• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geochronology of the Late Cretaceous magmatism and metamorphism,Pütürge massif,Turkey

    2015-07-21 08:53:34AyDidemKILIandCihatATE
    巖石學(xué)報(bào) 2015年5期

    Ay?e Didem KILI? and Cihat ATE?

    Department of Geological Engineering,F(xiàn)aculty of Engineering,F(xiàn)?rat University,Elaz?g,Turkey

    1 Introduction

    Located within the southeastern Anatolia thrust belt,in between the Eastern Taurus Orogenic Belt and Arabian plates,the metamorphic Pütürge massif developed as a result of the collision between the Eurasia and Arab plates,and possibly initiated in the Early Cretaceous.Extensive studies have been carried on the geodynamic formation of the massifs (Hall,1976;?zkaya,1982;?eng?r and Yilmaz,1981;Robertson and Dixon,1984;Ricoue et al.,1984;G?ncüo glu and Turhan,1984;Yazgan and Chessex,1991).Among the diverse metamorphic units of different sizes on the southeastern Anatolia thrust belt,the Bitlis,Pütürge,Malatya and Keban metamorphic massifs are the most representative,and they might have settled in the region during the Early Cretaceous-Early Miocene(Yilmaz,1993).

    The Pütürge metamorphic massif is possibly the western continuation of the Bitlis massif within the southeastern Anatolia thrust belt.The Bitlis metamorphic massif is similar to the Pütürge metamorphic massif due to its rock structure and location.Previous studies on the internal structure of the Pütürge metamorphic rocks are limited in comparison with the Bitlis massif (Hempton,1984;Yazgan and Chessex,1991;Erdem,1994)and currently no geochronologic work has been done to determine the age of the Pütürge massif.In this paper,we report the internal structure and element distribution of zircons,as well as40Ar/39Ar dating of metamorphic biotite,separated from the amphibolite facies metamorphic rocks within the southern branch of Neotetis,the southeastern Anatolia thrust zone.

    2 Geological Setting

    The Pütürge massif extends from the northeast to the southwest and is about 50km long and 300m wide and is bordered by faults (Fig.1).The Middle-Upper Eocene Maden complex covers the Pütürge massif at different localities (Yazgan and Chessex,1991).The Maden complex consists of volcanosedimentary rocks,and metamorphic rocks are thickened at the study area by the dip-slip faults.Field observation finds two foliations,i.e,mionitic foliation in the fault and thrust zones,and schistosity-gneiss foliation at the external parts.Mineral stretch lineation and shear lineation are common in rocks and folds at various scales are also observed.The first geochronologic study on the Pütürge metamorphic rocks are K/Ar dating(Yazgan,1984)and it is stated that the last metamorphism of the Pütürge massif occurred at around 500~550℃ during the Late Cretaceous-Campanian.Obduction of the ophiolite nappes in the region in the Late Cretaceous was interpreted as the possible geodynamic background for metamorphism.Yazgan and Chessex (1991 ) combined the Pütürge and the Bitlis metamorphic massifs and named the complex as the Bitlis-Pütürge metamorphic belt,and conclude that the metamorphic age of this massif is 70~75Ma.Metamorphic rocks in the Pütürge complex are widespread on the southern branch of Neotethys and the Eastern Taurus Orogenic Belt and its surroundings.The Maden Complex composes of volcanic rocks and is in fault contact with the Pütürge metamorphic rocks(Fig.1).

    Fig.1 Geological sketch map of the study area

    Fig.2 Micropetrographs of metapelitic gneisses of the Pütürge massif(a)metamorphic prismatic zircon crystal in the matrix,cross polarized light;(b)metamorphic zircon included in the biotite (from Erdem,94),plain polarized light.Symbols of minerals:Apt-apatite;Bi-biotite;Ch-chlorite;Gr-garnet;Mu-muscovite;Q-quartz;Zr-zircon

    3 Petrography

    The Pütürge metamorphic complex consists of metapelite,metasemipelite,pisamite,metagranite,amphibolite,marble and quartzite (Ate?,2011).The metamorphic rocks are classified as the follows:gneiss (quartz + feldspar + biotite + muscovite ±opaque ± apatite ± zircon ± chlorite),mica schist (quartz +feldspar+biotite + muscovite ± opaque ± apatite ± tourmaline ±sphene±zircon±epidote),garnet mica schist (quartz+feldspar+biotite+muscovite+garnet±staurolit±kyanite±sillimanite±opaque±apatite±sphene±zircon ±chlorite),calcschist(quartz+ feldspar + epidote + carbonate + muscovite ± opaque),quartzite (quartz ± mica ± apatite ± opaque mineral),marble(calcite ± muscovite ± quartz ± epidote ± opaque mineral)and amphibolite (hornblende + plagioclase ± quartz ± epidote ±sphene±opaque mineral).The mineral assemblages suggest that the regional metamorphism is ascribed to in between upper greenschist to amphibolite facies,and no clues of anatexis indicate that the P-T conditions of the Pütürge massif are around 600~700℃and 7~9kbar (Barker,1990).Transformation of garnet to chlorite and biotite as well as transformation of biotite to chlorite,suggest the presence of regressive metamorphism,possibly induced by regional nappe and exhumation processes.

    Zircons are observed in the orthogneiss and granitic gneiss with lepidoblastic and/or granoblastic textures.The minerals display a particle distribution.The minerals are quartz,feldspar,biotite and muscovite along with apatite,tourmaline,sphene,zircon and epidote as accessory minerals.Zircons coexist with other minerals in the matrix (Fig.2a),and some zircons are included in the porphyroblasts (Fig.2b)together with other inclusion minerals such as quartz,biotite,muscovite,apatite and tourmaline.The inclusion trails inside the porphyroblasts indicate that these porphyroblasts grew syntectonically.Radioactively damaged zircon rims are also seen in the zircon inclusions inside the biotite (Fig.2b).One possible reason that might cause such radiation damage is the loss of lead(Geisler and Schleicher,2000;Geisler et al.,2003,2007)or much more possibly,α particles passed through the zircons.

