• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geochronology of the Late Cretaceous magmatism and metamorphism,Pütürge massif,Turkey

    2015-07-21 08:53:34AyDidemKILIandCihatATE
    巖石學(xué)報(bào) 2015年5期

    Ay?e Didem KILI? and Cihat ATE?

    Department of Geological Engineering,F(xiàn)aculty of Engineering,F(xiàn)?rat University,Elaz?g,Turkey

    1 Introduction

    Located within the southeastern Anatolia thrust belt,in between the Eastern Taurus Orogenic Belt and Arabian plates,the metamorphic Pütürge massif developed as a result of the collision between the Eurasia and Arab plates,and possibly initiated in the Early Cretaceous.Extensive studies have been carried on the geodynamic formation of the massifs (Hall,1976;?zkaya,1982;?eng?r and Yilmaz,1981;Robertson and Dixon,1984;Ricoue et al.,1984;G?ncüo glu and Turhan,1984;Yazgan and Chessex,1991).Among the diverse metamorphic units of different sizes on the southeastern Anatolia thrust belt,the Bitlis,Pütürge,Malatya and Keban metamorphic massifs are the most representative,and they might have settled in the region during the Early Cretaceous-Early Miocene(Yilmaz,1993).

    The Pütürge metamorphic massif is possibly the western continuation of the Bitlis massif within the southeastern Anatolia thrust belt.The Bitlis metamorphic massif is similar to the Pütürge metamorphic massif due to its rock structure and location.Previous studies on the internal structure of the Pütürge metamorphic rocks are limited in comparison with the Bitlis massif (Hempton,1984;Yazgan and Chessex,1991;Erdem,1994)and currently no geochronologic work has been done to determine the age of the Pütürge massif.In this paper,we report the internal structure and element distribution of zircons,as well as40Ar/39Ar dating of metamorphic biotite,separated from the amphibolite facies metamorphic rocks within the southern branch of Neotetis,the southeastern Anatolia thrust zone.

    2 Geological Setting

    The Pütürge massif extends from the northeast to the southwest and is about 50km long and 300m wide and is bordered by faults (Fig.1).The Middle-Upper Eocene Maden complex covers the Pütürge massif at different localities (Yazgan and Chessex,1991).The Maden complex consists of volcanosedimentary rocks,and metamorphic rocks are thickened at the study area by the dip-slip faults.Field observation finds two foliations,i.e,mionitic foliation in the fault and thrust zones,and schistosity-gneiss foliation at the external parts.Mineral stretch lineation and shear lineation are common in rocks and folds at various scales are also observed.The first geochronologic study on the Pütürge metamorphic rocks are K/Ar dating(Yazgan,1984)and it is stated that the last metamorphism of the Pütürge massif occurred at around 500~550℃ during the Late Cretaceous-Campanian.Obduction of the ophiolite nappes in the region in the Late Cretaceous was interpreted as the possible geodynamic background for metamorphism.Yazgan and Chessex (1991 ) combined the Pütürge and the Bitlis metamorphic massifs and named the complex as the Bitlis-Pütürge metamorphic belt,and conclude that the metamorphic age of this massif is 70~75Ma.Metamorphic rocks in the Pütürge complex are widespread on the southern branch of Neotethys and the Eastern Taurus Orogenic Belt and its surroundings.The Maden Complex composes of volcanic rocks and is in fault contact with the Pütürge metamorphic rocks(Fig.1).

    Fig.1 Geological sketch map of the study area

    Fig.2 Micropetrographs of metapelitic gneisses of the Pütürge massif(a)metamorphic prismatic zircon crystal in the matrix,cross polarized light;(b)metamorphic zircon included in the biotite (from Erdem,94),plain polarized light.Symbols of minerals:Apt-apatite;Bi-biotite;Ch-chlorite;Gr-garnet;Mu-muscovite;Q-quartz;Zr-zircon

    3 Petrography

    The Pütürge metamorphic complex consists of metapelite,metasemipelite,pisamite,metagranite,amphibolite,marble and quartzite (Ate?,2011).The metamorphic rocks are classified as the follows:gneiss (quartz + feldspar + biotite + muscovite ±opaque ± apatite ± zircon ± chlorite),mica schist (quartz +feldspar+biotite + muscovite ± opaque ± apatite ± tourmaline ±sphene±zircon±epidote),garnet mica schist (quartz+feldspar+biotite+muscovite+garnet±staurolit±kyanite±sillimanite±opaque±apatite±sphene±zircon ±chlorite),calcschist(quartz+ feldspar + epidote + carbonate + muscovite ± opaque),quartzite (quartz ± mica ± apatite ± opaque mineral),marble(calcite ± muscovite ± quartz ± epidote ± opaque mineral)and amphibolite (hornblende + plagioclase ± quartz ± epidote ±sphene±opaque mineral).The mineral assemblages suggest that the regional metamorphism is ascribed to in between upper greenschist to amphibolite facies,and no clues of anatexis indicate that the P-T conditions of the Pütürge massif are around 600~700℃and 7~9kbar (Barker,1990).Transformation of garnet to chlorite and biotite as well as transformation of biotite to chlorite,suggest the presence of regressive metamorphism,possibly induced by regional nappe and exhumation processes.

    Zircons are observed in the orthogneiss and granitic gneiss with lepidoblastic and/or granoblastic textures.The minerals display a particle distribution.The minerals are quartz,feldspar,biotite and muscovite along with apatite,tourmaline,sphene,zircon and epidote as accessory minerals.Zircons coexist with other minerals in the matrix (Fig.2a),and some zircons are included in the porphyroblasts (Fig.2b)together with other inclusion minerals such as quartz,biotite,muscovite,apatite and tourmaline.The inclusion trails inside the porphyroblasts indicate that these porphyroblasts grew syntectonically.Radioactively damaged zircon rims are also seen in the zircon inclusions inside the biotite (Fig.2b).One possible reason that might cause such radiation damage is the loss of lead(Geisler and Schleicher,2000;Geisler et al.,2003,2007)or much more possibly,α particles passed through the zircons.

