賴紹聰 秦江鋒 朱韌之 趙少偉
西北大學(xué)大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西北大學(xué)地質(zhì)學(xué)系,西安 710069
近年來(lái),關(guān)于揚(yáng)子地塊西緣川西瀘定-康定地區(qū)出露的新元古代淺變質(zhì)火山-侵入雜巖系的成因及其形成大地構(gòu)造環(huán)境在學(xué)術(shù)界存在重大爭(zhēng)議,并引起了地學(xué)界廣泛的關(guān)注和重視(陳岳龍等,2001,2004;李獻(xiàn)華等,2002,2005,2012;沈渭洲等,2000,2002;顏丹平等,2002;李志紅等,2005;林廣春等,2006;劉樹(shù)文等,2009;Li et al.,2002,2003a;Liu and Zhao,2012;Zhao and Cawood,2012;Zhao and Zhou,2009;Zhao et al.,2010,2011;Zhou et al.,2002a,2006,2014)。瀘定-康定地區(qū)處于中國(guó)大陸構(gòu)造的主要地塊與造山帶聚集交接轉(zhuǎn)換部位,是NE 向龍門山造山系與NW 向鮮水河構(gòu)造帶交匯區(qū),該區(qū)構(gòu)造活動(dòng)強(qiáng)烈、地震活躍,是地學(xué)研究的重點(diǎn)地區(qū)。川西地區(qū)新元古代巖漿作用記錄了華南Rodinia 超大陸演化歷史(Li et al.,1995;廖宗廷等,2005;王江海,1998)。
瀘定-康定地區(qū)的新元古代火山-侵入雜巖系在區(qū)域上有較廣泛的分布,這套雜巖系在川西E 102°,呈北微偏東及南微偏西方向自康定-瀘定-雅安一帶向南經(jīng)四川西昌、會(huì)理和云南元謀、易門,一直延伸到云南中部,呈帶狀展布,長(zhǎng)約800km,寬約50~100km,從大地構(gòu)造觀點(diǎn)上看,黃汲清稱之為“康滇地軸”(黃汲清,1960;李春昱,1963)。長(zhǎng)期以來(lái),這套火山-侵入雜巖系被認(rèn)為是揚(yáng)子地臺(tái)結(jié)晶基底的代表性變質(zhì)雜巖組合。袁海華等(1987)根據(jù)這套變質(zhì)雜巖具有比較典型的TTG 組合特征,其變質(zhì)程度為角閃巖相和麻粒巖相,因此認(rèn)為其應(yīng)形成于太古代-古元古代。然而,近年來(lái)研究結(jié)果(陳岳龍等,2001,2004;李獻(xiàn)華等,2002,2005,2012;沈渭洲等,2000,2002;顏丹平等,2002;李志紅等,2005;林廣春等,2006;劉樹(shù)文等,2009;Li et al.,2002,2003b;Liu and Zhao,2012;Sun et al.,2008;Xiao et al.,2007;Zhao and Cawood,2012;Zhao and Zhou,2009;Zhao et al.,2010;Zhou et al.,2002b,2006,2014)表明,其形成年齡應(yīng)該在753~828Ma。這套巖石的大地構(gòu)造環(huán)境一直以來(lái)存在較大爭(zhēng)議:(1)裂谷環(huán)境(李獻(xiàn)華等,2002,2005;Li et al.,2002,2003a),是由于地幔柱的活動(dòng)驅(qū)動(dòng)了Rodinia 超級(jí)大陸的裂解,從而在大陸裂谷環(huán)境中形成這套巖石組合;(2)島弧環(huán)境(陳岳龍等,2001,2004;沈渭洲等,2000,2002;劉樹(shù)文等,2009;Zhao and Cawood,2012;Zhao and Zhou,2009;Zhao et al.,2010;Zhou et al.,2002a,2006)。顯然,對(duì)于該套巖石組合的精細(xì)解析將有助于對(duì)該區(qū)地質(zhì)構(gòu)造演化歷史及其深部動(dòng)力學(xué)過(guò)程的重新認(rèn)識(shí)。本文選擇瀘定北東側(cè)出露的天全新元古代花崗巖體進(jìn)行了巖石學(xué)、地球化學(xué)、鋯石U-Pb 年代學(xué)及全巖Sr-Nd-Pb 同位素地球化學(xué)分析,并探討其巖石成因和物質(zhì)來(lái)源,為揚(yáng)子地塊西北緣新元古代的構(gòu)造背景以及在Rodinia 超大陸的聚合-裂解演化中的作用提供了新的約束。
研究區(qū)位于揚(yáng)子地塊西緣,“康滇地軸”的北段,四川省雅安地區(qū)天全縣境內(nèi)(圖1)。區(qū)內(nèi)深大斷裂縱貫全區(qū),形成以南北向和北東向?yàn)橹黧w的斷裂構(gòu)造體系。已有研究結(jié)果表明(陳岳龍等,2001,2004;顏丹平等,2002;李志紅等,2005;林廣春等,2006;劉樹(shù)文等,2009;胡建等,2007),這些侵入巖體的巖石類型主要為花崗巖、花崗閃長(zhǎng)巖、正長(zhǎng)花崗巖、二長(zhǎng)花崗巖、英云閃長(zhǎng)巖、石英閃長(zhǎng)巖和輝長(zhǎng)巖,其中又以中酸性巖為主。這些侵入巖體大多呈巖基、巖株或巖枝狀產(chǎn)出,它們侵入前震旦系,并被上震旦系及顯生宙地層沉積覆蓋。
天全花崗巖體是“康滇地軸”北段東側(cè)的主要花崗巖體之一,分布在天全以西以及瀘定以北區(qū)域(圖1)。巖體侵位于前震旦系地層之中,主體巖性為花崗巖和花崗閃長(zhǎng)巖類。巖體東部暗色礦物含量略高,以花崗閃長(zhǎng)巖為主,而巖體西部暗色礦物含量略低,巖性以花崗巖為主體。巖體內(nèi)部局部發(fā)育有規(guī)模不等的幾米到幾十米寬偉晶質(zhì)和細(xì)晶花崗巖脈體,偉晶巖脈和細(xì)晶巖脈常常緊密共生。
花崗閃長(zhǎng)巖 主要分布在巖體東部,呈淺灰色-灰白色,塊狀構(gòu)造,中細(xì)粒-中粗?;◢徑Y(jié)構(gòu),局部見(jiàn)有顯微文像結(jié)構(gòu)。巖石主要由斜長(zhǎng)石(40%~50%)、鉀長(zhǎng)石(20%~30%)、石英(10%~20%)組成,暗色礦物以角閃石為主,含量可達(dá)10%,黑云母含量較少。副礦物有:榍石、磷灰石、鋯石、磁鐵礦等。斜長(zhǎng)石為巖石的主要礦物成分,主要為酸性斜長(zhǎng)石,可見(jiàn)其呈較自形的柱狀、板柱狀晶形,柱面解理發(fā)育。斜長(zhǎng)石有比較明顯的鈉黝簾石化蝕變現(xiàn)象,可見(jiàn)聚片雙晶及卡鈉復(fù)合連晶(圖2d)。鉀長(zhǎng)石自形程度略差于斜長(zhǎng)石,為半自形狀,顆粒大小與斜長(zhǎng)石相當(dāng),可見(jiàn)比較明顯的高嶺土化現(xiàn)象(圖2d),卡氏雙晶發(fā)育,部分顆粒可見(jiàn)格子雙晶。石英在巖石中呈他形粒狀分布于長(zhǎng)石顆粒之間,表面裂紋較為發(fā)育,裂紋呈不規(guī)則狀,有時(shí)可見(jiàn)石英具波狀消光現(xiàn)象。巖石中暗色礦物以角閃石為主,柱狀晶形,柱面解理發(fā)育,顯著綠泥石化(圖2c)。黑云母含量不高,零散分布于巖石中。
花崗巖 巖石呈灰白色-淺肉紅色(圖2a,b),塊狀構(gòu)造,局部可見(jiàn)似片麻狀構(gòu)造,中粒-中粗粒自形-半自形粒狀結(jié)構(gòu);主要礦物為鉀長(zhǎng)石(40%~50%)+酸性斜長(zhǎng)石(20%~25%)+石英(20%~25%)+黑云母(5%)+角閃石(1%~2%),副礦物有榍石、磷灰石、鋯石、磁鐵礦等。鉀長(zhǎng)石以條紋長(zhǎng)石和微斜長(zhǎng)石為主(圖2e,f),明顯高嶺土化。酸性斜長(zhǎng)石呈半自形短柱狀,輕微鈉黝簾石化蝕變,可見(jiàn)聚片雙晶,雙晶紋細(xì)密,在斜長(zhǎng)石和條紋長(zhǎng)石的接觸邊界上可見(jiàn)蠕英結(jié)構(gòu)。石英呈他形粒狀。黑云母黑褐色,自形-半自形晶,一組極完全解理,顆粒邊緣有輕微的氧化蝕變和鐵質(zhì)物分解析出現(xiàn)象(圖2e,f)。角閃石含量較低,柱狀晶形,有綠泥石化現(xiàn)象(圖2e)。
分析測(cè)試樣品是在巖石薄片鑒定的基礎(chǔ)上精心挑選出來(lái)的。首先經(jīng)鏡下觀察,選取新鮮的、無(wú)后期交代脈體貫入的樣品,然后用牛皮紙包裹擊碎成直徑約5~10mm 的細(xì)小新鮮巖石小顆粒,蒸溜水洗凈烘干,最后在振動(dòng)盒式碎樣機(jī)(日本理學(xué)公司生產(chǎn))內(nèi)粉碎至200 目。
圖1 揚(yáng)子地塊大地構(gòu)造略圖(a)、康定雜巖地質(zhì)簡(jiǎn)圖(b)及川西天全地區(qū)新元古代花崗巖類地質(zhì)簡(jiǎn)圖(c)Fig.1 Geologic sketch map of the Yangtze Block (a),distributions patterns of the Kangding Complex (b)and the Neoproterozoic granites in the Tianquan area,western Sichuan Province (c)
