趙作福,周影,齊錦剛,王建中(遼寧工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院,遼寧 錦州 121001)
設(shè)計與研究
Cr12MoV鋼表面化學(xué)熱處理的研究進展★
趙作福,周影,齊錦剛,王建中
(遼寧工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院,遼寧 錦州 121001)
Cr12MoV鋼是國內(nèi)使用最廣泛的高碳高鉻萊氏體型冷作模具鋼,優(yōu)良的表面處理工藝是保證其高強度高壽命的前提,本文概述了Cr12MoV鋼的滲氮、滲硼、滲釩表面化學(xué)熱處理工藝,以及不同工藝處理下Cr12MoV鋼的微觀組織結(jié)構(gòu)和性能的改變,闡述了Cr12MoV鋼化學(xué)熱處理的研究現(xiàn)狀及發(fā)展趨勢。
Cr12MoV鋼; 表面化學(xué)熱處理; 微觀組織結(jié)構(gòu); 性能
現(xiàn)代工業(yè)的迅猛發(fā)展對模具鋼的品質(zhì)提出了更高的要求。Cr12M oV鋼因其淬透性好、硬度高且耐磨、熱處理變形小等特點,已廣泛應(yīng)用于冶金、機械制造等行業(yè)的模具生產(chǎn)。但由于Cr12MoV鋼的脆性較大且成分偏析嚴重,常常導(dǎo)致模具的早期失效[1-3]。化學(xué)熱處理可以大幅度提高Cr12M oV鋼工件的使用性能,延長其使用壽命,目前已獲得較為廣泛的應(yīng)用[4]。本文綜述了Cr12MoV冷作模具鋼滲氮[5]、滲硼[6]和滲礬[7]等表面化學(xué)熱處理技術(shù)的研究進展及其發(fā)展前景。
滲氮處理,即在一定溫度區(qū)間內(nèi),在某種介質(zhì)中將氮原子滲入工件表層的化學(xué)熱處理工藝,通過滲氮處理可以有效提高工件表面的硬度、耐磨性以及疲勞強度,同時提高工件在腐蝕介質(zhì)中工作的耐蝕性[8]。王傳雅等人[9]研究了滲氮過程中溫轉(zhuǎn)變對Cr12M oV鋼顯微組織、擴氮層的顯微硬度和心部力學(xué)性能的影響,發(fā)現(xiàn)中溫轉(zhuǎn)變復(fù)合強韌化處理,可以有效細化Cr12MoV鋼的顯微組織,提高其顯微硬度等力學(xué)性能,達到提高模具使用壽命延長的目的。
早在1923年,德國人A.Fry首次對氣體滲氮進行了研究并取得了成功,但早期的氣體滲氮工藝因周期長、能耗大和成本高等原因很少在冷作模具鋼上應(yīng)用[10]。國內(nèi)學(xué)者佟曉輝等[11]曾對9種冷作模具鋼進行了520~540 ℃的氣體滲氮,發(fā)現(xiàn)多數(shù)冷作模具鋼的氣體滲層深度D與滲氮時間T呈線性關(guān)系,即,
D=[6T(h)+64]×10-3±0.025mm (1-1)
而且尤以Cr12MoV鋼氣體滲氮后的耐磨性最佳,但這種常規(guī)氣體滲氮多達50 h的工藝時間嚴重影響了生產(chǎn)效率及產(chǎn)品質(zhì)量。隨后,孟力凱[12]等人在此基礎(chǔ)上,采用復(fù)合氣體滲氮工藝,可縮短氣體滲氮周期1/3,但尚不能滿足工業(yè)化生產(chǎn)要求,且產(chǎn)品品質(zhì)存在硬度不足、表面腐蝕和裂紋等缺陷。
