratios

    Fig.4 presents the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction under different multi-hole arrangements.As discussed in the above,the varying gradient of the laterally-averaged adiabatic cooling effectiveness along the streamwise direction is obviously lower for the inline arrangement than that for the corresponding staggered arrangement.The laterally-aver-aged adiabatic cooling effectiveness for the staggered mode is also higher than that for the corresponding value of inlinemode at the same blowing ratio.

    Fig.4 Laterally-averaged adiabatic cooling effectiveness distributions under different hole arrangements

    Fig.5 shows the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction under different jet orientation angles.Either for the staggered mode or the inlinemode,the laterally-averaged adiabatic cooling effectiveness with jet orientation angle of 35°is greater than that of 90°angle.As the coolant is discharged with a certain inclined angle,the coolant flow velocity components from effusion holes can be divided into two parts,i.e.,the tangent velocity and the normal velocity.In the tangential direction,the coolant is forced to flow downstream the film hole,which is also called aswall jet.From the view of enhancing film cooling effectiveness,the greater tangent velocity is expected tomaintain wall jet momentum along the streamwise direction.While in the normal direction,it is the opposite case.The coolant flow penetrates the primary flow and lifts off the surface.As expected,the lower coolant jet penetration along normal direction and the higher spread along streamwise direction with the inclined discharge are to benefit the film cooling effectiveness.

    Fig.5 Laterally-averaged adiabatic cooling effectiveness distributions under different jet orientation angles

    Fig.6 Laterally-averaged adiabatic cooling effectiveness distributions under different hole-to-hole pitches

    Fig.6 presents the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction under different hole-to-hole pitches.According to the work of Yang and Zhang[19]on the cooling film development of staggered arrangement,the development of film layer of the effusion cooling scheme could be divided into three stages.Firstly,the film cooling effectiveness increases rapidly along streamwise direction in the front rows of multi-holes where the film layer is undergoing a developing stage.Then the laterally averaged adiabatic film cooling effectiveness increases tardily in the middle rows of multi-hole where the film layer is undergoing a transition stage.Finally,once the effusion film layer is developed,the laterally averaged adiabatic film cooling effectiveness should trend to be constant.Generally,the transition stage is accomplished in the 17th row.For the small pitches(such as S/d=P/d=3),this feature iswell demonstrated.While for the large pitches,film layer is undergoing the developing stage.The holes array arranged with small pitches is in favor of obtaining a developed film layer.

    According to the varying trend of the laterally-averaged adiabatic film cooling effectiveness along streamwise direction for the inline arrangement,it is deduced that the film layer developmentwill be very slower than that for the staggered arrangement.The reason has been discussed in the above.

    4 Conclusions

    (1)The varying gradientof the laterally-averaged adiabatic cooling effectiveness along the streamwise direction in the front zone of effusion cooling configuration is greater for the staggered mode than that of the inline mode.The laterally-averaged adiabatic cooling effectiveness for the staggered mode is higher than the corresponding value of inline mode at the same blowing ratio.(2)For the staggered multi-holes mode,the laterally-averaged adiabatic film cooling effectiveness originated from the first few rows is higher under the lower blowing ratio.While for the last few rows,the higher film cooling effectiveness is achieved under a bigger blowing ratio.The holes array arranged with small hole-to-hole pitches is in favor of obtaining developed film coverage layer rapidly.(3)Either for the staggered arrangement or the inline arrangement,the laterally-averaged adiabatic cooling effectiveness with inclined jet orientation angle of 35°is greater than the corresponding value of normal orientation angle at the same blowing ratio.The lower coolant jet penetration along the normal direction and higher spread along the streamwise direction with the inclined discharge is benefit to the film cooling effectiveness.

    [1] Leger B,Miron P,Emidio JM.Geometric and aerothermal influences onmultiholed plate temperature:application on combustor wall[J].International Journal of Heat and Mass Transfer,2003,46:1215-1222.

    [2] Jeromin A,Eichler C,Noll B,et al.Full 3D conjugate heat transfer simulation and heat transfer coefficient prediction for the effusion-cooled wall of a gas turbine combustor[R].ASME GT2008-50422,2008.

    [3] Andreini A,Bonini A,Caciolli G,et al.Numerical study of aerodynamic losses of effusion cooling holes in aero-engine combustor liners[J].ASME Journal of Engineering for Gas Turbines and Power,2011,133:021901-1-10.