主量和微量元素在西北大學(xué)大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。主量元素采用XRF 法完成,微量元素用ICP-MS 測(cè)定。微量元素樣品在高壓溶樣彈中用HNO3和HF 混合酸溶解兩天后,用VG Plasma-Quad Excell ICP-MS 方法完成測(cè)試,對(duì)國(guó)際標(biāo)準(zhǔn)參考物質(zhì)BHVO-1(玄武巖)、BCR-2(玄武巖)和AGV-1(安山巖)的同步分析結(jié)果表明,微量元素分析的精度和準(zhǔn)確度一般優(yōu)于10%,詳細(xì)的分析流程見(jiàn)文獻(xiàn)(劉曄等,2007)。Sr-Nd-Pb 同位素分析在西北大學(xué)大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。Sr、Nd 同位素分別采用AG50W-X8(200~400mesh),HDEHP(自制)和AG1-X8(200~400mesh)離子交換樹(shù)脂進(jìn)行分離,同位素的測(cè)試則在該實(shí)驗(yàn)室的多接收電感耦合等離子體質(zhì)譜儀(MC-ICP MS,Nu Plasma HR,Nu Instruments,Wrexham,UK)上采用靜態(tài)模式(Static mode)進(jìn)行。
全巖Pb 同位素是通過(guò)HCl-Br 塔器進(jìn)行陰離子交換分離,Pb 同位素的分離校正值205Tl/203Tl =2.3875。在分析期間,NBS981 的30 個(gè)測(cè)量值得出206Pb/204Pb = 16.937 ± 1(2σ),207Pb/204Pb =15.491 ±1(2σ),和208Pb/204Pb =36.696±1(2σ)的平均值。BCR-2 標(biāo)樣給出了值是206Pb/204Pb =18.742 ±1(2σ),207Pb/204Pb =15.620 ±1(2σ),和208Pb/204Pb=38.705 ±1(2σ)。所有程序中Pb 空白樣的范圍在0.1~0.3ng 之間。
圖2 川西天全新元古代花崗巖的野外(a、b)及鏡下(cf)照片Af-鉀長(zhǎng)石;Pl-斜長(zhǎng)石;Q-石英;Hb-角閃石;Bi-黑云母;Ap-磷灰石Fig.2 Field (a,b)and microscopic (c-f)photos of the Neoproterozoic granite from the Tianquan area,western Sichuan Province
鋯石按常規(guī)重力和磁選方法分選,最后在雙目鏡下挑純,將鋯石樣品置于環(huán)氧樹(shù)脂中,然后磨至約一半,使鋯石內(nèi)部暴露,鋯石樣品在測(cè)定之前用濃度為3%的稀HNO3清洗樣品表面,以除去樣品表面的污染。鋯石的CL 圖象分析是在西北大學(xué)大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室的電子顯微掃描電鏡上完成。鋯石U-Pb 同位素組成分析在西北大學(xué)大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室激光剝蝕電感藕合等離子體質(zhì)譜(LAICP-MS)儀上完成。激光剝蝕系統(tǒng)為配備有193nm ArFexcimer 激光器的Geolas200M(Microlas Gottingen Germany),分析采用激光剝蝕孔徑30μm,激光脈沖為10Hz,能量為32~36mJ,同位素組成用鋯石91500 進(jìn)行外標(biāo)校正。LA-ICPMS 分析的詳細(xì)方法和流程見(jiàn)(Yuan et al.,2004)。
在角腳坪花崗巖中采集1 個(gè)花崗巖樣品(JJP-02)用于鋯石LA-ICP-MS 微區(qū)U-Pb 定年分析,分析結(jié)果(表1)及鋯石的CL 圖象如圖3 所示。鋯石顆粒為無(wú)色透明,長(zhǎng)柱狀半自形-自形晶,粒徑介于100~300μm 之間,長(zhǎng)寬比2∶1~3∶1。在CL 圖像上,大部分鋯石有巖漿韻律環(huán)帶,個(gè)別鋯石顯示核邊結(jié)構(gòu)。共選取36 顆鋯石進(jìn)行了36 個(gè)數(shù)據(jù)點(diǎn)分析。其中#9、10、14、27、28、33 和35 等7 個(gè)點(diǎn)為不諧和的年齡信息,因此其地質(zhì)意義不予討論;#3、7、16 和23 的206Pb/238U 年齡明顯偏年輕,介于的獲得比較新的206Pb/238U 年齡零散的分布在606 ±7Ma 到779 ±9Ma 之間,在U-Pb 諧和圖上落于諧和線的下方,代表Pb 丟失作用的結(jié)果;其余25 個(gè)測(cè)試點(diǎn)都表現(xiàn)出諧和的年齡信息,其Th =56 ×10-6~359 ×10-6,U=95 ×10-6~388 ×10-6,Th/U 比值介于0.3 到1.09 之間,代表巖漿成因的鋯石;這25 個(gè)點(diǎn)得到的206Pb/238U 加權(quán)平均年齡為851 ±15Ma(MSWD=0.7,2σ)(圖3),應(yīng)該代表天全新元古代花崗巖結(jié)晶年齡。
圖3 川西角腳坪新元古代花崗巖鋯石陰極發(fā)光(CL)圖像Fig.3 Zircons cathodoluminescene (CL)images for the Neoproterozoic granites from the western Sichuan Province
表1 川西天全地區(qū)角腳坪新元古代花崗巖鋯石LA-ICPMS U-Th-Pb 同位素分析結(jié)果Table1 Zircon LA-ICPMS U-Th-Pb isotopic analysis results of the Neoproterozoic Jiaojiaoping granites from theTianquan area, western Sichuan Provinces
表2 川西天全地區(qū)新元古代花崗巖常量(wt%)及微量元素分析結(jié)果(×10 -6)Table 2 Analytical results of major (wt%)and trace element (×10 -6)of the granite from the Tianquan area
圖4 川西角腳坪新元古代花崗巖鋯石U-Pb 年齡諧和圖Fig.4 Zircon U-Pb concordia diagram for the Neoproterozoic granites from the western Sichuan Provinc
圖5 川西新元古代天全花崗巖An-Ab-Or (a)、SiO2-K2O (b)和A/NK-A/CNK (c)圖解(據(jù)Barker,1979;Rollinson,1993;Maniar and Piccoli,1989)Fig.5 An-Ab-Or (a),SiO2-K2O (b)and A/NK-A/CNK (c)diagrams for the Neoproterozoic Tianquan granites from the western Sichuan Province (after Barker,1979;Rollinson,1993;Maniar and Piccoli,1989)
本區(qū)花崗巖的主-微量元素分析結(jié)果列于表2中。從表2 中可以看到,取自火夾溝的4 個(gè)花崗閃長(zhǎng)巖SiO2含量在64.48%~65.82%之間,TiO2=0.46%~0.56%,在An-Ab-Or 巖石類型劃分圖解中(圖4a)均位于花崗巖與花崗閃長(zhǎng)巖的分界線附近;巖石CaO 含量變化較大,在1.72%~3.68%之間;富鋁(Al2O3=15.73%~16.20%,平均為15.95%),鋁飽和指數(shù)A/CNK=0.96~1.18,屬于準(zhǔn)鋁質(zhì)-過(guò)鋁質(zhì)系列(圖4c)。巖石的K2O = 2.42%~3.05%,Na2O = 4.29%~5.65%,Na2O/K2O =1.40~1.96。巖石σ =2.11~3.37,在SiO2-K2O 圖解上位于高鉀鈣堿性系列巖石范圍內(nèi)(圖4b)。巖石MgO=2.26%~2.78%,Mg#值(48.1~52.9)略高。
取自角腳坪的6 個(gè)花崗巖樣品SiO2= 73.31%~74.93%,在An-Ab-Or 圖解中(圖5a)位于花崗巖區(qū)內(nèi);巖石CaO=0.33%~1.02%,巖石TiO2含量也明顯低于花崗閃長(zhǎng)巖類(TiO2=0.20%~0.33%),Al2O3=13.34%~14.28%,A/CNK=1.01~1.07,除了1 個(gè)樣品的值是1.33 之外,同樣屬于過(guò)鋁質(zhì)系列(圖5c)。巖石的K2O =2.02%~3.13%,Na2O=4.78%~5.38%,Na2O/K2O =1.54~2.40。在SiO2-K2O 圖解上位于鈣堿性系列巖石范圍內(nèi)(圖5b)。
本區(qū)巖石10 個(gè)樣品的稀土及微量元素分析結(jié)果列于表2 中。從表中可以看到,火夾溝花崗閃長(zhǎng)巖稀土總量在68.05 × 10-6~144.0 × 10-6之 間,平 均 為99.43 × 10-6,∑LREE/∑HREE 較為穩(wěn)定,在2.49~3.99 之間變化,平均為3.08,巖石(La/Yb)N介于6.78~13.0 之間,平均為9.51,(Ce/Yb)N介于5.28~9.10 之間,平均為6.81;δEu 變化在0.71~0.90 之間,平均0.81,表明巖石有輕度的Eu 虧損。角腳坪花崗巖稀土總量在96.4 ×10-6~113.2 ×10-6之間,平均為103.5 ×10-6,∑LREE/∑HREE 在2.34~2.86 之間變化,巖石(La/Yb)N介于5.45~7.20 之間,平均為6.02,(Ce/Yb)N大多介于4.27~5.50 之間,平均為4.65;δEu 變化在0.56~0.77 之間,平均0.64。