為克服單一氣體滲氮的不足,隨后,Cr12MoV鋼的氮碳共滲[13]工藝研究逐漸展開,且向著多組元復(fù)合強化方向發(fā)展,如S、C、N復(fù)合共滲[14]、稀土催滲[15]和等離子體氮碳共滲工藝[16]等。其中比較有代表性的工作包括:Wu[17]等人在復(fù)合共滲的研究中發(fā)現(xiàn),S可使Cr12MoV工件滲層表面形成FeS層,使得工件的耐磨性顯著提高,然而單純耐磨性的提高在模具鋼的生產(chǎn)應(yīng)用中還遠遠不夠。隨后,王振寧等[18]對Cr12MoV鋼采用Ti催滲氮碳共滲局部超強化復(fù)合處理,發(fā)現(xiàn)Cr12MoV鋼的耐磨性、表面硬度和韌性均有顯著提高,這主要與表面形成的TiN化合物有關(guān)。
1984年,李少君等[19]在500 - 560 ℃對Cr12MoV鋼進行固體滲氮,其硬度稍有提高,滲層深度約為8 - 15 μm,滲氮后零件的尺寸稍有變化,模具的疲勞壽命和抗沖擊性能得到顯著提高。姚玲珍等[20]采用QPQ處理方法對Cr12MoV進行鹽浴滲氮,其硬度能達到900-1000 HV,滲層深度達6 - 15 μm。
2000年左右,Cr12MoV鋼的離子滲氮技術(shù)成為其表面化學(xué)熱處理的研究熱點。Pang等[21]對Cr12MoV鋼進行不同溫度的離子滲氮,發(fā)現(xiàn)在530 ℃時,滲氮層的硬度、滲層厚度等性能趨于最佳值。Li等[22]對鋼表面采用介質(zhì)阻擋放電技術(shù)進行離子滲氮強化,Thomas等[23]利用弧光放電進行離子滲氮,這些研究工作旨在改善普通離子滲氮生產(chǎn)效率低,氣壓較大等缺陷。國內(nèi)學(xué)者趙彥輝[24]的弧光等離子放電研究結(jié)果表明,在一定溫度范圍內(nèi)滲氮層厚度隨著溫度的升高而增加,在較低溫度基本無化合物層,達到50 mm時,滲氮速度最快。同年,張濤等[25]采用雙輝等離子體滲氮,發(fā)現(xiàn)溫度為500 - 550 ℃時滲層深度可達150 um,滲層化合物可達9 um,并且具有較高的硬度。但等離子體滲氮因在加熱過程中氫氣的易燃易爆以及NH3分解不徹底,安全和環(huán)保成為專家學(xué)者們亟待解決的問題。據(jù)最新的研究[26]報道,采用等離子氮碳共滲工藝,滲層厚度可達到150 - 200 um,耐磨性提高3 - 5倍,整體滲層性能提升;若在此過程中加入稀土La,滲層整體性能得到更好提升。
真空脈沖滲氮工藝具有滲速快,無盲孔效應(yīng),滲氮層脆性極小,可以較準確的控制、調(diào)整滲氮氣氛等優(yōu)點[27]。在真空脈沖滲氮加熱過程中,通過爐內(nèi)產(chǎn)生對流來保證溫度的均勻,從而來保證滲層深度的均勻性;現(xiàn)在對環(huán)保的要求很高,而在滲氮過程中的廢氣需要進行適當?shù)奶幚恚駝t將污染環(huán)境[28]。2002年郭健等[29]進行了真空脈沖滲氮研究,發(fā)現(xiàn)對Cr12MoV冷作模具鋼進行真空脈沖滲氮能進一步提高耐磨性,增加使用壽命,溫度一般為510 - 520 ℃,時間8 - 12 h。滲層深0.08 - 0.12 mm,硬度在1000HV左右,顯著提高Cr12MoV的性能。同時,經(jīng)真空脈沖滲氮后,工件表面硬度要比一般氣體滲氮硬度高,脆性小,能滿足尖銳刃口的刀具與冷沖模具使用要求。2003年郭健等[27]探究真空脈沖氮碳共滲在模具中的應(yīng)用,滲氮后Cr12MoV的硬度達1046 HV,滲層深度150 - 170 μm。
滲硼是一種在高溫下使硼元素滲入金屬表面獲得硼化合物硬質(zhì)層的化學(xué)熱處理技術(shù)。滲硼的工藝方法多種多樣,有粉末固體法、液體法、氣體法、糊膏法等,其中粉末固體滲硼因具有操作方便、使用設(shè)備簡單、質(zhì)量易控制等優(yōu)點在生產(chǎn)中得到較廣泛的應(yīng)用[30]。但粉末固體滲硼層脆性大、容易剝落,嚴重影響了耐磨性,因此國內(nèi)外專家學(xué)者對其改善脆性方面做出了大量的探究研究。