    4 Preparation of samples and analytical methods

    Major chemical compositions of the selected rock samples were analyzed at ACME laboratories (Canada)and the results are given in Table 1.40Ar/39Ar analyses were done at Alabama University (USA)geology laboratory.The biotite grains were separated using a magnetic separator,heavy fluids and binocular microscope in order to obtain high quality crystals.The ion currents were measured in order of40Ar,39Ar,38Ar,37Ar and36Ar,respectively,and repeated four times using the AEI-10-S mass spectrometer.Errors are reported at the 2σ confidence level.The isotope values measured in the mass spectrometer were recorded using the computer connected to the spectrometer.

    Zircon crystals for U-Pb dating were separated from powdered augen gneiss (sample dk704),using standard density and magnetic separation techniques.The zircon-rich augengneiss (sample dk704)was pulverized and then was separated into 2 samples with sieve diameters of 63~125mm and 125~250mm;they are enriched first on a wet shaking table and afterwards cleaned using tetrabromoethane and diiodomethane,later the magnetic heavy minerals were removed via a magnetic separator.In the last stage,the sample was passed through Clerici solution,separated into 5 fractions.Finally,the zircons are hand separated under a binocular until 100% purity is obtained.

    5 U-Pb dating of magmatic zircons

    5.1 Zircon cathodoluminescence (CL)images and internal structures

    Zircons suitable for U-Pb geochronology are separated from metagranitic samples dk704 and ch308.The zircons form euhedral or subhedral crystals,varying from a few millimeters to 1cm in length.In cathodoluminescence (CL)images,zircons show grey or sometimes dark brown (Ate?,2011)and oscillatory zonations can be seen,indicative of magmatic origin.

    In addition,the CL images display two structure patterns of the zircon crystals.The first type is the growth zoning or oscillatoryzoning due to the growth of primary zircon (Fig.3a).However,in some grains intensive luminescence is not well preserved.The formation of this structure can be explained by primary growth alteration (Vavra et al.,1999;Hoskin and Black,2000).The second type displays a porous structure destroying the first older zoning in some crystals (Fig.3b,c).The boundary between these two types of structures in the zircon crystals is either sharp or gradual (Fig.3b-d).

    Table 1 Major chemical compositions of the Pütürge metamorphic rocks (wt%)

    Fig.3 Cathodoluminescence (CL)images of zircons extracted from granitic gneisses,the Pütürge massif(a)oscilatory zoned zircon (sample dk704);(b)oscilatory zoned zircon with inner patches (sample ch308);(c)oscilatory zoned zircon with small patch in its mantle (sample dk704);(d)oscilatory zoned zircon with small patch in its inner rim (sample dk704);(e,f)zircons with cracks(sample ch308)

    Some zircon grains exhibit dark CL colour,unzoned cores and light color in the primary rims (Fig.3e)while others show contrary phenomenon.This is the result that Si or high amounts of U,Th and Y replacing Zr in the light CL color areas (Xu et al.,2012;Cherniak and Watson,2001;Cherniak et al.,1997;Bebout,2007;Kooijman et al.,2009).Different coloration on the rim and inner parts of the zircon grains may be due to the distribution of the inclusion minerals preserved in the zircons,or the lack of fluid during the dehydration process of hydrous phases such as chlorite,muscovite and biotite during the prograde metamorphism (Kooijman et al.,2011;Ewing,1994).In CL images,the inclusions of U-rich minerals,such as xenotime,thorite and coffinite were observed.This is especially verified by the fact that the U-rich mineral is the result of the CL color change between the cores and rims of some zircons.Welldeveloped,regular zoning and prismatic zircon grains indicate magmatic origin of the zircons.Unzoned zircons with partially distinct core dimensions may have resulted from fluid-related mineral reactions possibly occurred at the metamorphic peak(M?ller et al.,2003;Nasdala et al.,2001,2004).The element difference may be due to either approaching of the fluid to the crystal lattice or inclusion minerals and thus affects luminescence property (Xu et al., 2012; Hoskin and Schaltegger,2003).Moreover,porous and screen core types are seen in both rock samples.According to Xu et al.(2012)and Pan (1997),porous structure and cracks that represent the first stage of radiation damage speed up the metamictization process.Even though the protolith is identical,the texture type of the zircons may be different.Breaks in zircons with subhedral radial cracks stretch vertically to the rims of the zircon grains (Fig.3e,f).Such breaks may cause increasing radiation damage.

    Table2 U-Pb isotopic data of zircons of metagranite, the Pütürge metamorphic massif(CA1 in sampl edk704)

    5.2 U and Th concentrations of the zircons

    Chemical components of the zoned and unzoned cores of the zircon grains are different.U content of the cores of the zoned zircon grains is less than that of the unzoned cores (Table 2).However,Th content is partially greater in the unzoned cores.The Th/U ratio in the zoned cores is greater than that of the unzoned cores.Zircons with higher U content and lower Th content indicate metamorphic origin whereas those with relatively higher Th and lower U content indicate magmatic zircons(Hoskin and Schaltegger,2003;Schaltegger et al.,1999;Wiedenbeck et al.,1995;Geisler et al.,2002;Griffin et al.,2007).It has been determined that the Th/U ratio of the zircon is 1.38 for the unzoned core and 1.92 for the zoned core (CA1 in sample dk704),well within the Th/U range (6~0.05)of magmatic zircons (Hoskin and Schaltegger,2003).Some portion of the zircons has undergone radiation damage and their U content has increased whereas the other samples are magmatic crystals that preserve their primary zoning properties.