圖6 川西新元古代天全花崗巖球粒隕石標(biāo)準(zhǔn)化稀土元素配分圖解(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989)(a)火夾溝花崗閃長(zhǎng)巖;(b)腳角坪花崗巖Fig.6 Chondrite-normalized REE patterns for the Neoproterozoic Tianquan granites from the western Sichuan Province(normalization values after Sun and McDonough,1989)
圖7 川西新元古代天全花崗巖原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(標(biāo)準(zhǔn)化值據(jù)Wood et al.,1979)(a)火夾溝花崗閃長(zhǎng)巖;(b)腳角坪花崗巖Fig.7 Primitive mantle-normalized trace element spider diagrams for the Neoproterozoic Tianquan granites from the western Sichuan Province (normalization values after Wood et al.,1979)
本區(qū)巖石10 個(gè)樣品的球粒隕石標(biāo)準(zhǔn)化稀土元素配分圖解(圖6)和原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(圖7)顯示,花崗巖和花崗閃長(zhǎng)巖具有完全一致的配分型式,配分曲線均顯示為右傾負(fù)斜率富集型配分型式。Nb 和Ta 元素呈現(xiàn)顯著的負(fù)異常,巖石Rb/Sr(0.19~0.71)、Rb/Ba(0.07~0.13)、K/Rb(245.78~392.99)以及在配分曲線上Nb、Ta、Sr、P 的明顯虧損,說(shuō)明斜長(zhǎng)石作為熔融殘留相或結(jié)晶分離相存在,即在熔融過(guò)程中斜長(zhǎng)石相沒(méi)有被耗盡(Pati?o Douce and Johnston,1991;Pati?o Douce and Beard,1995;Pati?o Douce and Harris,1998;Pati?o Douce,1999)。巖石中Zr 的富集和Nb、Ta 的虧損表明源區(qū)巖石中可能以陸殼組分為主(Green and Pearson,1987;Green,1995;Barth et al.,2000)。Nb、P的虧損和Ba 的富集顯示了I 型花崗巖的特征。Ti 在巖漿巖中易形成獨(dú)立礦物相,主要是鈦鐵氧化物類(劉英俊等,1984;Lai et al.,2001,2003,2007,2011;賴紹聰和劉池陽(yáng),2001;賴紹聰?shù)龋?007)。
本區(qū)花崗巖和花崗閃長(zhǎng)巖4 個(gè)樣品的Sr-Nd-Pb 同位素分析結(jié)果列于表3 和表4 中。從表3 和4 中可以看到巖石的同位素地球化學(xué)特征顯示花崗閃長(zhǎng)巖初始87Sr/86Sr 分別為0.704857 和0.710471,花崗巖具有相對(duì)較低的初始87Sr/86Sr分別為0.701597 和0.702408?;◢忛W長(zhǎng)巖εNd(t)分別為+0.6 和+0.9,花崗巖的εNd(t)比較高,分別為+4.4 和+8.3。根據(jù)εNd(t)-87Sr/86Sr 相關(guān)圖解(圖8),本區(qū)花崗閃長(zhǎng)巖具有稍高的初始Sr 及低εNd(t)的特征,εNd(t)稍微高于BSE 成分,而花崗巖具有低初始Sr 和高εNd(t),εNd(t)值介于MORB 和初始地幔端元水平。
本區(qū)花崗閃長(zhǎng)巖的初始206Pb/204Pb = 17.181~17.353,207Pb/204Pb=15.551~15.566,208Pb/204Pb=36.649~36.950;本區(qū)花崗巖具有相對(duì)較低初始206Pb/204Pb =17.128~17.142,207Pb/204Pb=15.519~15.524,208Pb/204Pb=35.857~35.927;在Pb 同位素成分系統(tǒng)變化圖中(圖9),本區(qū)花崗質(zhì)巖石無(wú)論是在207Pb/204Pb-206Pb/204Pb 圖解上,還是208Pb/204Pb-206Pb/204Pb 圖解上,均位于Th/U=4.0 的北半球參考線(NHRL)之上,并在208Pb/204Pb-206Pb/204Pb 圖解上具有與MORB 接近的同位素組成,而在207Pb/204Pb-206Pb/204Pb 圖解上則接近于下地殼的區(qū)域內(nèi),而且花崗巖有相對(duì)接近EMI 的趨勢(shì)。本區(qū)花崗閃長(zhǎng)巖模式年齡tDM(Ga)值為1.5Ga 和1.51Ga,而花崗巖的tDM(Ga)值為1.17Ga 和0.86Ga。
表3 川西天全新元古代花崗巖類全巖Sr-Nd 同位素分析結(jié)果Table 3 Whole-rock Sr-Nd isotopic compositions of the Neoproterozoic granitoids from the western Sichuan Province
表4 川西天全新元古代花崗巖類全巖Pb 同位素分析結(jié)果Table 4 Whole-rock Pb isotopic compositions of the Neoproterozoic granitoids from the western Sichuan Province
圖8 川西新元古代天全花崗巖類巖石(87 Sr/86 Sr)iεNd(t)圖解DM-虧損地幔;PREMA-原始地幔;BSE-地球總成分;MORB-洋中脊玄武巖Fig.8 (87Sr/86Sr)i-εNd(t)diagrams for the Neoproterozoic granitoids from the western Sichuan Province
天全地區(qū)新元古代花崗巖及花崗閃長(zhǎng)巖都表現(xiàn)出過(guò)鋁質(zhì)的特性,大多數(shù)樣品的鋁飽和指數(shù)A/CNK 都高于1.1,屬于強(qiáng)過(guò)鋁質(zhì)花崗巖類,鋁飽和指數(shù)曾被認(rèn)為是判別I 型和S型花崗巖的標(biāo)志(Chappell and White,1974,2001;吳福元等,2007;王德滋等,1993)。一般認(rèn)為,如果形成強(qiáng)過(guò)鋁花崗巖的源巖是泥質(zhì)的,即富粘土、貧長(zhǎng)石(<5%),則形成于成熟的大陸克拉通環(huán)境;如果形成強(qiáng)過(guò)鋁花崗巖的源巖是貧粘土、富長(zhǎng)石的(>5%),則形成于未成熟的板塊邊緣(島弧和大陸弧)的海溝俯沖帶環(huán)境(鐘長(zhǎng)汀等,2007)。因此判別強(qiáng)過(guò)鋁花崗巖源巖性質(zhì)成為判別強(qiáng)過(guò)鋁花崗巖形成構(gòu)造環(huán)境的關(guān)鍵?;饖A溝花崗閃長(zhǎng)巖具有高的CaO/Na2O 比值(0.30 到0.85)、低的Rb/Sr(0.19~0.33)和Rb/Ba(0.10~0.12)比值,這表明這類巖石的源區(qū)主要為貧粘土的雜砂巖(圖10a,b)。巖石具有低的SiO2含量(64.48%~65.82%)及低的Al2O3/TiO2(28.7~34.2),這表明巖石的源區(qū)可能有幔源鎂鐵質(zhì)熔體的混入,這些特征類似于澳大利亞Lachlan造山帶強(qiáng)過(guò)鋁質(zhì)花崗巖(Chappell and White,2001)及華北中元古代強(qiáng)過(guò)鋁質(zhì)花崗巖(鐘長(zhǎng)汀等,2007),表明火夾溝花崗閃長(zhǎng)巖形成于高地溫梯度、成熟度較低的雜砂巖部分熔融。
圖9 川西新元古代天全花崗巖類巖石206 Pb/204 Pb-208Pb/204Pb (a)和206 Pb/204 Pb-207 Pb/204 Pb (b)圖解(據(jù)Hugh,1993)DM-虧損地幔;PREMA-原始地幔;BSE-地球總成分;MORB-洋中脊玄武巖;EMI-I 型富集地幔;EMII-Ⅱ型富集地幔;HIMU-異常高238U/204Pb 地幔Fig.9 206 Pb/204 Pb-208 Pb/204 Pb (a)and 206Pb/204 Pb-207Pb/204Pb (b)diagrams for the Neoproterozoic granitoids from the western Sichuan Province (after Hugh,1993)