    [4] Krewinkel R.A review of gas turbine effusion cooling studies[J].International Journal of Heat and Mass Transfer,2013,66:706-722.

    [5] Andrews G E,Khalifa IM,Asere A A,etal.Full coverage effusion film cooling with inclined holes[R].ASME Paper 95-GT-274,1995.

    [6] Gustafsson K M,Johansson TG.An experimental study of surface temperature distribution on effusion-cooled plates[J].ASME Journal of Engineering for Gas Turbines and Power,2001,123:308-316.

    [7] Harrington M K,McWaters M A,Bogard D G,et al.Full-coverage film cooling with short normal injection holes[J].Journal of Turbomachinery,2001,123:798-806.

    [8] Lin Yuzhen,Song Bo,Li Bin,et al.Investigation of film cooling effectiveness of full-coverage inclined multihole walls with different hole arrangements[R].ASME GT2003-38881,2003.

    [9] Scrittore JJ,Thole K A,Burd SW.Investigation of velocity profiles for effusion cooling of a combustor liner[J].ASME Journal of Turbomachinery,2007,129:518-526.

    [10] Li Bin,Ji Honghu,Jiang Yijun,et al.Experimental and numerical analysis of temperature distribution on floating-wall flame tube of combustor[J].Journal of Nanjing University of Aeronautics and Astronautics,2007,39(6):771-774.(in Chinese)

    [11] Zhang Jingzhou,Xie Hao,Yang Chengfeng.Numerical study on flow and heat transfer of impingement-effusion cooling[J].Chinese Journal of Aeronautics,2009,22(4):343-348.

    [12] Zhang Chi,Song Bo,Lin Yuzhen,etal.Cooling effectiveness of effusion walls with deflection hole angles measured by infrared imaging[J].Applied Thermal Engineering,2009,29:966-972.

    [13] Yang Chengfeng,Zhang Jingzhou,YangWeihua.Effect of the holes array arrangement on the full coverage film cooling characteristics[J].Journal of Aerospace Power,2010,25(7):1524-1529.(in Chinese)

    [14] Yang Weihua,Peng Jianyong,Cao Jun,et al.Experimental study on cooling effectiveness of compound cooling configurations in reverse flow combustor[J].Journal of Nanjing University of Aeronautics and Astronautics,2012,44(6):769-774.(in Chinese)

    [15] Xie Jie,Zhang Jingzhou.Numerical simulation on cooling characteristics of effusion wall with deflection film outflow[J].Journal of Nanjing University of Aeronautics and Astronautics,2013,45(2):157-161.(in Chinese)

    [16] Yang Qian,Lin Yuzhen,Zhang Chi,et al.Cooling effectiveness comparison between effusion cooling and impingement/effusion cooling[J].Journal of Aerospace Power,2014,28(2):268-275.(in Chinese)

    [17] Bohn D,Moritz N.Influence of hole shaping of staggered multi-hole configurations on cooling film development[R].AIAA Paper 2000-2579,2000.

    [18] Petre B,Dorignac E,Vullierme J J.Study of the influence of the number of holes rows on the convective heat transfer in the case of full coverage film cooling[J].International Journal of Heat and Mass Transfer,2003,46:3477-3496.

    [19] Yang Chengfeng,Zhang Jingzhou.Influence of multihole arrangement on cooling film development[J].Chinese Journal of Aeronautics,2012,25:182-188.

    [20] Carlomagno G M,Cardone G.Infrared thermography for convective heat transfermeasurements[J].Experiments in Fluids,2010,49:1187-1218.

    [21] Yang Chengfeng,Zhang Jingzhou.Experimental investigation on film cooling characteristics from a row of holes with ridge-shaped tabs[J].Experimental Thermal and Fluid Science,2012,37:113-120.

    [22] Yu Yezheng,Zhang Jingzhou,Xu Huasheng.Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs[J].International Journal of Heat and Mass Transfer,2014,72:222-233.

    [23] Moffat R J.Describing the uncertainties in experimental results[J].Experimental Thermal and Fluid Science,1988,1:3-17.

    [24] Schmidt D L,Sen B,Bogard D G.Film cooling with compound angle holes:adiabatic effectiveness[J].ASME Journal of Turbomachinery,1996,118:807-813.