    5.3 Trace element chemistry

    Fig.4 Chondrite-normalized REE diagrams showing the REE content of luminescent core and non-luminescent core of a zircon extracted from a metagranite (sample YK43.4.1),the Pütürge Massif

    The REE ((Lu/Gd)N=7-32)contents of the zircons are present in a wider range with more luminescent cores and negative Eu anomaly and slightly positive Ce anomaly are observed(Fig.4).On the contrary,the core with weak luminescence (CA1 in sample dk704)has more REE ((Lu/Gd)N=15-25)anomaly and the REE change in a narrower interval.The weak luminescent core is possibly the product of prograde dehydration reaction during regional metamorphism (Kooijman et al.,2011;Mattinson,2005).Temperature,fluid and melts may affect the extent of the damage.The different structural patterns of the same protolith at the same temperature conditions are interpreted as the diversity of the variables that cause radiation.

    5.4 SIMS U-Pb age of the zircons

    Zircons suitable for U-Pb dating separated from metagranite sample dk704,are euhedral or subhedral and have a prismatic appearance.Zircon sizes vary from a few millimeters to 1cm in length and show grey color.Oscillatory zoning of the zircons is observed in the CL images,indicative of magmatic origin.

    The SIMS U-Pb analytical data of the zircons (sample dk704)are listed in Table 2.The concordia age of these analytical spots is averaged to be 84.2 ±1.1Ma,interpreted as the formation age of the protolith of the gneiss,dated to be in the Cretaceous Santonian (Fig.5).

    6 39Ar/40Ar dating of metamorphic biotites

    The40Ar/39Ar age of biotite separated from a metapelitic biotite-schist (sample dk173.8)from gradual heating,are given in Table 3.The schist consists mainly of biotite,quartz,muscovite,chlorite, plagioclase, garnet, kyanite, apatite,sphene and opaque minerals.The garnet schist displays porphyroblastic,granolepidoblastic or lepidogranoblastic texture.Biotite is the most abundant mineral.It is found that in some such rocks chlorite or quartz is more abundant than biotite.Chlorite might be formed at the expanse of biotite from regressive metamorphism.Biotites with long prismatic crystals display a regular alignment parallel to the schistosity.

    Fig.5 CL imagines of the analytized magmatic zircons and U-Pb age plotted on the concordia diagram (sample dk704),the Pütürge massif

    Table3 40Ar/39Ar isotopic data of the metapelitic biotites(sampledk173.8) of the Pütürge metamorphic massi

    Fig.6 40Ar/39Ar age spectra of the biotites extracted from a mica schist (sample dk173.8),the Pütürge Massif

    A perfect plateau has been defined on the analyzed biotite(sample dk173.8).The resulting plateau age and the40Ar/39Ar isochron age are indistinguishable and the age is determined to be 83.21 ±0.069Ma (Fig.6).The standard deviation of the determined ages is on the 2σ confidence level.This age records a period of metamorphism of the rocks cooled down to below~300℃(Ate?,2011).

    7 Discussion and conclusion

    The 83.21 ±0.069Ma plateau age of a mica schist (sample dk173.8)of the Pütürge massif was determined via biotite40Ar/39Ar geochronologic method (Ate?,2011).Similar ages have been obtained for the same belt by Rolland et al.(2011)and Oberh?nsli et al.(2010).Rolland et al.(2012)have used the40Ar/39Ar age method and determined the age of 0.7 ±0.3Ma for the phengites of the mica schists.The K-Ar age of the Guleman ophiolite located on the further east of the study area was determined to be 72.4 ± 1.8Ma (K?l??,2009).The settlement age of the Maden volcanic belt located on the Pütürge massif was determined as 79~80Ma,and the 74~71Ma age of Bitlis-Pütürge high pressure metamorphism was gained(Oberhansli et al.,2010).In summary,it was concluded that the first effective period of the metamorphism of the massif was the Alpine metamorphic episode (Yazgan and Chessex,1991)and this metamorphism should have occurred during the Campanian period due to the obduction of the ophiolites.Simultaneously,the SHRIMP U-Pb data (84.2 ± 1.1Ma)carried out on the zircons of the granitic gneiss,is interpreted to be the formation age of the protoliths.The metamorphic ages of the metamorphic rocks,point to Late Cretaceous Santonian.Previous studies carried out on the related units indicate either Coniacian-Santonian (Yazgan,1984),or Santonian-Maastrichtian (Akta? and Robertson,1984),or Coniacian-Early Maastrichtian (Bing?l,1988)or Coniacian-Early Campanian(Yazgan and Chessex,1991)age intervals.The geochronologic data of this contribution and field observations indicate that the Pütürge metamorphic rocks suffered metamorphism immediately after the obduction of the ophiolite,prior to the Arabia-Eurasia Plates collision and the closure of the southern branch of Neotetis.Metamorphism of the Pütürge massif over the Arabian continental block,might started immediately after formation of the massif.It is also probable that metamorphism of the Late Cretaceous-Santonian may be a Barrovian-type regional metamorphism,from green schist to upper amphibolite facies.Retrograde metamorphism may be due to uplift of the Pütürge metamorphic rocks.CL images of the zircons of the metamorphic rocks suggest that the core is rich in uranium.The porous texture and cracks comprise the first stage of radiation damage of zircon rims and led to partial metamictization.Fluid may be also responsible to the radiation damage process of the zircon and altered the Th/U ratio.