由于B與Fe和其他金屬可生成高硬度的化合物,1984年舒士明等人[31]對Cr12MoV冷作模具鋼進行粉末固體滲硼,試驗參數(shù)為570℃滲硼3h,940±10℃滲硼6h爐冷至室溫,其硬度為1097HV,滲層深0.053mm,與未經(jīng)滲硼處理模具相比,壽命提高3-4以上。此研究雖未對其滲硼后耐磨性的影響做出研究,單此工藝的提出對Cr12MoV鋼的脆性有一定的改善,此工藝的提出為今后該領(lǐng)域的發(fā)展奠定了基礎(chǔ)[32]。經(jīng)過幾十年探索研究,2001年葉宏等人[33]對Cr12MoV鋼試樣進行了粉末固體滲硼-淬火復(fù)合工藝試驗,確定了Cr12MoV鋼固體粉末滲硼工藝參數(shù)為930℃×5h,Cr12MoV鋼的滲硼層深度0.05-0.06mm,顯微硬度1688HV,且有Cr12MoV鋼的耐磨性得到明顯提高。此研究比舒士明等人的研究硬度提高了近1/3,并對其耐磨性做出了一定的探究,但并未脆性做出相關(guān)的探究。此后有文獻[34]得出的結(jié)論與上述學(xué)者不太一致:認為模具鋼滲硼處理后滲硼層具有一定的脆性,嚴重惡化工件的耐磨性,在使用過程中滲硼層容易發(fā)生剝落,降低了模具鋼的使用壽命[35-37],對于過渡層的研究將是Cr12MoV鋼滲硼工藝發(fā)展的瓶頸問題。隨后,湯光平等[38]對Cr12MoV鋼進行表面滲硼改性處理,得出Cr12MoV鋼滲硼處理后滲硼層的脆性屬剝落脆性,但并未探究如何降低工件在滲硼過程中產(chǎn)生的脆性。2005年張菁等人[39]結(jié)合以上兩種研究,采用不同滲劑對Cr12MoV鋼進行表面改性,分析了滲層表面脆性與敏感脆性,研究得出粉末滲硼的耐磨性優(yōu)于膏劑滲硼試樣的耐磨性,當滲硼層表層脆性敏感性增加,耐磨性呈下降趨勢,經(jīng)930℃×5h滲硼處理后,滲硼層的脆性屬剝落脆性,滲硼層的顯微硬度約在1300HV,滲硼層厚度70um,具有良好的耐磨性能。近期的研究[40]發(fā)現(xiàn),在Cr12MoV鋼滲硼過程中施加稀土元素,加入量最佳值的情況下一般可提高滲硼速度30%左右,改善滲層組織和性能。這是由于稀土的化學(xué)性質(zhì)很強,能加速滲劑的分解,使?jié)B速加快,促進滲硼的進行[41]。為提高滲硼層厚度和改善滲硼層組織,郝少祥等[42]在滲硼劑中加入稀土氯化物,結(jié)果發(fā)現(xiàn)當稀土加入量為0.3wt%時滲硼層增厚致密,其滲硼層硬度壓痕如圖1所示,圖1(a)的脆性級別為1級,圖1(b)的脆性級別為3級。對硼-稀土共滲工藝進行研究,采用正交試驗方法,篩選出Cr12MoV鋼硼-稀土共滲的最佳工藝為w(稀土)=0.3%,滲硼溫度950℃,保溫時間5h,得出滲硼時加入稀土,滲硼層增厚致密,疏松、空洞減少,前沿?zé)o明顯梳齒狀,滲硼層脆性由1級降至3級;經(jīng)優(yōu)化滲硼后,在經(jīng)970℃淬火、200℃回火,滲硼層耐磨性顯著提高,比僅優(yōu)化滲硼的高出15倍。2008年郝少祥[43]又研究了Cr12MoV鋼滲硼層中各種元素含量的變化,研究表明:Cr12MoV鋼滲硼層中存在B,C,Al,Cr,Si,F(xiàn)e,Mo,V,Mn等元素,其中B及C,Si,Al,Cr含量分別在表層和過渡區(qū)出現(xiàn)峰值,Al和Si主要存在于缺陷處和富碳區(qū)中,F(xiàn)e在硼化物層含量略低于過渡層和心部而Mo幾乎無變化;且得出滲硼層中沒有稀土元素滲入。由此可以看出,稀土的滲入提高了滲層的韌性,降低了滲層的脆性。此研究較好的改善了Cr12MoV鋼因滲硼處理后脆性較大而引起的滲層剝落等一系列問題。