    4 Preparation of samples and analytical methods

    Major chemical compositions of the selected rock samples were analyzed at ACME laboratories (Canada)and the results are given in Table 1.40Ar/39Ar analyses were done at Alabama University (USA)geology laboratory.The biotite grains were separated using a magnetic separator,heavy fluids and binocular microscope in order to obtain high quality crystals.The ion currents were measured in order of40Ar,39Ar,38Ar,37Ar and36Ar,respectively,and repeated four times using the AEI-10-S mass spectrometer.Errors are reported at the 2σ confidence level.The isotope values measured in the mass spectrometer were recorded using the computer connected to the spectrometer.

    Zircon crystals for U-Pb dating were separated from powdered augen gneiss (sample dk704),using standard density and magnetic separation techniques.The zircon-rich augengneiss (sample dk704)was pulverized and then was separated into 2 samples with sieve diameters of 63~125mm and 125~250mm;they are enriched first on a wet shaking table and afterwards cleaned using tetrabromoethane and diiodomethane,later the magnetic heavy minerals were removed via a magnetic separator.In the last stage,the sample was passed through Clerici solution,separated into 5 fractions.Finally,the zircons are hand separated under a binocular until 100% purity is obtained.

    5 U-Pb dating of magmatic zircons

    5.1 Zircon cathodoluminescence (CL)images and internal structures

    Zircons suitable for U-Pb geochronology are separated from metagranitic samples dk704 and ch308.The zircons form euhedral or subhedral crystals,varying from a few millimeters to 1cm in length.In cathodoluminescence (CL)images,zircons show grey or sometimes dark brown (Ate?,2011)and oscillatory zonations can be seen,indicative of magmatic origin.

    In addition,the CL images display two structure patterns of the zircon crystals.The first type is the growth zoning or oscillatoryzoning due to the growth of primary zircon (Fig.3a).However,in some grains intensive luminescence is not well preserved.The formation of this structure can be explained by primary growth alteration (Vavra et al.,1999;Hoskin and Black,2000).The second type displays a porous structure destroying the first older zoning in some crystals (Fig.3b,c).The boundary between these two types of structures in the zircon crystals is either sharp or gradual (Fig.3b-d).

    Table 1 Major chemical compositions of the Pütürge metamorphic rocks (wt%)

    Fig.3 Cathodoluminescence (CL)images of zircons extracted from granitic gneisses,the Pütürge massif(a)oscilatory zoned zircon (sample dk704);(b)oscilatory zoned zircon with inner patches (sample ch308);(c)oscilatory zoned zircon with small patch in its mantle (sample dk704);(d)oscilatory zoned zircon with small patch in its inner rim (sample dk704);(e,f)zircons with cracks(sample ch308)

    Some zircon grains exhibit dark CL colour,unzoned cores and light color in the primary rims (Fig.3e)while others show contrary phenomenon.This is the result that Si or high amounts of U,Th and Y replacing Zr in the light CL color areas (Xu et al.,2012;Cherniak and Watson,2001;Cherniak et al.,1997;Bebout,2007;Kooijman et al.,2009).Different coloration on the rim and inner parts of the zircon grains may be due to the distribution of the inclusion minerals preserved in the zircons,or the lack of fluid during the dehydration process of hydrous phases such as chlorite,muscovite and biotite during the prograde metamorphism (Kooijman et al.,2011;Ewing,1994).In CL images,the inclusions of U-rich minerals,such as xenotime,thorite and coffinite were observed.This is especially verified by the fact that the U-rich mineral is the result of the CL color change between the cores and rims of some zircons.Welldeveloped,regular zoning and prismatic zircon grains indicate magmatic origin of the zircons.Unzoned zircons with partially distinct core dimensions may have resulted from fluid-related mineral reactions possibly occurred at the metamorphic peak(M?ller et al.,2003;Nasdala et al.,2001,2004).The element difference may be due to either approaching of the fluid to the crystal lattice or inclusion minerals and thus affects luminescence property (Xu et al., 2012; Hoskin and Schaltegger,2003).Moreover,porous and screen core types are seen in both rock samples.According to Xu et al.(2012)and Pan (1997),porous structure and cracks that represent the first stage of radiation damage speed up the metamictization process.Even though the protolith is identical,the texture type of the zircons may be different.Breaks in zircons with subhedral radial cracks stretch vertically to the rims of the zircon grains (Fig.3e,f).Such breaks may cause increasing radiation damage.

    Table2 U-Pb isotopic data of zircons of metagranite, the Pütürge metamorphic massif(CA1 in sampl edk704)

    5.2 U and Th concentrations of the zircons

    Chemical components of the zoned and unzoned cores of the zircon grains are different.U content of the cores of the zoned zircon grains is less than that of the unzoned cores (Table 2).However,Th content is partially greater in the unzoned cores.The Th/U ratio in the zoned cores is greater than that of the unzoned cores.Zircons with higher U content and lower Th content indicate metamorphic origin whereas those with relatively higher Th and lower U content indicate magmatic zircons(Hoskin and Schaltegger,2003;Schaltegger et al.,1999;Wiedenbeck et al.,1995;Geisler et al.,2002;Griffin et al.,2007).It has been determined that the Th/U ratio of the zircon is 1.38 for the unzoned core and 1.92 for the zoned core (CA1 in sample dk704),well within the Th/U range (6~0.05)of magmatic zircons (Hoskin and Schaltegger,2003).Some portion of the zircons has undergone radiation damage and their U content has increased whereas the other samples are magmatic crystals that preserve their primary zoning properties.