    Akta? G and Robertson AHF.1984.Maden complex,SE Turkey:Evolution of a Neotethyan active margin.Geological Society of London Special Publications,17(1):375-402

    Ate? C.2011.Metamorfik kaya?lardaki zirkon mineralinin kristal yap?s? ve metamorfizma ko?ullar?n?n etkisi:Pütürge Metamorfiti ?rnegi.F.ü.Fenbilimleri Enstitüsü Yüksek Lisans Tezi,88 (in Turkish)

    Barker AJ.1990.Introduction to Metamorphic Textures and Microstructures.New York:Chapman and Hall,170

    Bebout GE.2007.Metamorphic chemical geodynamics of subduction zones.Earth and Planetary Science Letters,260(3-4):373-393

    Cherniak DJ,Hanchar JM and Watson EB.1997.Diffusion of tetravalent cations in zircon.Contributions to Mineralogy and Petrology,127(4):383-390

    Cherniak DJ and Watson EB.2001.Pb diffusion in zircon.Chemical Geology,172(1-2):5-24

    Erdem E.1994.Petrographic and petrological characteristic of Pütürge metamorphic rocks.Doctorate Dissertation,119 (in Turkish)

    Ewing RC.1994.The metamict state:1993-The centennial.Nuclear Instruments and Methods in Physics Research,B91(1-4):22-29

    Geisler T and Schleicher H.2000.Improved U-Th-total Pbdating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon.Chemical Geology,163(1- 4):269-285

    Geisler T,Pidgeon RT,van Bronswijk W and Kurtz R.2002.Transport of uranium,thorium,and lead in metamict zircon under low temperature hydrothermal conditions.Chemical Geology,191(1-3):141-154

    Geisler T,Rashwan AA,Rahn M,Poller U,Zwingmann H,Pidgeon RT,Scleicher H and Tomaschek F.2003.Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert,Egypt.Mineralogical Magazine,67(3):485-508

    Geisler T,Schaltegger U and Tomaschek F.2007.Re-equilibration of zircon in aqueous fluids and melts.Elements,3(1):43-50

    G?ncüoglu MC and Turhan N.1984.Geology of the Bitlis metamorphic belt.In:Tekeli O and G?ncüoglu (eds.).Geology of the Taurus Belt.Ankara:MTA Institute,237-244

    Griffin WL,Pearson NJ,Belousova EA and Saeed A.2007.Reply to“ Comment to short-communication ‘ Comment: Hf-isotope heterogeneity in zircon 91500’ by Griffin WL,Pearson NJ,Belousova EA,Saeed A (Chemical Geology 233 (2006)358-363)”by Corfu F.Chemical Geology,244(1-2):354-356

    Hall R.1976.Ophiolite emplacement and the evolution of the Taurus suture zone,southeastern Turkey.Geological Society of America Bulletin,87(7):1078-1088

    Hempton MR.1984.Results of detailed mapping near leak Hazar(Eastern Taurus Mountains).In:Geology of the Taurus Belt.Ankara:Int Symp Proc Maden Tetkik ve Arama Enstitüsü,223-228

    Hoskin PWO and Black LP.2000.Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon.Journal of Metamorphic Geology,18(4):423-439

    Hoskin PWO and Schaltegger U.2003.The composition of zircon and igneous and metamorphic petrogenesis.Reviews in Mineralogy and Geochemistry,53(1):27-62

    K?l?? AD.2009.Magma odas? dinamiginin Guleman ofiyoliti a??s?ndan incelenmesi.FüBAP-1538 nolu münferit proje (in Turkish)

    Kooijman E,Mezger K and Berndt J.2009.New constraints on Pb diffusion and closure temperature in rutile from in situ U-Pb dating by LA-ICP-MS.Geochimica et Cosmochimica Acta,73:681

    Kooijman E,Upadhyay D,Mezger K,Raith MM,Berndt J and Srikantappa C.2011.Response of the U-Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism:The Kadavur anorthosite complex,southern India.Chemical Geology,290(3-4):177-188

    Mattinson JM.2005.Zircon U-Pb chemical abrasion(“CA-TIMS”)method:Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages.Chemical Geology,220(1-2):47-66

    M?ller A,O’Brien PJ,Kennedy A and Kr?ner A.2003.Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland (SW Norway).Geological Society,London,Special Publications,220(1):65-81

    Nasdala L,Wenzel M,Vavra G,Irner G,Wenzel T and Kober B.2001.Metamictisation of natural zircon:Accumulation versus thermal annealing of radioactivity-induced damage.Contributions to Mineralogy and Petrology,141(2):125-144

    Nasdala L,Reiners PW,Garver JI,Kennedy AK,Stern RA,Balan E and Wirth R.2004.Incomplete retention of radiation damage in zircon from Sri Lanka.American Mineralogist,89(1):219-231

    Oberh?nsli R,Candan O and Wilke F.2010.Geochronological evidence of Pan-African eclogites from the Central Menderes Massif,Turkey.Turkish Journal of Earth Sciences,19(4):431-447

    ?zkaya I.1982.Upper Cretaceous plate rupture and development of leaky transcurrent fault ophioites in SE Turkey.Tectonophysics,88(1-2):103-116

    Pan Y.1997.Zircon- and monazite-forming metamorphic reactions at Manitouwadge,Ontario.Canadian Mineralogist,35:105-118

    Ricoue LE,Marcoux J and Whitechurch H.1984.The Mesozoic organization of the Taurides:One or several ocean basins.Geological Society,London,Special Publications,17(1):349-359

    Robertson AHF and Dixon JE.1984.Introduction:Aspects of the geological evolution of the Eastern Mediterranean.Geological Society,London,Special Publications,17(1):1-74

    Rolland Y,Perin?ek D,Kaymakc? N,Sosson M,Barrier E and Avagyan A.2012.Evidence for ca.80~75Ma subduction jump during Anatolide-Tauride-Armenian block accretion and~48Ma Arabia-Eurasia collision in Lesser Caucasus-East Anatolia.Journal of Geodynamics,56-57:76-85