角腳坪花崗巖具有較高的SiO2含量及低的TiO2含量,巖石同時(shí)也表現(xiàn)出過(guò)鋁質(zhì)的地球化學(xué)特性,多數(shù)樣品的A/CNK 指數(shù)大于1.1,但是這些地球化學(xué)特征并不能作為其是S 型花崗巖的標(biāo)志,在K2O-Na2O 圖解(圖11b)上,巖石表現(xiàn)出富Na 的地球化學(xué)屬性,所有樣品均位于I 型花崗巖區(qū)域內(nèi)。在Al2O3/TiO2-CaO/Na2O 巖石源區(qū)判別圖解上(圖10a),角腳坪花崗巖具有較高的Al2O3/TiO2比值及高的CaO/Na2O 比值,表明巖石的源區(qū)有大量泥質(zhì)巖的加入,但是在Rb/Sr-Rb/Ba 判別圖解上,巖石具有低的Rb/Sr 和Rb/Ba比值(圖10b),表明其起源于貧粘土的雜砂巖的部分熔融。結(jié)合巖石具有極度虧損的Sr-Nd 同位素組成,Sr 同位素初始比值(87Sr/86Sr)i=0.701597~0.702408,εNd(t)= +4.4~+8.3,接近于虧損地幔的Sr-Nd 同位素組成(圖8),巖石的單階段同位素Nd 模式年齡介0.86~1.17Ga,十分接近于巖石的鋯石U-Pb 年齡(851Ma),這表明巖石應(yīng)起源于虧損的源區(qū),但是虧損地幔直接部分熔融不可能形成高Si 的花崗質(zhì)熔體(Wilson,1989),因此巖石的源區(qū)應(yīng)該是虧損的玄武質(zhì)巖石,這種玄武質(zhì)巖石有可能是源于虧損地幔的洋殼或是源區(qū)軟流圈地幔的玄武巖。實(shí)驗(yàn)巖石學(xué)研究表明玄武質(zhì)巖石在H2O 飽和條件下發(fā)生低程度部分熔融可以形成過(guò)鋁質(zhì)、高Si 的Na 質(zhì)花崗巖(Rapp and Watson,1995;Petford and Atherton,1996;DePaolo and Daley,2000)。因此我們認(rèn)為角腳坪花崗巖應(yīng)該是虧損的玄武質(zhì)巖石(有可能是洋殼或是虧損的地幔柱來(lái)源的玄武巖)在高溫、H2O 飽和條件下形成的過(guò)鋁質(zhì)、Na 質(zhì)花崗巖。
圖10 川西新元古代天全花崗巖類巖石Al2O3/TiO2-CaO/Na2O (a)及Rb/Sr-Rb/Ba (b)源區(qū)判別圖解(據(jù)Sylvester,1998)Fig.10 Al2O3/TiO2-CaO/Na2O (a)and Rb/Sr-Rb/Ba (b)diagrams for the Neoproterozoic granitoids from the western Sichuan Province (after Sylvester,1998)
圖11 川西新元古代天全花崗巖類巖石Nb/Y-Rb/Y (a,據(jù)Jahn et al.,1999)及K2O-Na2O (b,據(jù)Collins et al.,1982)圖解Fig.11 Nb/Y-Rb/Y (a,after Jahn et al.,1999)and K2O-Na2O (b,after Collins et al.,1982)diagrams for the Neoproterozoic granitoids from the western Sichuan Province
圖12 川西新元古代天全花崗巖類巖石Y+Ta-Rb (a,據(jù)Pearce et al.,1984)和Rb/30-Hf-Ta×3 (b,據(jù)Harris et al.,1986)構(gòu)造環(huán)境判別圖解Fig.12 Y+Ta-Rb (a,after Pearce et al.,1984)and Rb/30-Hf-Ta ×3 (b,after Harris et al.,1986)tectonic discrimination diagrams for the Neoproterozoic granitoids from the western Sichuan Province
沿著揚(yáng)子地塊的西緣出露了大量包括本區(qū)研究的花崗巖在內(nèi)的新元古代花崗巖,大多數(shù)以I 和S 型為主,并有少量的A 型花崗巖體(胡建等,2007;Li et al.,2008;Zhao et al.,2008)。這些新元古代中酸性火成巖組合形成的構(gòu)造環(huán)境存在極大的爭(zhēng)議,部分學(xué)者認(rèn)為是形成于活動(dòng)大陸邊緣(Zhou et al.,2002b;Wang et al.,2006;Wang and Zhou,2012;Yan et al.,2004;Yu et al.,2008)的島弧巖漿雜巖,或是在地幔柱背景下島弧地殼發(fā)生重熔作用形成的(Li et al.,2003a,b)。但是單單根據(jù)花崗巖的地球化學(xué)屬性難以確定其形成的構(gòu)造環(huán)境,花崗巖類的構(gòu)造環(huán)境判別圖解也存在多解性(Pearce,1983,1996;Pearce et al.,1984;Whalen et al.,1987),只有在系統(tǒng)分析巖石源區(qū)屬性及部分熔融條件的基礎(chǔ)上,結(jié)合區(qū)域構(gòu)造資料,才能逐步分析和厘定巖石形成的構(gòu)造環(huán)境。
揚(yáng)子地塊西緣分布大量新元古代鈉質(zhì)石英閃長(zhǎng)巖-奧長(zhǎng)花崗巖-花崗閃長(zhǎng)巖(TTG)類巖石和富K 的花崗巖(Zhao et al.,2008),這些巖石的形成年齡為(800~650Ma),而且這些巖石具有相對(duì)虧損的Sr-Nd 同位素組成,被認(rèn)為是由于地幔楔深部板片脫水生成的玄武質(zhì)巖漿上涌導(dǎo)致下地殼的部分熔融所產(chǎn)生的。Li et al.(2003a)通過(guò)對(duì)華南新元古代花崗巖類及伴生的鎂鐵質(zhì)巖石系統(tǒng)的年代學(xué)和地球化學(xué)分析,提出揚(yáng)子地塊存在兩期雙峰式巖漿作用:830~795Ma 及780~745Ma,作者認(rèn)為這種雙峰式巖漿作用在Roninia 超大陸的其 它 地 塊,如 Australia,India,Madagascar,Seychelles,southern Africa 及Laurentia 等地塊也廣泛發(fā)育,作者認(rèn)為如此大規(guī)模的雙峰式巖漿作用只能用地幔柱上涌導(dǎo)致的超大陸裂解模式來(lái)解釋。
本文通過(guò)對(duì)川西天全地區(qū)的新元古代花崗閃長(zhǎng)巖及花崗巖系統(tǒng)的成因分析認(rèn)為,火夾溝地區(qū)的花崗閃長(zhǎng)巖為過(guò)鋁質(zhì),應(yīng)該是在高地溫梯度條件下,由雜砂巖組成的中元古代地殼發(fā)生部分熔融形成的過(guò)鋁質(zhì)熔體,而且?guī)r石的SiO2含量偏低,應(yīng)該是這種過(guò)鋁質(zhì)熔體同化了部分幔源鎂鐵質(zhì)熔體所致;而角腳坪地區(qū)的過(guò)鋁質(zhì)花崗巖具有極度虧損的Sr-Nd同位素組成;但是在俯沖帶環(huán)境下,普通俯沖洋殼由于地溫梯度較低,無(wú)法直接發(fā)生部分熔融,受俯沖洋殼流體交代富集的地幔楔發(fā)生部分熔融將形成SiO2含量相對(duì)較低的安山質(zhì)巖漿(Wilson,1989),而如果是年輕俯沖洋殼(地溫梯度較高)直接發(fā)生部分熔融將形成高Sr/Y 比值的埃達(dá)克巖(Defant and Drummond,1990;Castillo,2008;Martin,1999;Martin et al.,2005),而角腳坪花崗巖明顯不具有高Sr 低Y的埃達(dá)克巖地球化學(xué)屬性,因此角腳坪花崗巖不可能是俯沖洋殼直接發(fā)生部分熔融的產(chǎn)物。在Rb-(Yb +Ta)和Rb/30-Hf-3Ta 圖解(圖12)中,本區(qū)花崗巖和花崗閃長(zhǎng)巖數(shù)據(jù)點(diǎn)全部位于火山弧花崗巖區(qū)域內(nèi)。
本文通過(guò)對(duì)揚(yáng)子地塊西緣天全地區(qū)花崗閃長(zhǎng)巖及花崗巖系統(tǒng)的鋯石U-Pb 年代學(xué)、巖石地球化學(xué)及Sr-Nd-Pb 同位素地球化學(xué)研究,得到如下結(jié)論:
(1)天全花崗巖體的LA-ICP-MS 鋯石U-Pb 測(cè)年結(jié)果表明其形成于851 ±15Ma(MSWD=0.7,2σ),其形成時(shí)代為新元古代,與揚(yáng)子板塊西緣和北緣大量的中酸性侵入體和火山巖具有相近的形成年齡。
(2)火夾溝花崗閃長(zhǎng)巖為過(guò)鋁質(zhì)、低SiO2、具有相對(duì)虧損的Sr-Nd-Pb 同位素地球化學(xué)組成,結(jié)合巖石低的Al2O3/TiO2和高的CaO/Na2O 比值,本文認(rèn)為火夾溝花崗閃長(zhǎng)巖的成因機(jī)制為:在鎂鐵質(zhì)巖漿底侵的條件下,成熟度較低的雜砂巖部分熔融形成的過(guò)鋁質(zhì)熔體,巖石降低的SiO2含量表明其同化了部分鎂鐵質(zhì)熔體。
(3)角腳坪花崗巖具有高的SiO2含量,為過(guò)鋁質(zhì)、富Na的熔體,而且具有極度虧損的Sr-Nd 同位素組成,表明其應(yīng)是虧損的玄武質(zhì)巖石在H2O 飽和條件下發(fā)生低程度部分熔融形成的過(guò)鋁質(zhì)熔體。
致謝 感謝周美夫教授和另一位審稿專家提出的中肯意見(jiàn)與建議。
Barker F.1979.Trondhjemite:Definition,environment and hypotheses of origin.In:Barker F (ed.).Trondhjemites,Dacites,and Related Rocks.Amsterdam:Elsevier,1-12