    5.3 Trace element chemistry

    Fig.4 Chondrite-normalized REE diagrams showing the REE content of luminescent core and non-luminescent core of a zircon extracted from a metagranite (sample YK43.4.1),the Pütürge Massif

    The REE ((Lu/Gd)N=7-32)contents of the zircons are present in a wider range with more luminescent cores and negative Eu anomaly and slightly positive Ce anomaly are observed(Fig.4).On the contrary,the core with weak luminescence (CA1 in sample dk704)has more REE ((Lu/Gd)N=15-25)anomaly and the REE change in a narrower interval.The weak luminescent core is possibly the product of prograde dehydration reaction during regional metamorphism (Kooijman et al.,2011;Mattinson,2005).Temperature,fluid and melts may affect the extent of the damage.The different structural patterns of the same protolith at the same temperature conditions are interpreted as the diversity of the variables that cause radiation.

    5.4 SIMS U-Pb age of the zircons

    Zircons suitable for U-Pb dating separated from metagranite sample dk704,are euhedral or subhedral and have a prismatic appearance.Zircon sizes vary from a few millimeters to 1cm in length and show grey color.Oscillatory zoning of the zircons is observed in the CL images,indicative of magmatic origin.

    The SIMS U-Pb analytical data of the zircons (sample dk704)are listed in Table 2.The concordia age of these analytical spots is averaged to be 84.2 ±1.1Ma,interpreted as the formation age of the protolith of the gneiss,dated to be in the Cretaceous Santonian (Fig.5).

    6 39Ar/40Ar dating of metamorphic biotites

    The40Ar/39Ar age of biotite separated from a metapelitic biotite-schist (sample dk173.8)from gradual heating,are given in Table 3.The schist consists mainly of biotite,quartz,muscovite,chlorite, plagioclase, garnet, kyanite, apatite,sphene and opaque minerals.The garnet schist displays porphyroblastic,granolepidoblastic or lepidogranoblastic texture.Biotite is the most abundant mineral.It is found that in some such rocks chlorite or quartz is more abundant than biotite.Chlorite might be formed at the expanse of biotite from regressive metamorphism.Biotites with long prismatic crystals display a regular alignment parallel to the schistosity.

    Fig.5 CL imagines of the analytized magmatic zircons and U-Pb age plotted on the concordia diagram (sample dk704),the Pütürge massif

    Table3 40Ar/39Ar isotopic data of the metapelitic biotites(sampledk173.8) of the Pütürge metamorphic massi

    Fig.6 40Ar/39Ar age spectra of the biotites extracted from a mica schist (sample dk173.8),the Pütürge Massif

    A perfect plateau has been defined on the analyzed biotite(sample dk173.8).The resulting plateau age and the40Ar/39Ar isochron age are indistinguishable and the age is determined to be 83.21 ±0.069Ma (Fig.6).The standard deviation of the determined ages is on the 2σ confidence level.This age records a period of metamorphism of the rocks cooled down to below~300℃(Ate?,2011).

    7 Discussion and conclusion

    The 83.21 ±0.069Ma plateau age of a mica schist (sample dk173.8)of the Pütürge massif was determined via biotite40Ar/39Ar geochronologic method (Ate?,2011).Similar ages have been obtained for the same belt by Rolland et al.(2011)and Oberh?nsli et al.(2010).Rolland et al.(2012)have used the40Ar/39Ar age method and determined the age of 0.7 ±0.3Ma for the phengites of the mica schists.The K-Ar age of the Guleman ophiolite located on the further east of the study area was determined to be 72.4 ± 1.8Ma (K?l??,2009).The settlement age of the Maden volcanic belt located on the Pütürge massif was determined as 79~80Ma,and the 74~71Ma age of Bitlis-Pütürge high pressure metamorphism was gained(Oberhansli et al.,2010).In summary,it was concluded that the first effective period of the metamorphism of the massif was the Alpine metamorphic episode (Yazgan and Chessex,1991)and this metamorphism should have occurred during the Campanian period due to the obduction of the ophiolites.Simultaneously,the SHRIMP U-Pb data (84.2 ± 1.1Ma)carried out on the zircons of the granitic gneiss,is interpreted to be the formation age of the protoliths.The metamorphic ages of the metamorphic rocks,point to Late Cretaceous Santonian.Previous studies carried out on the related units indicate either Coniacian-Santonian (Yazgan,1984),or Santonian-Maastrichtian (Akta? and Robertson,1984),or Coniacian-Early Maastrichtian (Bing?l,1988)or Coniacian-Early Campanian(Yazgan and Chessex,1991)age intervals.The geochronologic data of this contribution and field observations indicate that the Pütürge metamorphic rocks suffered metamorphism immediately after the obduction of the ophiolite,prior to the Arabia-Eurasia Plates collision and the closure of the southern branch of Neotetis.Metamorphism of the Pütürge massif over the Arabian continental block,might started immediately after formation of the massif.It is also probable that metamorphism of the Late Cretaceous-Santonian may be a Barrovian-type regional metamorphism,from green schist to upper amphibolite facies.Retrograde metamorphism may be due to uplift of the Pütürge metamorphic rocks.CL images of the zircons of the metamorphic rocks suggest that the core is rich in uranium.The porous texture and cracks comprise the first stage of radiation damage of zircon rims and led to partial metamictization.Fluid may be also responsible to the radiation damage process of the zircon and altered the Th/U ratio.