    Schaltegger U,F(xiàn)anning CM,Günther D,Maurin JC,Schulmann K and Gebauer D.1999.Growth,annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism:Conventional and in-situ U-Pb isotope,cathodoluminescence and microchemical evidence.Contributions to Mineralogy and Petrology,134(2-3):186-201

    ?eng?r AMC and Yilmaz Y.1981.Tethyan evolution of Turkey:A plate tectonic approach.Tectonophysics,75(3-4):181-190,193-199,203-241

    Vavra G,Schmid R and Gebauer D.1999.Internal morphology,habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:Geochronology of the Ivrea Zone (Southern Alps).Contributions to Mineralogy and Petrology,134(4):380-404

    Wiedenbeck M,Alle P,Corfu F,Griffin WL,Meier M,Oberli F,von Quadt A,Roddick JC and Spiegel W.1995.Three natural zircon standards for U-Th-Pb,Lu-Hf,trace element and REE analyses.Geostandards Newsletter,19(1):1-23

    Xu XS,Zhang M,Zhu KY,Chen XM and He ZY.2012.Reverse age zonation of zircon formed by metamictisation and hydrothermal fluid leaching.Lithos,150:256-267

    Yazgan E and Cnessex R.1991.Geology and tectonic evolution of the southeastern Taurides in the region of Malatya.Turkish Association of Petroleum Geologists,3(1):1-41

    Yazgan E.1984.Geodynamic evolution of the Eastern Taurus region:Geology of the Taurus belt.In:Geology of the Taurus Belt:Proceedings of the International Symposium.Ankara:Geology of the Taurus Belt,199-208

    Yilmaz Y.1993.New evidence and model on the evolution of the Southeast Anatolian orogen.Geological Society of America Bulletin,105(2):251-271