圖1 經(jīng)不同滲硼工藝處理后的滲硼層的硬度壓痕形貌[32]Fig.1 The morphology of hardness indentation of boride layer at different boronizing processes
TD(Thermal Difusion)鹽浴滲釩由于設(shè)備簡單、操作方便、滲速快、滲釩層質(zhì)量穩(wěn)定等優(yōu)點,被認為是Cr12MoV冷作模具鋼的理想表面強化技術(shù)[44]。鹽浴滲釩是通過工件表面形成VC覆層來實現(xiàn)提高Cr12MoV鋼使用壽命的目的[45-47]。Gen[48]認為Cr12MoV鋼滲礬處理后耐磨性的增加主要由VC覆層的性質(zhì)決定。至此之后對VC覆層特性的研究成為了熱點問題,但對該覆層成分分布情況的看法至今尚存在一定的爭議。近期研究[49]認為釩原子濃度隨覆層的生長稍微增加,而碳含量則先輕微增加達到最大值后呈遞減的趨勢,VC覆層橫截面積的硬度的變化趨勢與覆層C/V比基本一致,這一研究有利于人們進一步研究覆層的機理及性能。為了克服Cr12MoV鋼因滲釩處理后獲得較高硬度而引起的滲層剝落,Zou等[50]探討了Cr12MoV鋼 TD鹽浴滲釩工藝,發(fā)現(xiàn)Cr12MoV鋼滲釩后可獲得約5 - 7 μm的滲層厚度,滲釩層具有極高的硬度和耐磨性。
圖2 滲釩層與基體的顯微組織[40]Fig.2 The microstructure of vanadiizing layer and matrix
隨后,唐麗文等[51]在此基礎(chǔ)上對Cr12MoV鋼滲釩后進行淬火和回火處理,其滲層的金相組織圖片及SEM圖片如圖2所示,從圖中可以看出,在Cr12MoV鋼表面形成了一層平均厚度11.4 um的釩層,滲層厚度均勻,致密性較好,并且滲層與基體間存在明顯界面。此研究為目前Cr12MoV鋼TD鹽浴滲礬較理想的成果。
綜上所述,Cr12MoV的表面化學(xué)熱處理技術(shù)發(fā)展迅猛。今后一段時間內(nèi),滲氮技術(shù)的發(fā)展將以多組元、復(fù)合強化和離子氮化為標志;滲硼工藝將日趨研究其滲層組成與控制,包括滲劑的研發(fā)等;以滲V為代表的滲金屬工藝將以金屬鹽浴選擇,滲件整體性能改善為研究熱點??傊?,隨著科學(xué)技術(shù)的飛速發(fā)展,有污染、能耗大的傳統(tǒng)化學(xué)熱處理工藝技術(shù)必將逐漸被諸如高能束化學(xué)熱處理,真空、離子化學(xué)熱處理,流態(tài)床化學(xué)熱處理等新工藝 、新技術(shù)、新裝備所替代。
[1] Peng Chengyun,Deng Ming. Selection and heat treatment of typical cold work steel and components [J]. Heat Treatment of Metals,2001,26(5):31-33.
[2] 吳曉峰,馬坤,徐娜,等. Cr12MoV模具鋼應(yīng)用的主要問題與熱處理研究進展[J]. 模具工業(yè),2009,35(9):55-62. WU Xiao-feng,MA Kun,XU Na,et al. Main problems and research development in application of Cr12MoV die steel [J]. Die & MouldIndustry,2009,35(9):55-62.