    Akta? G and Robertson AHF.1984.Maden complex,SE Turkey:Evolution of a Neotethyan active margin.Geological Society of London Special Publications,17(1):375-402

    Ate? C.2011.Metamorfik kaya?lardaki zirkon mineralinin kristal yap?s? ve metamorfizma ko?ullar?n?n etkisi:Pütürge Metamorfiti ?rnegi.F.ü.Fenbilimleri Enstitüsü Yüksek Lisans Tezi,88 (in Turkish)

    Barker AJ.1990.Introduction to Metamorphic Textures and Microstructures.New York:Chapman and Hall,170

    Bebout GE.2007.Metamorphic chemical geodynamics of subduction zones.Earth and Planetary Science Letters,260(3-4):373-393

    Cherniak DJ,Hanchar JM and Watson EB.1997.Diffusion of tetravalent cations in zircon.Contributions to Mineralogy and Petrology,127(4):383-390

    Cherniak DJ and Watson EB.2001.Pb diffusion in zircon.Chemical Geology,172(1-2):5-24

    Erdem E.1994.Petrographic and petrological characteristic of Pütürge metamorphic rocks.Doctorate Dissertation,119 (in Turkish)

    Ewing RC.1994.The metamict state:1993-The centennial.Nuclear Instruments and Methods in Physics Research,B91(1-4):22-29

    Geisler T and Schleicher H.2000.Improved U-Th-total Pbdating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon.Chemical Geology,163(1- 4):269-285

    Geisler T,Pidgeon RT,van Bronswijk W and Kurtz R.2002.Transport of uranium,thorium,and lead in metamict zircon under low temperature hydrothermal conditions.Chemical Geology,191(1-3):141-154

    Geisler T,Rashwan AA,Rahn M,Poller U,Zwingmann H,Pidgeon RT,Scleicher H and Tomaschek F.2003.Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert,Egypt.Mineralogical Magazine,67(3):485-508

    Geisler T,Schaltegger U and Tomaschek F.2007.Re-equilibration of zircon in aqueous fluids and melts.Elements,3(1):43-50

    G?ncüoglu MC and Turhan N.1984.Geology of the Bitlis metamorphic belt.In:Tekeli O and G?ncüoglu (eds.).Geology of the Taurus Belt.Ankara:MTA Institute,237-244

    Griffin WL,Pearson NJ,Belousova EA and Saeed A.2007.Reply to“ Comment to short-communication ‘ Comment: Hf-isotope heterogeneity in zircon 91500’ by Griffin WL,Pearson NJ,Belousova EA,Saeed A (Chemical Geology 233 (2006)358-363)”by Corfu F.Chemical Geology,244(1-2):354-356

    Hall R.1976.Ophiolite emplacement and the evolution of the Taurus suture zone,southeastern Turkey.Geological Society of America Bulletin,87(7):1078-1088

    Hempton MR.1984.Results of detailed mapping near leak Hazar(Eastern Taurus Mountains).In:Geology of the Taurus Belt.Ankara:Int Symp Proc Maden Tetkik ve Arama Enstitüsü,223-228

    Hoskin PWO and Black LP.2000.Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon.Journal of Metamorphic Geology,18(4):423-439

    Hoskin PWO and Schaltegger U.2003.The composition of zircon and igneous and metamorphic petrogenesis.Reviews in Mineralogy and Geochemistry,53(1):27-62

    K?l?? AD.2009.Magma odas? dinamiginin Guleman ofiyoliti a??s?ndan incelenmesi.FüBAP-1538 nolu münferit proje (in Turkish)

    Kooijman E,Mezger K and Berndt J.2009.New constraints on Pb diffusion and closure temperature in rutile from in situ U-Pb dating by LA-ICP-MS.Geochimica et Cosmochimica Acta,73:681

    Kooijman E,Upadhyay D,Mezger K,Raith MM,Berndt J and Srikantappa C.2011.Response of the U-Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism:The Kadavur anorthosite complex,southern India.Chemical Geology,290(3-4):177-188

    Mattinson JM.2005.Zircon U-Pb chemical abrasion(“CA-TIMS”)method:Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages.Chemical Geology,220(1-2):47-66

    M?ller A,O’Brien PJ,Kennedy A and Kr?ner A.2003.Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland (SW Norway).Geological Society,London,Special Publications,220(1):65-81

    Nasdala L,Wenzel M,Vavra G,Irner G,Wenzel T and Kober B.2001.Metamictisation of natural zircon:Accumulation versus thermal annealing of radioactivity-induced damage.Contributions to Mineralogy and Petrology,141(2):125-144

    Nasdala L,Reiners PW,Garver JI,Kennedy AK,Stern RA,Balan E and Wirth R.2004.Incomplete retention of radiation damage in zircon from Sri Lanka.American Mineralogist,89(1):219-231

    Oberh?nsli R,Candan O and Wilke F.2010.Geochronological evidence of Pan-African eclogites from the Central Menderes Massif,Turkey.Turkish Journal of Earth Sciences,19(4):431-447

    ?zkaya I.1982.Upper Cretaceous plate rupture and development of leaky transcurrent fault ophioites in SE Turkey.Tectonophysics,88(1-2):103-116

    Pan Y.1997.Zircon- and monazite-forming metamorphic reactions at Manitouwadge,Ontario.Canadian Mineralogist,35:105-118

    Ricoue LE,Marcoux J and Whitechurch H.1984.The Mesozoic organization of the Taurides:One or several ocean basins.Geological Society,London,Special Publications,17(1):349-359

    Robertson AHF and Dixon JE.1984.Introduction:Aspects of the geological evolution of the Eastern Mediterranean.Geological Society,London,Special Publications,17(1):1-74

    Rolland Y,Perin?ek D,Kaymakc? N,Sosson M,Barrier E and Avagyan A.2012.Evidence for ca.80~75Ma subduction jump during Anatolide-Tauride-Armenian block accretion and~48Ma Arabia-Eurasia collision in Lesser Caucasus-East Anatolia.Journal of Geodynamics,56-57:76-85