    [25] Gritsch M,Schulz A,Wittig S.Adiabatic wall effectivenessmeasurements of film cooling holeswith expanded exits[J].ASME Journal of Turbomachinery,1998,120:549-556.

    猜你喜歡
    志民
    強(qiáng)化三種意識(shí),引領(lǐng)向量解題
    基于混合FE-SEA方法的加筋板寬頻隔聲預(yù)計(jì)
    毛竹C4H基因的鑒定及其表達(dá)模式分析
    外源水楊酸對(duì)鹽脅迫高羊茅生長(zhǎng)和生理的影響
    “紡織之光”賦能行業(yè)科技十余載——訪紡織之光科技教育基金會(huì)理事長(zhǎng)葉志民
    民警安志民的“第二職業(yè)”是什么?
    Sharma-Tasso-Olver方程的新精確解研究
    寶貝兒回家
    生死兄弟情
    表面改性鋅鎂鋁三元類水滑石的摩擦性能及抗磨機(jī)理
    搡老熟女国产l中国老女人| 日韩精品免费视频一区二区三区| 女生性感内裤真人,穿戴方法视频| 免费人成视频x8x8入口观看| 国产精品亚洲av一区麻豆| 国产1区2区3区精品| 动漫黄色视频在线观看| av欧美777| 在线观看美女被高潮喷水网站 | 一级毛片高清免费大全| 少妇粗大呻吟视频| 国产亚洲欧美在线一区二区| 亚洲精品一区av在线观看| tocl精华| 日本 av在线| 动漫黄色视频在线观看| 亚洲国产高清在线一区二区三| 国产精品综合久久久久久久免费| av中文乱码字幕在线| 99re在线观看精品视频| 香蕉av资源在线| 欧美一区二区国产精品久久精品 | 亚洲成人久久爱视频| 国产精品亚洲av一区麻豆| 国产精品 欧美亚洲| 天堂av国产一区二区熟女人妻 | 午夜福利欧美成人| av在线天堂中文字幕| 无人区码免费观看不卡| 黄色毛片三级朝国网站| 最好的美女福利视频网| 99国产精品一区二区蜜桃av| 欧美国产日韩亚洲一区| 国产乱人伦免费视频| av国产免费在线观看| 香蕉丝袜av| 老司机午夜十八禁免费视频| 欧美 亚洲 国产 日韩一| 男女午夜视频在线观看| 中文字幕熟女人妻在线| 国产单亲对白刺激| 国产精品99久久99久久久不卡| 一a级毛片在线观看| 亚洲欧美一区二区三区黑人| 久久伊人香网站| 777久久人妻少妇嫩草av网站| 国产一区二区在线观看日韩 | 在线观看一区二区三区| 99riav亚洲国产免费| 高清在线国产一区| 在线观看免费视频日本深夜| 十八禁网站免费在线| 亚洲成av人片免费观看| 日韩欧美在线乱码| 欧美又色又爽又黄视频| 露出奶头的视频| 久久久精品国产亚洲av高清涩受| 天堂av国产一区二区熟女人妻 | 国产欧美日韩一区二区精品| 一级毛片女人18水好多| 少妇粗大呻吟视频| 国产一区二区三区在线臀色熟女| 国产亚洲欧美98| 欧美日韩国产亚洲二区| 搡老岳熟女国产| 两个人视频免费观看高清| 色综合欧美亚洲国产小说| 亚洲欧美日韩东京热| 欧美在线黄色| 午夜福利在线观看吧| 高清在线国产一区| 欧美成人午夜精品| 五月玫瑰六月丁香| 99久久精品国产亚洲精品| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩无卡精品| 两个人视频免费观看高清| 99热这里只有精品一区 | 老熟妇仑乱视频hdxx| 国产午夜精品久久久久久| 国产成人aa在线观看| 中文字幕av在线有码专区| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 熟女少妇亚洲综合色aaa.