    又爽又黄a免费视频| 亚洲,欧美精品.| 美女 人体艺术 gogo| 一个人看的www免费观看视频| 亚洲精华国产精华精| 成人特级黄色片久久久久久久| 欧美成人一区二区免费高清观看| 99久久久亚洲精品蜜臀av| 成人亚洲精品av一区二区| 欧美精品国产亚洲| 黄色日韩在线| 性欧美人与动物交配| 少妇的逼好多水| 小说图片视频综合网站| 国产精品亚洲av一区麻豆| 他把我摸到了高潮在线观看| 日韩精品中文字幕看吧| 欧美日韩福利视频一区二区| 亚洲欧美日韩无卡精品| 成人永久免费在线观看视频| 国产精品美女特级片免费视频播放器| 亚洲综合色惰| 国产精品国产高清国产av| 一级作爱视频免费观看| 亚洲av.av天堂| 午夜精品一区二区三区免费看| 亚洲av熟女| 亚洲自拍偷在线| 国产亚洲精品综合一区在线观看| 美女cb高潮喷水在线观看| av国产免费在线观看| 久久久精品大字幕| 午夜免费激情av| 亚洲精品成人久久久久久| 国产高清三级在线| 一边摸一边抽搐一进一小说| 搡老岳熟女国产| 国产亚洲精品av在线| 欧美性猛交╳xxx乱大交人| 国产白丝娇喘喷水9色精品| 观看免费一级毛片| 99久国产av精品| 欧美一区二区亚洲| 国产三级中文精品| 亚洲av成人精品一区久久| a在线观看视频网站| 日韩精品青青久久久久久| 午夜视频国产福利| 三级毛片av免费| 国产精品爽爽va在线观看网站| 91久久精品电影网| 精品久久久久久久人妻蜜臀av| 亚洲成av人片免费观看| 男女床上黄色一级片免费看| 国产一级毛片七仙女欲春2| 精品久久久久久久久久久久久| 麻豆成人午夜福利视频| 午夜影院日韩av| 欧美日本视频| 首页视频小说图片口味搜索| 无遮挡黄片免费观看| 美女高潮的动态| 免费大片18禁| 少妇的逼好多水| 久久这里只有精品中国| 欧美又色又爽又黄视频| 国产伦一二天堂av在线观看| 成人一区二区视频在线观看| 国产精品永久免费网站| 国产日本99.免费观看| 午夜福利欧美成人| 内地一区二区视频在线| 国产精品,欧美在线| 不卡一级毛片| 看免费av毛片| 午夜激情欧美在线| 色在线成人网| 国产伦精品一区二区三区四那| x7x7x7水蜜桃| 男女之事视频高清在线观看| 久久人人精品亚洲av| 淫妇啪啪啪对白视频| 国产黄a三级三级三级人| 老熟妇仑乱视频hdxx| 亚洲av中文字字幕乱码综合| 亚洲成人久久爱视频| 18禁在线播放成人免费| 亚洲真实伦在线观看| 少妇熟女aⅴ在线视频| 免费黄网站久久成人精品 | 最好的美女福利视频网| 在线播放无遮挡| 在线看三级毛片| 深爱激情五月婷婷| 一a级毛片在线观看| 99久久精品一区二区三区| 亚洲精品粉嫩美女一区| 偷拍熟女少妇极品色| 亚洲av美国av| 怎么达到女性高潮| 欧美色视频一区免费| 亚洲 国产 在线| 色视频www国产| 噜噜噜噜噜久久久久久91| 精品不卡国产一区二区三区| 亚洲av不卡在线观看| а√天堂www在线а√下载| 欧美又色又爽又黄视频| 丰满人妻熟妇乱又伦精品不卡| 制服丝袜大香蕉在线| 亚洲 国产 在线| 日韩欧美国产在线观看| 免费观看的影片在线观看| 午夜亚洲福利在线播放| 亚洲国产精品合色在线| 少妇人妻精品综合一区二区 | 真人一进一出gif抽搐免费| 国产精品av视频在线免费观看| 久久香蕉精品热| 99久久精品一区二区三区| 久久久久九九精品影院| 国产成年人精品一区二区| av在线蜜桃| 国产在线男女| 成年免费大片在线观看| 国产一区二区三区在线臀色熟女| 少妇人妻一区二区三区视频| 欧美日韩国产亚洲二区| 如何舔出高潮| 国模一区二区三区四区视频| 五月玫瑰六月丁香| 观看免费一级毛片| 超碰av人人做人人爽久久| 国产一区二区在线观看日韩| 波多野结衣巨乳人妻| 简卡轻食公司| 毛片一级片免费看久久久久 | 高清在线国产一区| 亚洲国产欧美人成| 人妻夜夜爽99麻豆av| 亚洲无线观看免费| 亚洲av不卡在线观看| 69人妻影院| 久久精品夜夜夜夜夜久久蜜豆| 三级男女做爰猛烈吃奶摸视频| 男女那种视频在线观看| 九九热线精品视视频播放| 熟女电影av网| 国产精品乱码一区二三区的特点| 午夜免费男女啪啪视频观看 | 欧美区成人在线视频| 国产探花极品一区二区| 伊人久久精品亚洲午夜| 亚洲无线观看免费| 欧美日本视频| 欧美激情国产日韩精品一区| 99国产精品一区二区三区| 欧美激情久久久久久爽电影| 在线观看66精品国产| 三级男女做爰猛烈吃奶摸视频| 亚洲 欧美 日韩 在线 免费| 亚洲av二区三区四区| 欧美绝顶高潮抽搐喷水| 国产在视频线在精品| 精品人妻一区二区三区麻豆 | 午夜精品久久久久久毛片777| 真人一进一出gif抽搐免费| 禁无遮挡网站| 国产欧美日韩一区二区精品| 可以在线观看的亚洲视频| 国产麻豆成人av免费视频| xxxwww97欧美| 97超级碰碰碰精品色视频在线观看| 麻豆av噜噜一区二区三区| 成年免费大片在线观看| 首页视频小说图片口味搜索| 久久草成人影院| 亚洲第一电影网av| 又黄又爽又刺激的免费视频.| 窝窝影院91人妻| 国内精品久久久久精免费| 中文字幕高清在线视频| 天堂av国产一区二区熟女人妻| 美女被艹到高潮喷水动态| 国产在线男女| 国产伦在线观看视频一区| 一个人看的www免费观看视频| 永久网站在线| 国产精品久久久久久亚洲av鲁大| 亚洲一区二区三区色噜噜| 91字幕亚洲| 亚洲乱码一区二区免费版| 少妇丰满av| 日韩欧美三级三区| 亚洲黑人精品在线| 非洲黑人性xxxx精品又粗又长| 少妇人妻精品综合一区二区 | 综合色av麻豆| 岛国在线免费视频观看| 午夜老司机福利剧场| 99精品久久久久人妻精品| x7x7x7水蜜桃| 性欧美人与动物交配| 欧美高清性xxxxhd video| 午夜精品一区二区三区免费看| 欧美最黄视频在线播放免费| 国产成+人综合+亚洲专区| 黄色配什么色好看| 亚洲国产高清在线一区二区三| 午夜福利在线在线| 精品国产三级普通话版| 久久精品国产清高在天天线| 十八禁网站免费在线| 国产黄色小视频在线观看| 十八禁人妻一区二区| 狂野欧美白嫩少妇大欣赏| 