    Schaltegger U,F(xiàn)anning CM,Günther D,Maurin JC,Schulmann K and Gebauer D.1999.Growth,annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism:Conventional and in-situ U-Pb isotope,cathodoluminescence and microchemical evidence.Contributions to Mineralogy and Petrology,134(2-3):186-201

    ?eng?r AMC and Yilmaz Y.1981.Tethyan evolution of Turkey:A plate tectonic approach.Tectonophysics,75(3-4):181-190,193-199,203-241

    Vavra G,Schmid R and Gebauer D.1999.Internal morphology,habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:Geochronology of the Ivrea Zone (Southern Alps).Contributions to Mineralogy and Petrology,134(4):380-404

    Wiedenbeck M,Alle P,Corfu F,Griffin WL,Meier M,Oberli F,von Quadt A,Roddick JC and Spiegel W.1995.Three natural zircon standards for U-Th-Pb,Lu-Hf,trace element and REE analyses.Geostandards Newsletter,19(1):1-23

    Xu XS,Zhang M,Zhu KY,Chen XM and He ZY.2012.Reverse age zonation of zircon formed by metamictisation and hydrothermal fluid leaching.Lithos,150:256-267

    Yazgan E and Cnessex R.1991.Geology and tectonic evolution of the southeastern Taurides in the region of Malatya.Turkish Association of Petroleum Geologists,3(1):1-41

    Yazgan E.1984.Geodynamic evolution of the Eastern Taurus region:Geology of the Taurus belt.In:Geology of the Taurus Belt:Proceedings of the International Symposium.Ankara:Geology of the Taurus Belt,199-208

    Yilmaz Y.1993.New evidence and model on the evolution of the Southeast Anatolian orogen.Geological Society of America Bulletin,105(2):251-271