| 手机成人av网站| 亚洲美女视频黄频| 午夜精品在线福利| 久久久久免费精品人妻一区二区| 搡老岳熟女国产| 一级片免费观看大全| 国产高清videossex| 日本黄色视频三级网站网址| 国产午夜精品久久久久久| 99热6这里只有精品| 91在线观看av| 国产免费av片在线观看野外av| 国产精品 国内视频| 在线播放国产精品三级| 久久久久久九九精品二区国产 | 欧美不卡视频在线免费观看 | 黄色毛片三级朝国网站| av中文乱码字幕在线| 搡老妇女老女人老熟妇| 黑人欧美特级aaaaaa片| 精品人妻1区二区| 黄频高清免费视频| 亚洲av成人精品一区久久| 欧美一区二区精品小视频在线| 国产亚洲欧美在线一区二区| www.精华液| 亚洲人成网站在线播放欧美日韩| a级毛片a级免费在线| www国产在线视频色| 欧美精品亚洲一区二区| 五月玫瑰六月丁香| www国产在线视频色| 国产精品98久久久久久宅男小说| 黄色视频不卡| 久久久久久亚洲精品国产蜜桃av| 在线观看免费视频日本深夜| 久久香蕉国产精品| 99热这里只有精品一区 | 国产亚洲精品第一综合不卡| 欧美在线一区亚洲| 日本一本二区三区精品| 色在线成人网| 最近最新免费中文字幕在线| 精品高清国产在线一区| 久久精品夜夜夜夜夜久久蜜豆 | 国产黄片美女视频| 国产三级黄色录像| 97超级碰碰碰精品色视频在线观看| 99精品在免费线老司机午夜| 色av中文字幕| 99精品在免费线老司机午夜| 动漫黄色视频在线观看| 国产精品久久久久久精品电影| 搡老妇女老女人老熟妇| 无人区码免费观看不卡| 精品久久久久久久久久免费视频| 老司机在亚洲福利影院| 成人三级黄色视频| 露出奶头的视频| 国产精品美女特级片免费视频播放器 | 国产午夜精品久久久久久| 在线观看免费日韩欧美大片| 搡老熟女国产l中国老女人| 亚洲片人在线观看| 女警被强在线播放| 变态另类成人亚洲欧美熟女| or卡值多少钱| 两个人看的免费小视频| 色在线成人网| 欧美成狂野欧美在线观看| 精品高清国产在线一区| 99re在线观看精品视频| 日本一区二区免费在线视频| av福利片在线观看| av在线天堂中文字幕| 亚洲国产精品久久男人天堂| 国产精品影院久久| 老鸭窝网址在线观看| 人妻丰满熟妇av一区二区三区| 女人高潮潮喷娇喘18禁视频| 一级片免费观看大全| 日本一本二区三区精品| 久久精品91蜜桃| 国产久久久一区二区三区| 亚洲av电影不卡..在线观看| 中文字幕久久专区| 精品国产亚洲在线| 1024香蕉在线观看| 这个男人来自地球电影免费观看| 午夜老司机福利片| 久久国产精品人妻蜜桃| 色老头精品视频在线观看| 国产野战对白在线观看| 国产亚洲欧美在线一区二区| 精品熟女少妇八av免费久了| 亚洲人成网站高清观看| 国产亚洲av高清不卡| 色噜噜av男人的天堂激情| 欧美性猛交╳xxx乱大交人| 亚洲人与动物交配视频| 婷婷亚洲欧美| 亚洲国产欧美人成| 国产久久久一区二区三区| 欧美一区二区精品小视频在线| 日本a在线网址| 久久国产精品人妻蜜桃| 久久国产乱子伦精品免费另类| 俺也久久电影网| 韩国av一区二区三区四区| 男女做爰动态图高潮gif福利片| 好男人在线观看高清免费视频| 欧美日韩国产亚洲二区| 亚洲精品粉嫩美女一区| 国产高清videossex| 神马国产精品三级电影在线观看 | 日本熟妇午夜| 久久香蕉国产精品| 欧美久久黑人一区二区| 啦啦啦免费观看视频1| 欧美乱妇无乱码| 欧美乱码精品一区二区三区| 国产精品,欧美在线| aaaaa片日本免费| 女同久久另类99精品国产91| 国产精品爽爽va在线观看网站| 精品欧美一区二区三区在线| 国产精品久久久久久亚洲av鲁大| 后天国语完整版免费观看| 熟妇人妻久久中文字幕3abv| 国产黄a三级三级三级人| 老司机午夜福利在线观看视频| 国产一级毛片七仙女欲春2| 免费观看人在逋| 91老司机精品| 两个人免费观看高清视频| 狂野欧美白嫩少妇大欣赏| 国产精品1区2区在线观看.