[3] Shi Wen,Wang Junli,Wang Zhen,et al. Surface treatment of Cr12MoV steel towards long-life cold-work dies[J]. Transactions of Materials and Heat Treatment,2004,25(5):837-840.
[4] 佘丁順,岳文,付志強,等. 超聲冷鍛對Cr12MoV鋼滲氮組織與性能的影響[J]. 材料熱處理學(xué)報,2013,34(7):129-135. SHE Ding-shun,YUE Wen,F(xiàn)U Zhi-qiang,et al. Microstructure and property of plasma nitride Cr12MoV steel pretreated by ultrasonic cold forging technology[J]. Transactions of materials and heat treatment [J]. 2004,25(5):837-840.
[5] Nivoletto G,Tucci A,Esposito L. Sliding wear behavior of nitride and nitro-carburized cast irons [J]. Wear,1996,197:38-44.
[6] Sari N Y,Yilmaz M. Investigation of abrasive and erosive wear behavior of surface hardening methods applied to AISI 1050 steel[J]. Materials Design,2006,27(6):470 -478.
[7] Arai T,Moriyama S. Growth behavior of vanadium carbide coatings on steel substrates by a salt bath immersion coating process [J]. Thin Solid Films,1994,249(1):54-61.
[8] 王麗蓮. 滲氮技術(shù)及其進展[J]. 熱處理,2001,(2):6-9. WANG Li-lian. The Technology and Development of Nitriding [J]. Heat treatment,2001,(2):6-9.
[9] 王傳雅,徐維,王莎莎,等. Cr12MovV模具鋼滲擴氮中溫轉(zhuǎn)變復(fù)合強韌化[J]. 特殊鋼,1995,16(6):26-31. Wang Chuan ya,Xu Wei,Wang Shasha et al. Strengthening and toughening of die steel Cr12MoV by prenitriding diffusing and bainitic transformation [J].Special steel,1995,16(6):26-31.
[10] 代立新,馬占坡,王煥琴. 預(yù)氧化快速氣體滲氮新工藝[J]. 金屬熱處理,1997,(9):30-31. DAI Li-xin,MA Zhan-po,WANG Huan qin. A new technology of preoxidation for rapid gas-nitridation [J].Heat Treatment of Metals,1997,(9):30-31.
[11] 佟曉輝,張志軍,徐楊. 常用冷作模具鋼氣體滲氮與耐磨性研究[J]. 金屬熱處理,1994,(9):12-16. Tong Xiao hui,Zhang Zhi jun,XuYang. Study on nitriding and wear resistance of cold working die steels [J]. Heat Treatment of Metals,1994,(9):12-16.
[12] 孟力凱,齊義輝. 快速氣體滲氮工藝[J]. 遼寧工學(xué)院報,2002,22(6):34-36. MENG Li-kai,QI Yi-hui. A rapid gas-nitridation technology[J]. Journal of liao ning institute of technology,2002,22(6):34-36.
[13] Psyllaki P G,kefalonikas,Pantazopoulos G,et al. Microstructure and tribological behavior of liquid nitrocarburised tool steels[J]. Surface Coating and Technology,2002,162(5):67-78.
[14] Xie Fei,Ma Baotian,He Jiawen. A study on the topograghy and phases of phases of plasma sulphur-nitro-carburized surface layer [J]. Heat Treatment Technology,1996,(6):15-17.
[15] Cheng Xianhua,Li Jian. Mechanism of effect of rare earth elements on thermo-chemical treatment process of steel[J]. Journal of Rare Earths,2006,24:275-278.
[16] Yan Mufu,Sun Y,Bell T,et al. Diffusion of La in plasma RE ion nitrided surface layer and its effect on nitrogen concentration profiles and phase structures[J]. Acta Metall Sinica,2000,36:487-491.
[17] Wu Xiaochun,Zhan Shuangke,Min Yongan,et al. Study of the properties and microstructure of S-N-C plasmas composite treatment layer on the surface of Cr12MoV[J]. International Conference on Surface Engineering,2002,(10):429-433.