    久久久精品欧美日韩精品| 天天一区二区日本电影三级| 国产97色在线日韩免费| 免费大片18禁| 国产精品av视频在线免费观看| 亚洲一区二区三区色噜噜| 午夜日韩欧美国产| 亚洲精品乱码久久久v下载方式 | 亚洲国产精品sss在线观看| 欧美精品啪啪一区二区三区| 久久热在线av| 三级毛片av免费| av视频在线观看入口| 午夜a级毛片| 国产高清视频在线播放一区| 亚洲国产日韩欧美精品在线观看 | 免费人成视频x8x8入口观看| 美女高潮喷水抽搐中文字幕| av天堂在线播放| 又黄又爽又免费观看的视频| 国产人伦9x9x在线观看| 在线观看日韩欧美| 男女之事视频高清在线观看| 久久精品国产清高在天天线| 日本与韩国留学比较| 不卡av一区二区三区| 中文在线观看免费www的网站| 久久午夜亚洲精品久久| 欧美zozozo另类| 波多野结衣高清作品| 亚洲欧美日韩无卡精品| 熟女电影av网| 亚洲国产日韩欧美精品在线观看 | 麻豆成人午夜福利视频| 性色av乱码一区二区三区2| 男女做爰动态图高潮gif福利片| 国产高潮美女av| 无限看片的www在线观看| 在线播放国产精品三级| 国产成人aa在线观看| 亚洲人成电影免费在线| cao死你这个sao货| 久久这里只有精品中国| 男人舔女人的私密视频| 夜夜看夜夜爽夜夜摸| 亚洲专区国产一区二区| 九九在线视频观看精品| 亚洲色图av天堂| 好看av亚洲va欧美ⅴa在| 成人欧美大片| 亚洲成av人片在线播放无| 91老司机精品| 最近最新中文字幕大全电影3| 欧洲精品卡2卡3卡4卡5卡区| 99热这里只有精品一区 | 国产高清videossex| 亚洲成a人片在线一区二区| 亚洲人成电影免费在线| 国产亚洲精品久久久com| 亚洲七黄色美女视频| 久久久国产精品麻豆| 亚洲精品美女久久久久99蜜臀| 99精品在免费线老司机午夜| 亚洲人成伊人成综合网2020| 久久九九热精品免费| 狠狠狠狠99中文字幕| 床上黄色一级片| 亚洲国产看品久久| 午夜福利在线观看免费完整高清在 | 日韩有码中文字幕| 欧美乱妇无乱码| 男人的好看免费观看在线视频| 免费观看人在逋| 久久久久久大精品| 免费电影在线观看免费观看| 此物有八面人人有两片| 亚洲国产高清在线一区二区三| 婷婷精品国产亚洲av| 国产熟女xx| 亚洲av成人精品一区久久| 久久午夜综合久久蜜桃| 亚洲av电影不卡..在线观看| 国内精品久久久久久久电影| 久久九九热精品免费| 免费看十八禁软件| 香蕉丝袜av| 久久中文字幕人妻熟女| 国产精品九九99| 国产91精品成人一区二区三区| 男人舔女人的私密视频| 三级国产精品欧美在线观看 | 99国产综合亚洲精品| 精品久久久久久久毛片微露脸| 亚洲精品国产精品久久久不卡| 亚洲精品美女久久久久99蜜臀| 欧美黄色片欧美黄色片| 18禁国产床啪视频网站| 国产91精品成人一区二区三区| 宅男免费午夜| 国产主播在线观看一区二区| 国产精品av视频在线免费观看| 国产成人系列免费观看| 精华霜和精华液先用哪个| 国产野战对白在线观看| 啦啦啦免费观看视频1| 在线视频色国产色| 国产乱人视频| 精品电影一区二区在线| 日韩免费av在线播放| 亚洲 欧美 日韩 在线 免费| 亚洲电影在线观看av| 99视频精品全部免费 在线 | 婷婷六月久久综合丁香| 日本免费一区二区三区高清不卡| 99国产精品一区二区三区| 人妻丰满熟妇av一区二区三区| 99久久成人亚洲精品观看| 美女被艹到高潮喷水动态| 黑人欧美特级aaaaaa片| 国产精品亚洲美女久久久| 男人舔女人的私密视频| 亚洲av免费在线观看| 男女视频在线观看网站免费| 狂野欧美激情性xxxx| 在线看三级毛片| 欧美成人一区二区免费高清观看 | 黄色丝袜av网址大全| 国产精品一区二区免费欧美| 高潮久久久久久久久久久不卡| 中文资源天堂在线| 婷婷精品国产亚洲av| 欧美+亚洲+日韩+国产| 18禁观看日本| 村上凉子中文字幕在线| 岛国视频午夜一区免费看| av在线天堂中文字幕| 免费人成视频x8x8入口观看| 久久久色成人| 桃色一区二区三区在线观看| 91麻豆av在线| 男女那种视频在线观看| 国产精品99久久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人欧美精品刺激| 亚洲精华国产精华精| 亚洲国产中文字幕在线视频| 亚洲国产日韩欧美精品在线观看 | 99久久久亚洲精品蜜臀av| 免费电影在线观看免费观看| 成年女人永久免费观看视频| 国内毛片毛片毛片毛片毛片| 亚洲性夜色夜夜综合| 我要搜黄色片| 亚洲七黄色美女视频| 最近最新中文字幕大全免费视频| 亚洲欧美一区二区三区黑人| 久久精品91无色码中文字幕| 啪啪无遮挡十八禁网站| 制服丝袜大香蕉在线| 听说在线观看完整版免费高清| 淫秽高清视频在线观看| 极品教师在线免费播放| 九九热线精品视视频播放| 我要搜黄色片| 欧美成人性av电影在线观看| 最近最新免费中文字幕在线| 又大又爽又粗| 好男人在线观看高清免费视频| 欧美色视频一区免费| 国产真实乱freesex| 国产欧美日韩一区二区精品| 一本一本综合久久| 最近在线观看免费完整版| 精品熟女少妇八av免费久了| 18禁黄网站禁片午夜丰满| 热99re8久久精品国产| 两人在一起打扑克的视频| 欧美色欧美亚洲另类二区| 欧美色欧美亚洲另类二区| 精品久久蜜臀av无| 精品99又大又爽又粗少妇毛片 | 午夜精品久久久久久毛片777| 欧美日韩福利视频一区二区| 美女 人体艺术 gogo| 国内精品久久久久久久电影| 国产69精品久久久久777片 | 美女免费视频网站| 午夜a级毛片| 色综合亚洲欧美另类图片| 88av欧美| 琪琪午夜伦伦电影理论片6080| 久久精品综合一区二区三区| 国产精品自产拍在线观看55亚洲| 黄频高清免费视频| 麻豆av在线久日| 午夜免费激情av| 最近在线观看免费完整版| 熟女人妻精品中文字幕| bbb黄色大片| 夜夜夜夜夜久久久久| 校园春色视频在线观看| 蜜桃久久精品国产亚洲av| 精品久久久久久久久久久久久| 久久国产精品人妻蜜桃| 天堂网av新在线| 小蜜桃在线观看免费完整版高清| 国产午夜精品论理片| 免费看光身美女| 