| 露出奶头的视频| 制服人妻中文乱码| 99re在线观看精品视频| 国产97色在线日韩免费| 欧美一区二区精品小视频在线| 欧美黑人巨大hd| 久久久久免费精品人妻一区二区| 十八禁网站免费在线| 人妻久久中文字幕网| 999久久久国产精品视频| 免费搜索国产男女视频| 一本大道久久a久久精品| 久久亚洲精品不卡| 亚洲精品久久国产高清桃花| 精品久久蜜臀av无| 十八禁人妻一区二区| 欧美国产日韩亚洲一区| 亚洲专区国产一区二区| 无遮挡黄片免费观看| 亚洲精品中文字幕一二三四区| 日韩欧美在线二视频| 国产乱人伦免费视频| 国产欧美日韩精品亚洲av| 成人国语在线视频| 色老头精品视频在线观看| 午夜福利欧美成人| 久久亚洲真实| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看 | 男人舔奶头视频| 久久人妻福利社区极品人妻图片| 国产69精品久久久久777片 | 777久久人妻少妇嫩草av网站| 国产不卡一卡二| 久久久久久久精品吃奶| 久久久久精品国产欧美久久久| 久久精品91蜜桃| 欧美性猛交黑人性爽| 免费看日本二区| 一进一出抽搐gif免费好疼| 人成视频在线观看免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产v大片淫在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费日韩欧美大片| 国产1区2区3区精品| 国产欧美日韩一区二区三| 首页视频小说图片口味搜索| 日本五十路高清| 亚洲欧美日韩高清专用| 亚洲 欧美 日韩 在线 免费| 日韩大码丰满熟妇| 欧美 亚洲 国产 日韩一| 国产精品日韩av在线免费观看| 天堂影院成人在线观看| 男女做爰动态图高潮gif福利片| 欧美黄色淫秽网站| 免费看a级黄色片| 麻豆成人午夜福利视频| 久久婷婷成人综合色麻豆| 欧美成人一区二区免费高清观看 | 一a级毛片在线观看| aaaaa片日本免费| 悠悠久久av| 国产成人影院久久av| 亚洲国产精品合色在线| av视频在线观看入口| 国产熟女xx| 日韩三级视频一区二区三区| 怎么达到女性高潮| 亚洲精品美女久久久久99蜜臀| www.熟女人妻精品国产| 男女下面进入的视频免费午夜| 亚洲免费av在线视频| 午夜视频精品福利| 国产欧美日韩一区二区精品| 我的老师免费观看完整版| 这个男人来自地球电影免费观看| 欧美精品啪啪一区二区三区| 俄罗斯特黄特色一大片| 国产亚洲精品一区二区www| 国产一区二区激情短视频| 淫妇啪啪啪对白视频| 国内揄拍国产精品人妻在线| 国产精品久久电影中文字幕| 男人舔女人下体高潮全视频| 午夜福利成人在线免费观看| 亚洲乱码一区二区免费版| 在线观看日韩欧美| 不卡一级毛片| 久久九九热精品免费| 国产亚洲av高清不卡| 一个人观看的视频www高清免费观看 | 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 制服人妻中文乱码| 欧美黄色片欧美黄色片| 观看免费一级毛片| 日本精品一区二区三区蜜桃| 久久久精品大字幕| 长腿黑丝高跟| 免费在线观看日本一区| АⅤ资源中文在线天堂| 成人一区二区视频在线观看| 国产三级黄色录像| 窝窝影院91人妻| 天堂动漫精品| 精品国产乱子伦一区二区三区| 国产高清激情床上av| 欧美一级毛片孕妇| 国产不卡一卡二| 亚洲欧美精品综合久久99| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产99精品国产亚洲性色| 最好的美女福利视频网| 女人被狂操c到高潮| av天堂在线播放| 无人区码免费观看不卡| 日本五十路高清| 99热6这里只有精品| 久久精品人妻少妇| 国内精品久久久久久久电影| 亚洲美女黄片视频| 免费在线观看亚洲国产| 午夜两性在线视频| 亚洲av美国av| 精品国产美女av久久久久小说| cao死你这个sao货| 最近最新中文字幕大全电影3| 