[18] 王振寧,陳錫渠,牛中亮. Cr12MovV鋼鍍鈦催滲氮碳共滲工藝研究[J]. 模具工業(yè),2008,34 (1):74-76. WANG Zhen-ning ,CHEN Xi-qu ,NIU Zhong-liang. Titanium catalysis carbonitriding technique of steel Cr12MoV[J]. Die & Mould Industry,2008,34 (1):74-76.
[19] 李少君. 固體滲氮[J]. 金屬熱處理,1984,8:47-49. LI Shaojun. Pack nitriding[J]. Heat Treatment of Metals,1984,8:47-49.
[20] 姚玲珍,鄧益中. 復(fù)合鹽浴滲氮QPQ處理新技術(shù)的發(fā)展與應(yīng)用[J]. 內(nèi)燃機與配件,2012,5:36-43. YAO Lingzhen,DENG Yizhong. Composite aitrided QPQ treatment new technology development and application[J]. Internal Combustion Engine & Parts,2012,5:36-43.
[21] G.X. Pang,Z.L. Li,Z.Y. Chen. Research on ion nitriding temperature effect on wear resistance of Cr12MoV steel[J]. Physics Procedia,2013,50:120-123.
[22] Yan Li,Zhu Xinhe,Xu Jiujun,et al. A new approach to metal surface nitriding using dielectric barrier discharge at atmospheric pressure[J]. Plasma Chemistry and Plasma Processing,2005,(25):467-483.
[23] Hassel Thomas,Birr Christoph,Bach Friedrich Wilhelm. Surface zone modification by atmospheric plasma-nitriding with the aid of the transmitted plasma-arc[J]. Key Engineering Materials,2010,(438):147-154.
[24] 趙彥輝,巴宏波,郎文昌,等. 電弧等離子體輔助滲氮處理Cr12MovV鋼的組織結(jié)構(gòu)及硬度[J]. 材料熱處理學(xué)報,2012,33(2):151-154. [24] ZHAO Yan-hui,BA Hong-bo,LANG Wen-chang,et al. Microstructure and hardness of Cr12MoV steel treated by arc plasma-assisted nitriding process[J]. Transactions of Materials and Heat Treatment,2012,33(2):151-154.
[25] 張濤,洪曉露,種劫,等. Cr12MovV鋼的等離子滲氮的優(yōu)化[J]. 熱處理技術(shù)與設(shè)備,2012,33(5):15-19. ZHANG Tao,HONG Xiao-lu,CHONG Jie,et al. Optimization of plasma nitriding technique for Cr12MoV Steel [J]. Heat Treatment Technology and Equipment,2012,33(5):15-19.
[26] 陶利民,孫文娟,陳繼超,等. Cr12MoV鋼等離子體氮碳共滲工藝及稀土催滲[J]. 材料熱處理學(xué)報,2013,34(5):158-163. TAO Li-min,SUN Wen- juan,CHEN Ji-chao,et al. Process parameters and effect of rare earth element on plasma nitrocarburzing of Cr12MoV steel [J]. Transactions of Materials and Heat Treatment,2013,34(5):158-163.
[27] 郭健,陸建民. 真空脈沖氮碳共滲在模具中的應(yīng)用[J]. 金屬熱處理,2003,28(8):19-20. GUO Jian,LU Jian-ming. Application of the vacuum pulse nitrocarburization in moulds [J]. Heat Treatment of Metals,2003,28(8):19-20.
[28] 姚一平. 在VDR滲氮爐中進行的真空脈沖滲氮[J]. 熱處理,2008,23(1):63-67. YAO Yi-ping. Vacuum pulse nitriding on VDR nitriding furnace[J]. Heat treatment,2008,23(1):63-67.
[29] 郭健,陸建明. 真空脈沖滲氮研究[J]. 真空,2002,(6):32-34. GUO Jian,LU Jian-ming. Research on the vacuum pulse nitrogen infiltration[J]. Vacuum,2002,(6):32-34.