老司机在亚洲福利影院| 精品国产亚洲在线| 欧美+亚洲+日韩+国产| 色在线成人网| 男人舔女人下体高潮全视频| 久久久久久久久久黄片| 不卡av一区二区三区| www日本在线高清视频| 亚洲av五月六月丁香网| av福利片在线观看| 夜夜看夜夜爽夜夜摸| 禁无遮挡网站| 狂野欧美白嫩少妇大欣赏| 欧美中文日本在线观看视频| 亚洲男人的天堂狠狠| 高潮久久久久久久久久久不卡| 国产亚洲精品综合一区在线观看| 亚洲欧美日韩东京热| 午夜激情欧美在线| 免费在线观看成人毛片| 高潮久久久久久久久久久不卡| 免费在线观看日本一区| 日韩欧美在线乱码| 一个人看视频在线观看www免费 | 在线观看舔阴道视频| 夜夜看夜夜爽夜夜摸| 日本五十路高清| 久久精品aⅴ一区二区三区四区| 国产一区二区在线av高清观看| 免费观看人在逋| 欧美色视频一区免费| 中出人妻视频一区二区| 国产又黄又爽又无遮挡在线| 91九色精品人成在线观看| 熟女电影av网| 搡老岳熟女国产| 国产一区二区激情短视频| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲av嫩草精品影院| 国内精品久久久久久久电影| 午夜成年电影在线免费观看| 怎么达到女性高潮| 天天一区二区日本电影三级| 三级国产精品欧美在线观看 | 在线观看免费午夜福利视频| 桃色一区二区三区在线观看| 岛国在线观看网站| 精品一区二区三区视频在线观看免费| 亚洲精品在线观看二区| 久久99热这里只有精品18| 九九热线精品视视频播放| 亚洲精品久久国产高清桃花| 午夜激情欧美在线| 午夜成年电影在线免费观看| 亚洲国产日韩欧美精品在线观看 | 一区二区三区高清视频在线| 午夜免费成人在线视频| 黄片小视频在线播放| 黄频高清免费视频| 99精品久久久久人妻精品| 午夜福利成人在线免费观看| 日日夜夜操网爽| 亚洲专区国产一区二区| 日韩欧美国产一区二区入口| 精品国产美女av久久久久小说| 露出奶头的视频| 18禁裸乳无遮挡免费网站照片| 亚洲欧美激情综合另类| 久久午夜综合久久蜜桃| 成人永久免费在线观看视频| 999久久久精品免费观看国产| 少妇人妻一区二区三区视频| 亚洲av免费在线观看| 欧美日韩乱码在线| 国产欧美日韩一区二区精品| 特大巨黑吊av在线直播| 99热精品在线国产| 成年版毛片免费区| 亚洲 国产 在线| 久久99热这里只有精品18| a级毛片a级免费在线| 成人无遮挡网站| 日本撒尿小便嘘嘘汇集6| 中文字幕最新亚洲高清| 国产精品99久久久久久久久| 日本黄色视频三级网站网址| 美女免费视频网站| 亚洲精品国产精品久久久不卡| 日日干狠狠操夜夜爽| 亚洲人成电影免费在线| 真实男女啪啪啪动态图| 欧美日韩瑟瑟在线播放| 日韩精品青青久久久久久| 精品乱码久久久久久99久播| 51午夜福利影视在线观看| 操出白浆在线播放| 欧美国产日韩亚洲一区| 韩国av一区二区三区四区| av在线蜜桃| 国产主播在线观看一区二区| 舔av片在线| 国产欧美日韩一区二区精品| 亚洲国产精品久久男人天堂| 好看av亚洲va欧美ⅴa在| 国产一区二区三区视频了| 亚洲国产看品久久| 香蕉丝袜av| x7x7x7水蜜桃| 国产精品一区二区免费欧美| h日本视频在线播放| 午夜影院日韩av| 久久香蕉国产精品| 十八禁人妻一区二区| 成人亚洲精品av一区二区| 中文字幕av在线有码专区| 国产极品精品免费视频能看的| 久久亚洲精品不卡| 亚洲av电影在线进入| 嫁个100分男人电影在线观看| 欧美中文日本在线观看视频| 可以在线观看毛片的网站| 一级黄色大片毛片| 日韩欧美国产一区二区入口| 国产精品免费一区二区三区在线| 18禁美女被吸乳视频| 免费在线观看亚洲国产| 国产 一区 欧美 日韩| 亚洲国产精品合色在线| 男人舔奶头视频| 国产精品免费一区二区三区在线| 国内毛片毛片毛片毛片毛片| 国产欧美日韩一区二区精品| 看免费av毛片| 精品一区二区三区视频在线观看免费| 国产高清激情床上av| 天天添夜夜摸| bbb黄色大片| 亚洲在线观看片| 国产精品1区2区在线观看.| 色在线成人网| 嫩草影院精品99| 麻豆成人午夜福利视频| 久久久久久久久免费视频了| 久久久久久久久中文| 亚洲精品在线美女| 亚洲国产精品sss在线观看| 国产亚洲欧美在线一区二区| 桃红色精品国产亚洲av| 精品无人区乱码1区二区| 窝窝影院91人妻| 一区二区三区激情视频| 他把我摸到了高潮在线观看| 最近最新中文字幕大全免费视频| aaaaa片日本免费| 两个人看的免费小视频| 亚洲精品一卡2卡三卡4卡5卡| 国产男靠女视频免费网站| 哪里可以看免费的av片| 成人无遮挡网站| 精品久久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看| 悠悠久久av| av国产免费在线观看| 欧美性猛交╳xxx乱大交人| 99久久精品国产亚洲精品| 99久久精品一区二区三区| 变态另类成人亚洲欧美熟女| 热99在线观看视频| 91在线精品国自产拍蜜月 | 十八禁人妻一区二区| 九色国产91popny在线| 国产精品久久久久久久电影 | 美女大奶头视频| 免费观看人在逋| 夜夜夜夜夜久久久久| 久久久久免费精品人妻一区二区| 日韩欧美国产一区二区入口| 午夜福利免费观看在线| 非洲黑人性xxxx精品又粗又长| 小蜜桃在线观看免费完整版高清| 日韩人妻高清精品专区| 久久久久久久午夜电影| 狂野欧美白嫩少妇大欣赏| 亚洲成av人片在线播放无| 男女午夜视频在线观看| 偷拍熟女少妇极品色| 国产v大片淫在线免费观看| 亚洲专区国产一区二区| 日韩欧美一区二区三区在线观看| 久久久久国内视频| 久久午夜综合久久蜜桃| 婷婷精品国产亚洲av在线| 啪啪无遮挡十八禁网站| 99热这里只有是精品50| 此物有八面人人有两片| 香蕉丝袜av| 天堂影院成人在线观看| 日韩免费av在线播放| 香蕉丝袜av| 久久热在线av| 好男人电影高清在线观看| 露出奶头的视频| 日本三级黄在线观看| 日韩人妻高清精品专区| 亚洲欧美日韩卡通动漫| 精品国产乱子伦一区二区三区| 免费看a级黄色片| 中亚洲国语对白在线视频| 国产 一区 欧美 日韩| 日韩免费av在线播放| 嫩草影院精品99| 中文字幕最新亚洲高清| 久久人人精品亚洲av| 在线观看午夜福利视频| 99国产精品99久久久久| 亚洲欧美日韩无卡精品| 日韩av在线大香蕉| 日韩大尺度精品在线看网址| 亚洲国产精品sss在线观看| 欧美xxxx黑人xx丫x性爽| 国产av一区在线观看免费| www.