99久国产av精品| 国产色爽女视频免费观看| 精品久久久久久久人妻蜜臀av| 日本熟妇午夜| 在线观看66精品国产| 黄色配什么色好看| 久久精品91蜜桃| 人人妻,人人澡人人爽秒播| 日本 av在线| 五月玫瑰六月丁香| 欧美一区二区亚洲| 嫩草影院入口| 午夜免费激情av| 99国产精品一区二区蜜桃av| 女生性感内裤真人,穿戴方法视频| 88av欧美| av视频在线观看入口| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩卡通动漫| a在线观看视频网站| 免费在线观看亚洲国产| 99久久成人亚洲精品观看| 十八禁国产超污无遮挡网站| 国产欧美日韩精品一区二区| 国产精品国产高清国产av| 我的老师免费观看完整版| 丁香欧美五月| 亚洲内射少妇av| 99久久无色码亚洲精品果冻| 国产成人aa在线观看| 黄色丝袜av网址大全| 中文字幕高清在线视频| av福利片在线观看| 日韩精品青青久久久久久| 成人三级黄色视频| 99热只有精品国产| 国产精品自产拍在线观看55亚洲| 国产精品久久久久久人妻精品电影| 久久久国产成人免费| 欧美黄色淫秽网站| 国产大屁股一区二区在线视频| 国产激情偷乱视频一区二区| 欧美激情国产日韩精品一区| 在线a可以看的网站| 精品一区二区三区人妻视频| 亚洲精品日韩av片在线观看| 日韩欧美一区二区三区在线观看| 最近最新免费中文字幕在线| 18美女黄网站色大片免费观看| 三级毛片av免费| 精品久久久久久久久久久久久| 看片在线看免费视频| 国产亚洲精品综合一区在线观看| 九九在线视频观看精品| 日韩成人在线观看一区二区三区| 国产精品一及| 超碰av人人做人人爽久久| 欧美成狂野欧美在线观看| 很黄的视频免费| 亚洲国产精品久久男人天堂| 啦啦啦观看免费观看视频高清| 欧美最新免费一区二区三区 | 午夜福利高清视频| 久久久久久九九精品二区国产| 成人国产一区最新在线观看| 久久这里只有精品中国| avwww免费| 亚洲国产欧美人成| a级毛片a级免费在线| 亚洲精品影视一区二区三区av| 一本一本综合久久| 精品无人区乱码1区二区| av在线老鸭窝| 亚洲午夜理论影院| 少妇熟女aⅴ在线视频| 成人av一区二区三区在线看| 日本 av在线| 亚洲18禁久久av| 性色av乱码一区二区三区2| 天天躁日日操中文字幕| 亚洲av免费高清在线观看| 首页视频小说图片口味搜索| 国产av麻豆久久久久久久| 日韩免费av在线播放| 午夜福利18| 午夜影院日韩av| eeuss影院久久| 美女黄网站色视频| 亚洲av日韩精品久久久久久密| 国内毛片毛片毛片毛片毛片| 欧美xxxx黑人xx丫x性爽| 在线看三级毛片| 亚洲第一欧美日韩一区二区三区| 国产精品女同一区二区软件 | 99国产精品一区二区蜜桃av| 国产在线男女| a在线观看视频网站| 亚洲七黄色美女视频| 欧美成狂野欧美在线观看| 中文字幕免费在线视频6| 在线国产一区二区在线| 999久久久精品免费观看国产| 色噜噜av男人的天堂激情| 亚洲狠狠婷婷综合久久图片| 97热精品久久久久久| 亚洲人与动物交配视频| 成人鲁丝片一二三区免费| 亚洲男人的天堂狠狠| 日韩欧美精品v在线| 久久国产乱子免费精品| 亚洲激情在线av| 两个人视频免费观看高清| 国产成人aa在线观看| 欧美一级a爱片免费观看看| 757午夜福利合集在线观看| 亚洲精品一区av在线观看| 亚洲熟妇中文字幕五十中出| 男女视频在线观看网站免费| 国产精品亚洲av一区麻豆| 99精品在免费线老司机午夜| 少妇高潮的动态图| 国产真实伦视频高清在线观看 | av国产免费在线观看| 一级毛片久久久久久久久女| 真人一进一出gif抽搐免费| 色尼玛亚洲综合影院| 天天一区二区日本电影三级| 精品人妻偷拍中文字幕| 91麻豆精品激情在线观看国产| 丝袜美腿在线中文| 老司机午夜十八禁免费视频| 啦啦啦观看免费观看视频高清| 成人特级黄色片久久久久久久| avwww免费| 51午夜福利影视在线观看| 国内精品久久久久久久电影| 真人做人爱边吃奶动态| 亚洲精品亚洲一区二区| 久久人人爽人人爽人人片va | 美女高潮的动态| 日韩欧美在线乱码| 久久热精品热| 女生性感内裤真人,穿戴方法视频| 在现免费观看毛片| 99久久成人亚洲精品观看| 三级男女做爰猛烈吃奶摸视频| 国产免费av片在线观看野外av| 国产伦人伦偷精品视频| 国产v大片淫在线免费观看| 国产激情偷乱视频一区二区| 成年女人看的毛片在线观看| 香蕉av资源在线| 嫩草影院入口| 亚洲精品乱码久久久v下载方式| 久久久久国产精品人妻aⅴ院| 深夜a级毛片| 一个人免费在线观看电影| 欧美黄色淫秽网站| 在线观看舔阴道视频| 国产午夜精品久久久久久一区二区三区 | 看片在线看免费视频| 久久国产精品影院| 亚洲美女黄片视频| 日本精品一区二区三区蜜桃| 一边摸一边抽搐一进一小说| 一卡2卡三卡四卡精品乱码亚洲| 在线观看舔阴道视频| 嫩草影视91久久| 国产91精品成人一区二区三区| 色精品久久人妻99蜜桃| 成熟少妇高潮喷水视频| 成人高潮视频无遮挡免费网站| 精品人妻1区二区| 一二三四社区在线视频社区8| 一本久久中文字幕| 高清在线国产一区| 少妇熟女aⅴ在线视频| 国产精品一区二区性色av| 久久久久久久久大av| 性插视频无遮挡在线免费观看| 亚洲精品456在线播放app | 国内精品久久久久久久电影| 99久国产av精品| 99久久精品一区二区三区| 国产黄片美女视频| 男人舔女人下体高潮全视频| 亚洲av第一区精品v没综合| 可以在线观看的亚洲视频| 99热这里只有是精品50| 天天一区二区日本电影三级| 搡老岳熟女国产| 日本一二三区视频观看| 中文在线观看免费www的网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲真实伦在线观看| 我要搜黄色片| 99久久精品国产亚洲精品| 国产在线男女| 久久欧美精品欧美久久欧美| 国产精品爽爽va在线观看网站| 亚洲国产色片| 啦啦啦韩国在线观看视频| 又紧又爽又黄一区二区| 香蕉av资源在线| 亚洲精品影视一区二区三区av| 亚洲av电影不卡..