Barth MG,McDonough WF and Rudnick RL.2000.Tracking the budget of Nb and Ta in the continental crust.Chemical Geology,165(3-4):197-213
Castillo PR.2008.Origin of the adakite high-Nb basalt association and its implications for postsubduction magmatism in Baja California,Mexico.Geol.Soc.Am.Bull.,120(3-4):451-462
Chappell BW and White AJR.1974.Two contrasting granite types.Pacific Geology,8(2):173-174
Chappell BW and White AJR.2001.Two contrasting granite types:25 years later.Australian Journal of Earth Sciences,48(4):489-499
Chen YL,Luo ZH and Liu C.2001.New recognition of Kangding-Mianning metamorphic complexes from Sichuan,western Yangtze Craton:Evidence from Nd isotopic composition.Earth Science,26(3):279-285 (in Chinese with English abstract)
Chen YL,Luo ZH,Zhao JX et al.2004.Petrogenesis of Kangding complex: Evidence from zircon SHRIMP U-Pb age and lithogeochemistry.Science in China (Series D),34(8):687-697(in Chinese)
Collins WJ,Beams SD,White AJR et al.1982.Nature and origin of Atype granites with particular reference to Southeastern Australia.Contributions to Mineralogy and Petrology,80(2):189-200
Defant MJ and Drummond MS.1990.Derivation of some modern arc magmas by melting of young subducted lithosphere.Nature,347(6294):662-665
DePaolo DJ and Daley EE.2000.Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension.Chemical Geology,169(1-2):157-185
Green TH and Pearson NJ.1987.An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature.Geochimica et Cosmochimica Acta,51(1):55-62
Green TH.1995.Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system.Chemical Geology,120(3-4):347-359
Harris NBW, Pearce JA and Tindle AG.1986.Geochemical characteristics of collision-zone magmatism.In:Coward MP and Reis AC (eds.).Collision Tectonics.Geological Society,London,Special Publications,19(1):67-81
Hu J,Qiu JS,Wang RC,Jiang SY,Yu JH and Ni P.2007.Earliest response of the Neoproterozoic Rodinia break-up in the northeastern Yangtze craton:Constraints from zircon U-Pb geochronology and Nd isotopes of the gneissic alkaline granites in Donghai area.Acta Petrologica Sinica,23(6):1321-1333 (in Chinese with English abstract)
Huang JQ.1960.Review on the basic geological and tectonic feature of China.Acta Geologica Sinica,40(1):1-31 (in Chinese)
Hugh RR.1993.Using Geochemical Data.Singapore: Longman Singapore Publishers,234-240
Jahn BM,Wu FY,Lo CH et al.1999.Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex,central China.Chemical Geology,157(1-2):119-146
Lai SC and Liu CY.2001.Enriched upper mantle and eclogitic lower crust in north Qiangtang,Qinghai-Tibet Plateau:Petrological and geochemical evidence from the Cenozoic volcanic rocks.Acta Petrologica Sinica,17(3):459- 468 (in Chinese with English abstract)
Lai SC,Liu CY and O’Reilly SY.2001.Petrogenesis and its significance to continental dynamics of the Neogene high-potassium calc-alkaline volcanic rock association from north Qiangtang,Tibetan plateau.Science in China (Series D),44(Suppl.1):45-55
Lai SC,Liu CY and Yi HS.2003.Geochemistry and petrogenesis of Cenozoic andesite-dacite association from the Hoh Xil region,Tibetan Plateau.International Geology Review,45 (11):998-1019
Lai SC,Qin JF and Li YF.2007.Partial melting of thickened Tibetan crust:Geochemical evidence from Cenozoic adakitic volcanic rocks.International Geology Review,49(4):357-373
Lai SC,Qin JF,Li YF and Long P.2007.Geochemistry and petrogenesis of the alkaline and calc-alkaline series Cenozoic volcanic rocks from Huochetou mountain,Tibetan Plateau.Acta Petrologica Sinica,23(4):709-718 (in Chinese with English abstract)
Lai SC,Qin JF and Grapes R.2011.Petrochemistry of granulite xenoliths from the Cenozoic Qiangtang volcanic field,northern Tibetan Plateau:Implications for lower crust composition and genesis of the volcanism.International Geology Review,53(8):926-945
Li CY.1963.A preliminary study of the tectonic development of the“Kangdian”axis.Acta Geologica Sinica,43(3):214-229 (in Chinese with English abstract)
Li XH,Li ZX,Zhou H et al.2002.U-Pb zircon geochronology,geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China:Implications for the initial rifting of Rodinia.Precambrian Research,113(1-2):135-154