自偷自拍.com| 亚洲av熟女| 中文在线观看免费www的网站| 男人舔女人的私密视频| 性色av乱码一区二区三区2| 亚洲在线自拍视频| 亚洲 国产 在线| 男女之事视频高清在线观看| 国产aⅴ精品一区二区三区波| 一级a爱片免费观看的视频| 无人区码免费观看不卡| 国产99白浆流出| 俄罗斯特黄特色一大片| 黑人欧美特级aaaaaa片| 18禁黄网站禁片免费观看直播| 毛片女人毛片| www日本在线高清视频| АⅤ资源中文在线天堂| 成人三级做爰电影| 午夜视频精品福利| aaaaa片日本免费| 国产 一区 欧美 日韩| 97碰自拍视频| 俺也久久电影网| 成人国产综合亚洲| 国产高清视频在线观看网站| 亚洲一区高清亚洲精品| 午夜福利在线观看免费完整高清在 | 成年版毛片免费区| 叶爱在线成人免费视频播放| 美女被艹到高潮喷水动态| 久久久久久久久久黄片| 99久久综合精品五月天人人| 亚洲专区中文字幕在线| 男女之事视频高清在线观看| 美女扒开内裤让男人捅视频| 在线观看午夜福利视频| 熟女少妇亚洲综合色aaa.| 岛国在线观看网站| 国产成人福利小说| 性欧美人与动物交配| 欧美高清成人免费视频www| 国产欧美日韩一区二区三| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区四那| 国产精品国产高清国产av| 国产成人福利小说| 热99re8久久精品国产| 久久香蕉精品热| 国产精品免费一区二区三区在线| 一本久久中文字幕| 法律面前人人平等表现在哪些方面| 日韩欧美国产一区二区入口| 久久久国产精品麻豆| 99久久国产精品久久久| 国产成人一区二区三区免费视频网站| 制服人妻中文乱码| 熟女电影av网| 久久精品影院6| 精品99又大又爽又粗少妇毛片 | 国产麻豆成人av免费视频| 91九色精品人成在线观看| 国产精品免费一区二区三区在线| www.www免费av| 日韩欧美在线乱码| 女人高潮潮喷娇喘18禁视频| 亚洲五月天丁香| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在 | 极品教师在线免费播放| 97超级碰碰碰精品色视频在线观看| 亚洲专区字幕在线| 91麻豆精品激情在线观看国产| 国产真实乱freesex| 国产精品一区二区三区四区免费观看 | 国产精品国产高清国产av| 啦啦啦免费观看视频1| 日本 欧美在线| 在线观看舔阴道视频| 色噜噜av男人的天堂激情| 精品免费久久久久久久清纯| 亚洲 欧美一区二区三区| 亚洲专区中文字幕在线| 免费看十八禁软件| 亚洲国产日韩欧美精品在线观看 | 怎么达到女性高潮| 久久这里只有精品中国| 十八禁人妻一区二区| 国产成+人综合+亚洲专区| av国产免费在线观看| 噜噜噜噜噜久久久久久91| 色尼玛亚洲综合影院| 国产高清视频在线播放一区| 亚洲五月婷婷丁香| netflix在线观看网站| 88av欧美| 欧美色欧美亚洲另类二区| 每晚都被弄得嗷嗷叫到高潮| 18禁美女被吸乳视频| 亚洲av成人一区二区三| 国产精品久久久av美女十八| 日韩av在线大香蕉| 国产亚洲精品综合一区在线观看| 国产主播在线观看一区二区| 欧美3d第一页| 免费在线观看视频国产中文字幕亚洲| 琪琪午夜伦伦电影理论片6080| 免费看日本二区| 国产亚洲av高清不卡| 啪啪无遮挡十八禁网站| svipshipincom国产片| 少妇人妻一区二区三区视频| 男插女下体视频免费在线播放| 成年版毛片免费区| 中文字幕人妻丝袜一区二区| cao死你这个sao货| netflix在线观看网站| 男女做爰动态图高潮gif福利片| 亚洲欧美激情综合另类| 又黄又粗又硬又大视频| 国内揄拍国产精品人妻在线| 亚洲一区高清亚洲精品| 精品不卡国产一区二区三区| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 黑人操中国人逼视频| 亚洲国产欧美人成| 国产精品亚洲av一区麻豆| 国产乱人视频| av视频在线观看入口| 国产伦在线观看视频一区| 免费电影在线观看免费观看| 国产精品久久久久久人妻精品电影| 无限看片的www在线观看| 美女黄网站色视频| 午夜久久久久精精品| 人妻夜夜爽99麻豆av| 中文字幕人妻丝袜一区二区| 成年免费大片在线观看| 亚洲成人免费电影在线观看| 免费搜索国产男女视频| 免费在线观看亚洲国产| 黄色丝袜av网址大全| 欧美av亚洲av综合av国产av| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久免费视频| 男女做爰动态图高潮gif福利片| 久久午夜亚洲精品久久| 成年女人毛片免费观看观看9| 婷婷亚洲欧美| 十八禁网站免费在线| 久久久久国内视频| 网址你懂的国产日韩在线| 久久99热这里只有精品18| 在线观看美女被高潮喷水网站 | 免费在线观看视频国产中文字幕亚洲| 亚洲美女视频黄频| 国内精品久久久久久久电影| 亚洲精品在线美女| 波多野结衣高清作品| 美女 人体艺术 gogo| 女人高潮潮喷娇喘18禁视频| 老司机午夜十八禁免费视频| 国产精品一区二区精品视频观看| 久久中文字幕一级| 国产在线精品亚洲第一网站| 伊人久久大香线蕉亚洲五| 色精品久久人妻99蜜桃| 亚洲av五月六月丁香网| 久久久水蜜桃国产精品网| 高潮久久久久久久久久久不卡| 搡老岳熟女国产| 色视频www国产| 国产午夜福利久久久久久| 在线观看午夜福利视频| 欧美精品啪啪一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲 欧美一区二区三区| 亚洲精品粉嫩美女一区| 午夜成年电影在线免费观看| 热99在线观看视频| 99久久国产精品久久久| 波多野结衣高清无吗| 最近视频中文字幕2019在线8| 亚洲欧美激情综合另类| 亚洲真实伦在线观看|