[30] 張蜀紅,劉炳. 滲硼工藝研究與應(yīng)用現(xiàn)狀及發(fā)展[J]. 熱加工工藝,2007,36(12):69-71. ZHANG Shu-hong,LIU Bing. Present situation and development of research and application of Boronising [J]. Hot Working Technology,2007,36(12):69-71.
[31] 舒士明,李子豫,徐鋼. 固體滲硼技術(shù)應(yīng)用在冷作模具上的試驗研究[J]. 合肥工業(yè)大學(xué)學(xué)報,1984,(1):66-75. SHU Shi-ming,LI Zi-yu,XU Gang. Experimental research on the pack boriding technology applied in the cold mould [J]. Journal of Anhui Institute of Technology,1984,(1):66-75.
[32] 劉勁松. 模具滲硼工藝及其發(fā)展應(yīng)用[J]. 模具制造,2002,12(7):54-56. LIU Jing-song. Development of research and application of Boronizing for mould [J]. Die&Mould Manufacture,2002,12(7):54-56.
[33] 葉宏,李暉. Cr12MoV鋼滲硼-淬火復(fù)合工藝研究[J]. 四川兵工學(xué)報,2001,22(4):25-27. Research on the boriding and quenching for Cr12MoV steel [J]. Si Chuan Acta Armamentarii,2001,22(4):25-27.
[34] Ye Weiping,Huang Zilin,Zhang Xiaoxin. Microstructure and of mechanics microwave boriding[J]. Springer Journal,2008,23(4):528-531.
[35] G. Kartal,S. Timur,V. Sista. The growth of Fe2B phase on low carbon steel via phase homogenization in electrochemical boriding(PHEB)[J]. Surface & Coatings Technology,2011,206(7):2005-2011.
[36] J. Balogh,L. Bujdoso,T. Kemeny. Diffusion amorphization and interface properties of Fe-B multilayers[J]. Appl. Phys.,1997,65:23-27.
[37] Lee Sang Yul Kin,Gwang Seek Kim,Bum-Suk. Mechanical properties og duplex layer formed on AISI403 stainness steel by chromizing and boranizing treatment[J]. Surface & Coatings Technology,2004,(1):177-178.
[38] 湯光平,黃光榮,周文鳳. 滲硼層脆性及其控制[J]. 材料保護,2003,(3):27-30. TANG Guangping,HUANG Wen rong,ZHOU Wen feng. Birlttement and contolling measures of boirding Layer[J]. Materials Protection,2003,(3):27-30.
[39] 張菁,董仕節(jié),黃倫. Cr12MoV鋼滲硼層脆性與耐磨性研究[J]. 湖北汽車工業(yè)學(xué)院學(xué)報,2005,19(2):16-19. ZHANG Jing,DONG Shi-jie,HUANG Lun. Study on the brittleness and wear resistance of boride layer to steel of Cr12MoV [J]. Journal of Automotive Industries Institute,2005,19(2):16-19.
[40] 張金柱,楊宗倫,魏可媛. 稀土元素在化學(xué)熱處理中的催滲和擴散機理研究[J]. 材料導(dǎo)報,2006,20:223-225. ZHANG Jinzhu ,YANG Zonglun ,WEI Keyuan. Study of the Catalysis and Dif fusion Mechanism by Rare Earth( RE)Elements During the Thermo- chemical Treatment[J]. Materials Review,2006,20:223-225.
[41] 王世清,王立鐸,楊愛華. 稀土元素在化學(xué)熱處理中的應(yīng)用[J]. 金屬熱處理,1998,23(3):52-59. WANG Shiqing,WANG liduo,YANG Aihua. Application of rare earths in the thermal-chemical treatment[J]. Heat Treatment of Metals,1998,23(3):52-59.
[42] 郝少祥,孫玉福,楊凱軍. Cr12MoV鋼滲硼工藝及滲層的組織與性能[J]. 金屬熱處理,2006,31(7):67-71. HAO Shao-xiang,SUN Yu-fu,YANG Kai- jun. Microstructure and properties of boronizing layer and boronizing process of Cr12MoV steel[J]. Heat Treatment of Metals,2006,31(7):67-71.