Li XH,Li ZX,Zhou HW et al.2002.U-Pb zircon geochronological,geochemical and Nd isotopic study of Neoproterozoic basaltic magmatism in western Sichuan: Petrogenesis and geodynamic implications.Earth Science Frontiers,9(4):329-338 (in Chinese with English abstract)
Li XH,Li ZX,Ge WC et al.2003a.Neoproterozoic granitoids in South China:Crustal melting above a mantle plume at ca.825Ma?Precambrian Research,122(1-4):45-83
Li XH,Qi CS,Liu Y et al.2005.Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block:New constraints from Hf isotopes and Fe/Mn ratios.Chinese Science Bulletin,50(21):2481-2486
Li XH,Li WX,Li ZX and Liu Y.2008.850~790Ma bimodal volcanic and intrusive rocks in northern Zhejiang,South China:A major episode of continental rift magmatism during the breakup of Rodinia.Lithos,102(1-2):341-357
Li XH,Li WX and He B.2012.Building of the South China block and its relevance to assembly and breakup of Rodinia supercontinent:Observations,interpretations and tests.Bulletin of Mineralogy,Petrology and Geochemistry,31(6):543-559 (in Chinese with English abstract)
Li ZH,Luo ZH,Chen YL et al.2005.Geochronological and geochemical characteristics of Kangding metamorphosed intrusions.Acta Geoscientica Sinica,26(Suppl.):87-89 (in Chinese with English abstract)
Li ZX,Zhang LH and Powell CM.1995.South China in Rodinia:Part of the missing link between Australia-East Antarctica and Laurentia.Geology,23(5):407-410
Li ZX,Li XH,Kinny PD,Wang J,Zhang S and Zhou H.2003b.Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton,South China and correlations with other continents:Evidence for a mantle superplume that broke up Rodinia.Precambrian Research,122(1-4):85-109
Liao ZT,Ma TT,Zhou ZY et al.2005.Review on Rodinia and tectonics in South China.Journal of Tongji University (Natural Science),33(9):1182-1191 (in Chinese with English abstract)
Lin GC,Li XH and Li WX.2006.SHRIMP U-Pb zircon age,geochemistry and Nd-Hf isotope of Neoproterozoic mafic dyke swarms in western Sichuan:Petrogenesis and tectonic significance.Science in China (Series D),36(7):630-645 (in Chinese)
Liu SW,Yan QR,Li QG et al.2009.Petrogenesis of granitoid rocks in the Kangding Complex,western margin of the Yangtze Craton and its tectonic significance.Acta Petrologica Sinaca,25(8):1883-1896(in Chinese with English abstract)
Liu Y,Liu XM,Hu ZC et al.2007.Evaluation of accuracy and longterm stability of determination of 37 trace elements in geological samples by ICP-MS.Acta Petrologica Sinica,23(5):1203-1210(in Chinese with English abstract)
Liu YJ,Cao LM,Li ZL et al.1984.Element Geochemistry.Beijing:Science Press,50-372 (in Chinese)
Liu ZR and Zhao JH.2012.Mineralogical constraints on the origin of Neoproterozoic felsic intrusions,NW margin of the Yangtze Block,South China.International Geology Review,55(5):590-607
Maniar PD and Piccoli PM.1989.Tectonic discrimination of granitoids.Geological Society of American Bulletin,101(5):635-643
Martin H.1999.Adakitic magmas:Modern analogues of Archaean granitoids.Lithos,46(3):411-429
Martin H,Smithies RH,Rapp R et al.2005.Anoverview of adakite,tonalite-trondhjemite-granodiorite (TTG ), and sanukitoid:Relationships and some implications for crust evolution.Lithos,79(1-2):1-24
Pati?o Douce AE and Johnston AD.1991.Phase equilibria and melt productivity in the pelitic system:Implications for the origin of peraluminous granitoids and aluminous granulites.Contributions to Mineralogy and Petrology,107(2):202-218
Pati?o Douce AE and Beard JS.1995.Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar.Journal of Petrology,36(3):707-738
Pati?o Douce AE and Harris N.1998.Experimental constraints on Himalayan anatexis.Journal of Petrology,39(4):689-710
Pati?o Douce AE.1999.What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?In:Castro A,F(xiàn)ernandez C and Vigneresse J(eds.).Understanding Granites:Integrating New and Classical Techniques.Geological Society,London,Special Publications,168(1):55-75
Pearce JA.1983.The role of sub-continental lithosphere in magma genesis at destructive plate margins.In:Hawkesworth CJ and Norry MJ (eds.).Continental Basalts and Mantle Xenoliths.London:Nantwich Shiva Press,230-249