动漫黄色视频在线观看| 91成年电影在线观看| 午夜福利成人在线免费观看| 亚洲熟女毛片儿| 露出奶头的视频| 法律面前人人平等表现在哪些方面| 99久久久亚洲精品蜜臀av| 日本a在线网址| 精品久久久久久久久久免费视频| 午夜福利在线在线| 久久天躁狠狠躁夜夜2o2o| 一级毛片高清免费大全| av欧美777| 久久这里只有精品19| 国语自产精品视频在线第100页| 国产黄a三级三级三级人| 校园春色视频在线观看| 我的老师免费观看完整版| 男女之事视频高清在线观看| 国产精品电影一区二区三区| 欧美黑人精品巨大| 国内精品久久久久久久电影| 女同久久另类99精品国产91| 黄片大片在线免费观看| 三级国产精品欧美在线观看 | 色av中文字幕| 日韩欧美一区二区三区在线观看| xxx96com| 久久精品影院6| 日日爽夜夜爽网站| 最近视频中文字幕2019在线8| 午夜日韩欧美国产| 在线观看美女被高潮喷水网站 | 最近视频中文字幕2019在线8| 久久精品国产综合久久久| 露出奶头的视频| 99热这里只有是精品50| 亚洲成人精品中文字幕电影| 伊人久久大香线蕉亚洲五| 日韩欧美免费精品| 欧美极品一区二区三区四区| 午夜福利高清视频| 18禁裸乳无遮挡免费网站照片| 国产99久久九九免费精品| 久久人人精品亚洲av| 国产精品 国内视频| 国产1区2区3区精品| 国产精品久久久人人做人人爽| 很黄的视频免费| 久久精品91蜜桃| 亚洲黑人精品在线| 中文字幕av在线有码专区| 丰满的人妻完整版| 欧美日韩一级在线毛片| 国产精品一区二区精品视频观看| 亚洲狠狠婷婷综合久久图片| 久久人妻av系列| 18禁黄网站禁片免费观看直播| 后天国语完整版免费观看| 亚洲av五月六月丁香网| 视频区欧美日本亚洲| 人人妻人人看人人澡| 国内毛片毛片毛片毛片毛片| 久久久久国产精品人妻aⅴ院| 老鸭窝网址在线观看| 亚洲熟女毛片儿| 国产欧美日韩一区二区精品| 精品人妻1区二区| 老司机午夜福利在线观看视频| 男女下面进入的视频免费午夜| 在线播放国产精品三级| 国产av不卡久久| 亚洲av成人一区二区三| 狠狠狠狠99中文字幕| 国产黄片美女视频| 亚洲欧美日韩高清专用| 国产男靠女视频免费网站| 中出人妻视频一区二区| 香蕉av资源在线| 一级毛片女人18水好多| 叶爱在线成人免费视频播放| 777久久人妻少妇嫩草av网站| 嫁个100分男人电影在线观看| 999精品在线视频| 三级毛片av免费| 少妇人妻一区二区三区视频| 正在播放国产对白刺激| 国产一区二区在线av高清观看| 欧美乱码精品一区二区三区| 久久亚洲真实| 妹子高潮喷水视频| x7x7x7水蜜桃| 久久精品夜夜夜夜夜久久蜜豆 | 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久久久久久久久| 午夜精品久久久久久毛片777| 欧美+亚洲+日韩+国产| 成人国语在线视频| 欧美又色又爽又黄视频| 亚洲人成电影免费在线| 女同久久另类99精品国产91| 搡老妇女老女人老熟妇| 国产99久久九九免费精品| 日韩欧美三级三区| 久久国产精品人妻蜜桃| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 国产免费av片在线观看野外av| 久久伊人香网站| 黄色女人牲交| 午夜久久久久精精品| 久久精品国产清高在天天线| 国产av一区在线观看免费| 亚洲美女视频黄频| 一卡2卡三卡四卡精品乱码亚洲| 国产三级在线视频| 亚洲人与动物交配视频| 女同久久另类99精品国产91| 亚洲一码二码三码区别大吗| 黑人操中国人逼视频| 黄色视频不卡| 怎么达到女性高潮| 免费在线观看完整版高清| 日本在线视频免费播放| 午夜福利欧美成人| 久久久久国产一级毛片高清牌| 久久国产乱子伦精品免费另类| aaaaa片日本免费| 神马国产精品三级电影在线观看 | 老汉色∧v一级毛片| 