[43] 郝少祥,王宇平. Cr12MoV鋼滲硼層中各種元素含量變化[J]. 河南工程學(xué)院學(xué)報,2008,20 (1):44-47. HAO Shao-xiang,WANG Yu-ping. Elements content varies in boronization layer of Cr12MoV steel [J]. Journal of Henan Institute of Engineering,2008,20 (1):44-47.
[44] B Chicco,W E Borbidge,E Summerville. Experimental study of vanadium carbide and carbonit ride coatings[J]. Materials Science and Engineering,1991,266(1):62-72.
[45] 鄒雋,王華昌. TD法鹽浴滲釩在冷作模具表面強化中的應(yīng)用研究[D]. 武漢:武漢科技大學(xué),2005. ZHOU Juan,WANG Hua-chang. Study on surface-sterngthening of TD method on cold-work die [D]. Wuhan,Wuahan university of technology,2005.
[46] Oliveira C K N,Benassi C L,Casteletti L C. Evaluation of hard coatings obtained on AISI D2 steel by thermo-reactive deposition treatment[J]. Surface & Coatings Technology,2006,201(5):1880-1885.
[47] 李愛農(nóng),王秋玲,王華昌. Cr12鋼TD鹽浴滲釩組織與性能研究[J]. 熱加工工藝,2010,39 (6):116-118. LI Ainong,WANG Qiuling,WANG Huachang. Research on microstructure and properties of Cr12 steel after TD Salt-bath vanadizing[J]. Hot Working Technology,2010,39 (6):116-118.
[48] GE Baowang. Wear mechanisms in vanadium carbide coated steels [J]. Wear,1997,212(1):25-32.
[49] 劉秀娟,王華昌. TD法鹽浴滲釩層的化學(xué)成分分析[J]. 材料熱處理學(xué)報,2008,29(5):165-168. LIU Xiu-juan,WANG Hua-chang. Study on chemical composition of vanadium carbide coating obtained by thermal diffusion process[J]. Transactions of Materials and Heat Treatment,2008,29(5):165-168.
[50] ZHOU Jun,WANG Huachang. Microstructure and properties of Cr12MoV steel after salt-bath vanadizing[J]. Hot Working Technology,2005,(4):36-39.
[51] 唐麗雯,楊明波,趙瑋霖,等. Cr12MoV鋼表面TD鹽浴滲釩處理的研究[J]. 模具制造,2007,(9):70-72. TANG Li-wen,YANG Ming-bo,ZHAO Wei-lin,et al. Research on TD salt- bath vanadizing treatment of Cr12MoV steel[J]. Die & Mould Manufacture,2007,(9):70-72.
Status and Development on Surface Chemical Heat Treatment of Cr12MoVSteel
ZHAO Zuo-fu, ZHOU Ying, QI Jin-gang, WANG Jian-zhong
(School of Material Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China)
Cr12MoV is the most w idely domestically used work die steel, and this ledeburite steel has a high carbon and high chrom ium in its composition. Generally speaking, the advanced surface treating technology leads to the high strength and high life cycle. In this paper, several surface treating technologies such as nitriding, boriding and vanadinizing are summaried, and the structure and property changes of Cr12MoV treated by various program are listed and reviewed. Furthermore, the development tendency of surface treating technologies for Cr12MoV is also evaluated.
Cr12M oV steel; Surface chemical heat treatment; Microstructure; Property
10.3969/j.issn.2095-6649.2015.11.001
ZHAO Zuo-fu, ZHOU Ying, QI Jin-gang, etal. Status and Development on Surface Chem ical Heat Treatment of Cr12MoV Steel[J]. The Journal of New Industrialization,2015,5(11): 1-7.
國家自然科學(xué)基金(No. 51354001);遼寧省高等學(xué)校創(chuàng)新團隊項目(No.LT2013014);遼寧省教育廳重點實驗室基礎(chǔ)研究項目(No.LZ2014031)
趙作福(1978-),男,遼寧省錦州市,博士,實驗師,主要從事外場作用下金屬凝固理論與應(yīng)用的研究
本文引用格式:趙作福,周影,齊錦剛,等.Cr12MoV鋼表面化學(xué)熱處理的研究進展[J]. 新型工業(yè)化,2015,5(11):1-7.