Pearce JA, Harris NBW and Tindle AG.1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.Journal of Petrology,25(4):956-983
Pearce JA.1996.Sources and setting of granitic rocks.Episodes,19(4):120-125
Petford N and Atherton M.1996.Na-rich partial melts from newly underplated basaltic crust:The Cordillera Blanca batholith,Peru.Journal of Petrology,37(6):1491-1521
Rapp RP and Watson EB.1995.Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling.Journal of Petrology,36:891-931
Rollinson HR.1993.Using Geochemical Data:Evalution,Presentation,Interpretation.London:Person Education Limited,1-284
Shen WZ,Li HM,Xu SJ et al.2000.U-Pb chronological study of zircons from the Huangcaoshan and Xiasuozi granites in the western margin of Yangtze plate.Geological Journal of China Universities,6(3):412-416 (in Chinese with English abstract)
Shen WZ,Gao JF,Xu SJ et al.2002.Geochemical characteristics and genesis of the Qiaotou basic complex,Luding County,western Yangtze Block.Geological Journal of China Universities,8(4):380-389 (in Chinese with English abstract)
Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publications,42(1):313-345
Sun WH,Zhou MF,Yan DP,Li JW and Ma YX.2008.Provenance and tectonic setting of the Neoproterozoic Yanbian Group,western Yangtze Block (SW China).Precambrian Research,167(1-2):213-236
Sylvester PJ.1998.Post-collisional strongly peraluminous granites.Lithos 45:29-44
Wang DZ,Liu CS,Shen WZ et al.1993.The contrast between Tonglu Itype and Xiangshan S-type clastoporphyritic lava.Acta Petrologica Sinica,9(1):44-53 (in Chinese with English abstract)
Wang JH.1998.New advances in reconstruction of the Proterozoic Rodinia supercontinent.Earth Science Frontiers,5(4):235-242(in Chinese with English abstract)
Wang W and Zhou MF.2012.Sedimentary records of the Yangtze Block(South China)and their correlation with equivalent Neoproterozoic sequences on adjacent continents.Sediment.Geol.,265- 266:126-142
Wang XL,Zhou JC,Qiu JS,Zhang WL,Liu XM and Zhang GL.2006.LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from northern Guangxi,South China:Implications for tectonic evolution.Precambrian Research,145(1-2):111-130
Whalen JB,Currie KL and Chappell BW.1987.A-type granites:Geochemical characteristics, discrimination and petrogenesis.Contributions to Mineralogy and Petrology,95(4):407-419
Wilson M.1989.Igneous Petrogenesis.London:Unwin Hyman Press,295-323
Wood DA,Joron JL,Treuil M et al.1979.Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding sea floor.Contrib.Mineral.Petrol.,70(3):319-339
Wu FY,Li XH,Yang JH and Zheng YF.2007.Discussions on the petrogenesis of granites.Acta Petrologica Sinica,23(6):1217-1238 (in Chinese with English abstract)
Xiao L,Zhang HF,Ni PZ,Xiang H and Liu XM.2007.LA-ICP-MS UPb zircon geochronology of Early Neoproterozoic mafic-intermediate intrusions from NW margin of the Yangtze Block,South China:Implication for tectonic evolution.Precambrian Research,154(3-4):221-235
Yan DP,Zhou MF,Song HL et al.2002.Where was South China located in the reconstruction of Rodinia?Earth Science Frontiers,9(4):249-256 (in Chinese with English abstract)
Yan QR,Hanson AD,Wang ZQ,Druschke PA,Yan Z,Wang T,Liu DY,Song B,Pan P,Zhou H and Jiang CF.2004.Neoproterozoic subduction and rifting on the northern margin of the Yangtze Plate,China:Implications for Rodinia reconstruction.International Geology Review,46(9):817-832
Yu JH,O’Reilly SY,Wang LJ,Griffin WL,Zhang M,Wang RC,Jiang SY and Shu LS.2008.Where was South China in the Rodinia supercontinent?Evidence from U-Pb geochronology and Hf isotopes of detrital zircons.Precambrian Research,164(1-2):1-15
Yuan HH,Zhang SF,Zhang P et al.1987.A preliminary study on the formation age of the basement of the“Kangdian”axis.In:Zhang YX and Liu BG (eds.).Letters about the Panxi Continental Rift Valley,China (2).Beijing:Geological Publishing House,51-60(in Chinese with English abstract)
Yuan HL,Gao S,Liu XM et al.2004.Accurate U-Pb age and trace element determinations of zircon by laser ablation-Inductively coupled plasma mass spectrometry.Geostandards and Geoanalytical Research,28(3):353-370