在线观看| 国产精品98久久久久久宅男小说| 久久这里只有精品中国| 日韩欧美精品免费久久 | 成年女人看的毛片在线观看| 国产精品一区二区三区四区久久| 亚洲黑人精品在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 婷婷精品国产亚洲av| 亚洲激情在线av| 制服丝袜大香蕉在线| 精品熟女少妇八av免费久了| 国产aⅴ精品一区二区三区波| 国产精品久久视频播放| 最后的刺客免费高清国语| 露出奶头的视频| 国产精品美女特级片免费视频播放器| 久久国产精品人妻蜜桃| 国产乱人视频| 我要看日韩黄色一级片| 首页视频小说图片口味搜索| 日韩精品中文字幕看吧| 五月玫瑰六月丁香| 亚洲欧美激情综合另类| 亚洲va日本ⅴa欧美va伊人久久| 一级a爱片免费观看的视频| 亚洲狠狠婷婷综合久久图片| 搡女人真爽免费视频火全软件 | 日本黄色片子视频| 成人高潮视频无遮挡免费网站| 久久久久久久久久黄片| 欧美xxxx性猛交bbbb| 欧美激情久久久久久爽电影| 国产精品久久久久久精品电影| 桃红色精品国产亚洲av| 人人妻人人看人人澡| 搡老岳熟女国产| 99riav亚洲国产免费| 久久久久久久久中文| 国产不卡一卡二| 欧美色视频一区免费| 日本熟妇午夜| 九色成人免费人妻av| 日本黄色片子视频| 熟女电影av网| 国产精品自产拍在线观看55亚洲| 蜜桃久久精品国产亚洲av| 国产老妇女一区| 亚洲最大成人av| 欧美日韩亚洲国产一区二区在线观看| 精品不卡国产一区二区三区| 国产精品一区二区三区四区久久| 亚洲成a人片在线一区二区| 国产精品1区2区在线观看.| 少妇的逼好多水| 久久久国产成人精品二区| 国产精品98久久久久久宅男小说| 欧美日韩中文字幕国产精品一区二区三区| 国产成人欧美在线观看| 又紧又爽又黄一区二区| 成年女人永久免费观看视频| 欧美日韩亚洲国产一区二区在线观看| 熟女电影av网| 国产精品爽爽va在线观看网站| 精品99又大又爽又粗少妇毛片 | 亚洲色图av天堂| 床上黄色一级片| 成年女人毛片免费观看观看9| 亚洲中文字幕日韩| 免费大片18禁| www.熟女人妻精品国产| 好男人电影高清在线观看| 日韩av在线大香蕉| 国产精品电影一区二区三区| 97人妻精品一区二区三区麻豆| 欧美成人一区二区免费高清观看| 亚洲欧美日韩高清在线视频| 日韩成人在线观看一区二区三区| 日本 欧美在线| 天堂网av新在线| 国产一区二区在线观看日韩| 国产精品嫩草影院av在线观看 | 免费看美女性在线毛片视频| 最近最新中文字幕大全电影3| 日本五十路高清| 国产精品久久久久久人妻精品电影| 怎么达到女性高潮| av国产免费在线观看| 亚洲五月婷婷丁香| 91九色精品人成在线观看| 久久精品国产亚洲av香蕉五月| 三级毛片av免费| 亚洲精品一卡2卡三卡4卡5卡| 国产精品爽爽va在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 嫩草影院新地址| 最近最新中文字幕大全电影3| 精品久久久久久久久亚洲 | 成年女人永久免费观看视频| 欧美中文日本在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 日本 欧美在线| 在线观看舔阴道视频| 在线免费观看的www视频| 久9热在线精品视频| 韩国av一区二区三区四区| 我的女老师完整版在线观看| 99久久精品国产亚洲精品| 全区人妻精品视频| 欧美性猛交╳xxx乱大交人| 中文在线观看免费www的网站| 亚洲美女黄片视频| 禁无遮挡网站| 亚洲va日本ⅴa欧美va伊人久久| 一二三四社区在线视频社区8| 婷婷丁香在线五月| 每晚都被弄得嗷嗷叫到高潮| 亚洲aⅴ乱码一区二区在线播放| 99久久精品一区二区三区| 久久精品国产自在天天线| 日本撒尿小便嘘嘘汇集6| 午夜两性在线视频| 69人妻影院| 亚洲av中文字字幕乱码综合| 他把我摸到了高潮在线观看| 亚洲精品456在线播放app | 国内精品美女久久久久久| av视频在线观看入口| 18+在线观看网站| 麻豆国产97在线/欧美| av在线老鸭窝| 香蕉av资源在线| 老司机福利观看| 久久国产乱子伦精品免费另类| 狂野欧美白嫩少妇大欣赏| 每晚都被弄得嗷嗷叫到高潮| a在线观看视频网站| 国产乱人伦免费视频| 我要搜黄色片| 中文字幕高清在线视频| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全电影3| 美女免费视频网站| 美女 人体艺术 gogo| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| 网址你懂的国产日韩在线| 搡老妇女老女人老熟妇| 亚洲一区二区三区不卡视频| 一个人免费在线观看的高清视频| 亚洲人成网站高清观看| 免费av毛片视频| 亚洲美女搞黄在线观看 | 免费在线观看亚洲国产| 久久热精品热| 亚洲欧美日韩高清专用| 国产老妇女一区| 69av精品久久久久久| 熟妇人妻久久中文字幕3abv| 亚洲av电影在线进入| 日日摸夜夜添夜夜添小说| 亚洲自偷自拍三级| 99热这里只有精品一区| 搡老岳熟女国产| 国产亚洲欧美98| 波多野结衣高清无吗| 精品一区二区三区视频在线| 在线天堂最新版资源| 夜夜爽天天搞| 少妇熟女aⅴ在线视频| 国产一区二区在线av高清观看| 色综合欧美亚洲国产小说| 国产精品久久久久久久电影| 亚洲无线在线观看| 97超级碰碰碰精品色视频在线观看| av专区在线播放| 国产精品久久久久久久电影| 精品午夜福利在线看| 亚洲人与动物交配视频| 大型黄色视频在线免费观看| 最近在线观看免费完整版| 国产极品精品免费视频能看的| 亚洲精品久久国产高清桃花| 动漫黄色视频在线观看| 成年人黄色毛片网站| 国内少妇人妻偷人精品xxx网站| x7x7x7水蜜桃| 亚洲国产精品sss在线观看| 中文字幕免费在线视频6| 一进一出好大好爽视频| 啦啦啦观看免费观看视频高清| 90打野战视频偷拍视频| 两性午夜刺激爽爽歪歪视频在线观看|