青草久久国产| 国产亚洲精品久久久久久毛片| 这个男人来自地球电影免费观看| av免费在线观看网站| 国产精品 国内视频| 国产精品98久久久久久宅男小说| 男女视频在线观看网站免费 | 人成视频在线观看免费观看| 国产精品一区二区三区四区免费观看 | 国产精品亚洲一级av第二区| 午夜激情福利司机影院| 久久精品aⅴ一区二区三区四区| 脱女人内裤的视频| 日日干狠狠操夜夜爽| 久久久久久免费高清国产稀缺| 99久久精品国产亚洲精品| 国产高清激情床上av| 窝窝影院91人妻| 久久精品国产亚洲av高清一级| 欧美三级亚洲精品| 亚洲成a人片在线一区二区| 少妇被粗大的猛进出69影院| 国产1区2区3区精品| 69av精品久久久久久| 麻豆久久精品国产亚洲av| 欧美黄色淫秽网站| 亚洲av美国av| 熟妇人妻久久中文字幕3abv| 久久九九热精品免费| 亚洲自拍偷在线| 久久人妻av系列| 欧美性猛交╳xxx乱大交人| 一级黄色大片毛片| 免费在线观看成人毛片| 久久婷婷人人爽人人干人人爱| 99精品在免费线老司机午夜| 99国产精品一区二区蜜桃av| 午夜视频精品福利| 99热这里只有精品一区 | 两个人视频免费观看高清| 国产一区二区三区视频了| 亚洲欧美激情综合另类| 国产91精品成人一区二区三区| 亚洲av成人一区二区三| 日韩高清综合在线| 国产三级在线视频| 欧美久久黑人一区二区| 午夜亚洲福利在线播放| 不卡一级毛片| 成人三级做爰电影| 亚洲精品美女久久av网站| 日韩国内少妇激情av| 青草久久国产| 亚洲成人中文字幕在线播放| 人妻丰满熟妇av一区二区三区| 51午夜福利影视在线观看| 色哟哟哟哟哟哟| 精品日产1卡2卡| 黄色视频不卡| 老司机在亚洲福利影院| 午夜激情福利司机影院| 91麻豆精品激情在线观看国产| 麻豆一二三区av精品| 亚洲国产精品成人综合色| 一进一出抽搐gif免费好疼| 精品久久久久久成人av| 九九热线精品视视频播放| 久久国产精品影院| aaaaa片日本免费| 久久中文看片网| 又黄又粗又硬又大视频| 国产av又大| 亚洲国产看品久久| 国产av麻豆久久久久久久| av超薄肉色丝袜交足视频| 亚洲av成人不卡在线观看播放网| 国内久久婷婷六月综合欲色啪| 亚洲av日韩精品久久久久久密| 变态另类成人亚洲欧美熟女| e午夜精品久久久久久久| 国产精品免费一区二区三区在线| 一本大道久久a久久精品| 好男人在线观看高清免费视频| 午夜福利欧美成人| 男男h啪啪无遮挡| 99riav亚洲国产免费| 国产三级在线视频| 啦啦啦观看免费观看视频高清| 免费人成视频x8x8入口观看| 久久欧美精品欧美久久欧美| 正在播放国产对白刺激| 久久中文字幕人妻熟女| 身体一侧抽搐| √禁漫天堂资源中文www| 麻豆国产97在线/欧美 | 一区福利在线观看| 中文字幕高清在线视频| 99riav亚洲国产免费| 日韩免费av在线播放| 又爽又黄无遮挡网站| 欧美午夜高清在线| 熟妇人妻久久中文字幕3abv| av福利片在线| 精品国产美女av久久久久小说| 欧美乱色亚洲激情| 亚洲欧美日韩高清专用| 婷婷六月久久综合丁香| 黑人操中国人逼视频| 国产av又大| 婷婷六月久久综合丁香| 国产伦一二天堂av在线观看| 国产亚洲av嫩草精品影院| 国产又色又爽无遮挡免费看| 精品久久久久久久人妻蜜臀av| 俺也久久电影网| www日本黄色视频网| 中文字幕av在线有码专区| 国产精华一区二区三区| 男人舔女人下体高潮全视频| 黑人操中国人逼视频| 真人一进一出gif抽搐免费| 婷婷六月久久综合丁香| 熟妇人妻久久中文字幕3abv| 可以在线观看的亚洲视频| 丰满人妻一区二区三区视频av | 久久伊人香网站| 免费观看人在逋| 亚洲全国av大片| 黑人欧美特级aaaaaa片| 国产精品久久久久久人妻精品电影| 亚洲中文字幕一区二区三区有码在线看 | 色精品久久人妻99蜜桃| 日韩免费av在线播放| 人妻久久中文字幕网|