Zhao GC and Cawood PA.2012.Precambrian geology of China.Precambrian Research,222-223:13-54
Zhao JH and Zhou MF.2009.Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block,South China.Lithos,107(3-4):152-168
Zhao JH,Zhou MF,Zheng JP et al.2010.Neoproterozoic crustal growth and reworking of the Northwestern Yangtze Block:Constraints from the Xixiang dioritic intrusion,South China.Lithos,120(3-4):439-452
Zhao JH,Zhou MF,Yan DP,Zheng JP and Li JW.2011.Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the Grenvillian orogeny.Geology,39(4):299-302
Zhao XF,Zhou MF,Li JW and Wu FY.2008.Association of Neoproterozoic A-and I-type granites in South China:Implications for generation of A-type granites in a subduction-related environment.Chemical Geology,257(1-2):1-15
Zhong CT,Deng JF,Wan YS,Mao DB and Li HM.2007.Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China Craton:Geochemical characteristics and zircon SHRIMP dating of S-type granitoids.Geochimica,36(6):585-600 (in Chinese with English abstract)
Zhou MF,Kennedy AK,Sun M,Malpas J and Lesher CM.2002a.Neoproterozoic arcrelated mafic intrusions along the northern margin of South China:Implications for the accretion of Rodinia.The Journal of Geology,110(5):611-618
Zhou MF,Yan DP,Kennedy AK et al.2002b.SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arcmagmatism along the western margin of the Yangtze Block,South China.Earth and Planetary Science Letters,196(1-2):51-67
Zhou MF,Yan DP,Wang CL et al.2006.Subduction-related origin of the 750Ma Xuelongbao adakitic complex (Sichuan Province,China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China.Earth and Planetary Science Letters,248(1-2):286-300
Zhou MF,Zhao XF,Chen WT,Li XC,Wang W,Yan DP and Qiu HN.2014.Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block,southern China and northern Vietnam.Earth-Science Reviews,139:59-82
附中文參考文獻(xiàn)
陳岳龍,羅照華,劉翠.2001.對(duì)揚(yáng)子克拉通西緣四川康定-冕寧變質(zhì)基底的新認(rèn)識(shí)——來(lái)自Nb 同位素的證據(jù).地球科學(xué),26(3):279-285
陳岳龍,羅照華,趙俊香等.2004.從鋯石SHRIMP 年齡及巖石地球化學(xué)特征論四川冕寧康定雜巖的成因.中國(guó)科學(xué)(D 輯),34(8):687-697
胡建,邱檢生,王汝成,蔣少涌,于津海,倪培.2007.新元古代Rodinia 超大陸裂解事件在揚(yáng)子北東緣的最初響應(yīng):東海片麻狀堿性花崗巖的鋯石U-Pb 年代學(xué)及Nd 同位素制約.巖石學(xué)報(bào),23(6):1321-1333
黃汲清.1960.中國(guó)地質(zhì)構(gòu)造基本特征的初步總結(jié).地質(zhì)學(xué)報(bào),40(1):1-31
賴紹聰,劉池陽(yáng).2001.青藏高原北羌塘榴輝巖質(zhì)下地殼及富集型地幔源區(qū)——來(lái)自新生代火山巖的巖石地球化學(xué)約束.巖石學(xué)報(bào),17(3):459-468
賴紹聰,秦江鋒,李永飛,隆平.2007.青藏高原新生代火車頭山堿性及鈣堿性兩套火山巖的地球化學(xué)特征及其物源討論.巖石學(xué)報(bào),23(4):709-718
李春昱.1963.“康滇地軸”地質(zhì)構(gòu)造發(fā)展歷史的初步研究.地質(zhì)學(xué)報(bào),43(3):214-229
李獻(xiàn)華,李正祥,周漢文等.2002.川西新元古代玄武質(zhì)巖漿巖的鋯石U-Pb 年代學(xué)、元素和Nd 同位素研究:巖石成因與地球動(dòng)力學(xué)意義.地學(xué)前緣,9(4):329-338
李獻(xiàn)華,祁昌實(shí),劉穎等.2005.揚(yáng)子塊體西緣新元古代雙峰式火山巖成因:Hf 同位素和Fe/Mn 新制約.科學(xué)通報(bào),50(19):2155-2160
李獻(xiàn)華,李武顯,何斌.2012.華南陸塊的形成與Rodinia 超大陸聚合-裂解-觀察、解釋與檢驗(yàn).礦物巖石地球化學(xué)通報(bào),31(6):543-559
李志紅,羅照華,陳岳龍等.2005.康定變質(zhì)侵入巖的年代學(xué)及巖石地球化學(xué)特征.地球?qū)W報(bào),26(增):87-89
廖宗廷,馬婷婷,周征宇等.2005.Rodinia 裂解與華南微板塊形成和演化.同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)板),33(9):1182-1191
林廣春,李獻(xiàn)華,李武顯.2006.川西新元古代基性巖墻群的SHRIMP 鋯石U-Pb 年齡、元素和Nd-Hf 同位素地球化學(xué):巖石成因與構(gòu)造意義.中國(guó)科學(xué)(D 輯),36(7):630-645
劉樹(shù)文,閏全人,李秋根等.2009.揚(yáng)子克拉通西緣康定雜巖中花崗質(zhì)巖石的成因及其構(gòu)造意義.巖石學(xué)報(bào),25(8):1883-1896
劉曄,柳小明,胡兆初等.2007.ICP-MS 測(cè)定地質(zhì)樣品中37 個(gè)元素的準(zhǔn)確度和長(zhǎng)期穩(wěn)定性分析.巖石學(xué)報(bào),23(5):1203-1210
劉英俊,曹勵(lì)明,李兆麟等.1984.元素地球化學(xué).北京:科學(xué)出版社,50-372
沈渭洲,李惠民,徐士進(jìn)等.2000.揚(yáng)子板塊西緣黃草山和下索子花崗巖體鋯石U-Pb 年代學(xué)研究.高校地質(zhì)學(xué)報(bào),6(3):412-416
沈渭洲,高劍峰,徐士進(jìn)等.2002.揚(yáng)子板塊西緣瀘定橋頭基性雜巖體的地球化學(xué)特征和成因.高校地質(zhì)學(xué)報(bào),8(4):380-389
王德滋,劉昌實(shí),沈渭洲等.1993.桐廬I 型和相山S 型兩類碎斑熔巖對(duì)比.巖石學(xué)報(bào),9(1):44-53
王江海.1998.元古宙羅迪尼亞(Rodinia)泛大陸的重建研究.地學(xué)前緣,5(4):235-242
吳福元,李獻(xiàn)華,楊進(jìn)輝,鄭永飛.2007.花崗巖成因研究的若干問(wèn)題.巖石學(xué)報(bào),23(6):1217-1238
顏丹平,周美夫,宋鴻林等.2002.華南在Rodinia 古陸中位置的討論——揚(yáng)子地塊西緣變質(zhì)-巖漿雜巖證據(jù)及其與Seychelles 地塊的對(duì)比.地學(xué)前緣,9(4):249-256
袁海華,張樹(shù)發(fā),張平等.1987.康滇地軸基底時(shí)代的初步輪廓.見(jiàn):張?jiān)葡?,劉秉光主?中國(guó)攀西裂谷文集(2).北京:地質(zhì)出版社,51-60
鐘長(zhǎng)汀,鄧晉福,萬(wàn)渝生,毛德寶,李惠民.2007.華北克拉通北緣中段古元古代造山作用的巖漿記錄:S 型花崗巖地球化學(xué)特征及鋯石SHRIMP 年齡.地球化學(xué),36(6):585-600