張蓉琴尹吉林王欣璐張金赫周 崝王 成
靶向生長抑素受體正電子顯像劑的臨床研究進(jìn)展
張蓉琴1,2尹吉林1,2王欣璐1張金赫1周 崝1王 成1
受體,生長抑素;奧曲肽;正電子發(fā)射斷層顯像術(shù);正電子核素;綜述
天然生長抑素是一種含有14個或28個氨基酸的多肽類激素,在體內(nèi)很容易被酶降解,且在人體內(nèi)生物半衰期較短(2~ 3 min),限制了其臨床應(yīng)用。奧曲肽(octreotide,OC)是對天然生長抑素進(jìn)行人工修飾合成的八肽,肽序列為D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr(ol),其結(jié)構(gòu)中引入D型氨基酸,增強了抵抗酶降解的能力,在體內(nèi)作用時間可達(dá)2 h。生長抑素受體(somatostatin receptor,SSTR)屬于G蛋白偶聯(lián)受體超家族,高表達(dá)于神經(jīng)內(nèi)分泌腫瘤(neuroendocrine tumor,NET)細(xì)胞表面,如胃腸胰NET、嗜鉻細(xì)胞瘤、副神經(jīng)節(jié)瘤、乳腺癌、小細(xì)胞肺癌等。SSTR共5個亞型,即SSTR1~5,其中90% NET高表達(dá)SSTR2,乳腺癌表達(dá)SSTR1~5,但以SSTR3最為顯著。20世紀(jì)90年代初111In及123I標(biāo)記的OC應(yīng)用于臨床進(jìn)行SSTR陽性腫瘤顯像。123I-Tyr3-OC肝臟攝取較高,限制了其在腹部的顯像;111In-DTPA-OC在臨床上已廣泛用于SSTR陽性腫瘤的診斷,目前已被美國食品藥物管理局批準(zhǔn)。與單光子顯像相比,PET顯像具有高靈敏度及高空間分辨率等優(yōu)點,在臨床上備受關(guān)注。本文就靶向SSTR正電子核素顯像的臨床研究進(jìn)展做一綜述。
正電子核素有金屬核素66Ga、68Ga、60Cu、61Cu、64Cu、86Y、110Inm及鹵素核素18F、76Br、124I,但目前臨床上用于標(biāo)記生長抑素類似物(somatostatin analogue,SSTA)的正電子核素僅有18F、68Ga、64Cu、86Y、110Inm。其物理特性及靶向SSTR的臨床放射性示蹤劑見表1。
表1 正電子核素及臨床示蹤劑
近年來68Ga標(biāo)記的SSTA越來越廣泛用于臨床,主要因為它們對SSTR2、SSTR3、SSTR5有不同程度的親和力。目前臨床上68Ga標(biāo)記的SSTA有68Ga-DOTA-Phe1-Tyr3-octreotide(68Ga-DOTA-TOC)、68Ga-DOTA-Tyr3-octreotate(68Ga-DOTA-TATE)、68Ga-DOTA-Nal3-octreotide(68Ga-DOTA-NOC)以及68Ga-DOTA-Lanreotide(68Ga-DOTA-LAN),前三者已成為用PET對SSTR陽性腫瘤顯像的新標(biāo)準(zhǔn)。OC、 TOC、TATE、NOC、LAN及雙功能螯合劑DOTA的結(jié)構(gòu)式見圖1,若3位Phe被Tyr取代,則OC變?yōu)門OC;碳末端的Thr(ol)被Thr取代則TOC變?yōu)門ATE,此兩種取代使示蹤劑對SSTR2的親和力增高。3位1-Nal取代Phe則OC變?yōu)镹OC,可使示蹤劑靶向于SSTR2、SSTR3及SSTR5。另外,不同的放射性金屬核素也會改變受體的親和力,與111In、177Lu、90Y相比,用68Ga標(biāo)記DOTA螯合的肽會使SSTR2親和力提高8倍。68Ga-DOTA標(biāo)記的SSTA對NET診斷總的敏感性及特異性分別為90%~98%及92%~98%[8]。
圖1 OC、TOC、TATE、NOC、LAN及DOTA的結(jié)構(gòu)式
2.168Ga-DOTA-TOC/TATE/NOC與其他顯像劑及影像方法對比68Ga-DOTA-TOC是首個用于臨床的68Ga標(biāo)記的SSTA,2001年Henze等[1]對3例腦膜瘤患者行68Ga-DOTATOC動態(tài)PET掃描,發(fā)現(xiàn)68Ga-DOTA-TOC有快速的血漿及腎臟清除率,所有病灶(最小7~8 mm)均有較高腫瘤攝取(SUVmean=10.6),而正常腦組織無攝取,腫瘤與正常腦比值最高達(dá)730。此后68Ga-DOTA-TOC、68Ga-DOTA-TATE、68Ga-DOTA- NOC、68Ga-DOTA-LAN廣泛用于探測SSTR陽性的惡性腫瘤及轉(zhuǎn)移灶,并與其他影像方法或其他放射性示蹤劑進(jìn)行對比。
2.1.168Ga-DOTA-TOC/TATE/NOC與SPECT顯像劑比較68Ga-DOTA-TOC/TATE/NOC比111In-DTPA-OC空間分辨率、陽性檢測率、敏感性及準(zhǔn)確性更高,靶/非靶比更高,腎臟累積劑量更低,可能逐漸取代111In-DTPA-OC。Buchmann等[9]發(fā)現(xiàn)在診斷NET骨及肺轉(zhuǎn)移方面68Ga-DOTA-TOC優(yōu)于111In-DTPA-OC,而在肝臟及腦轉(zhuǎn)移方面兩者相當(dāng)。Srirajaskanthan等[10]發(fā)現(xiàn)68Ga-DOTA-TATE比111In-DTPA-OC能檢出更多病灶(168/226對27/226),并改變了70.6%患者的治療方案。Krausz等[11]發(fā)現(xiàn)68Ga-DOTA-NOC在檢測NET病灶方面與111In-DTPA-OC相當(dāng),但前者略占優(yōu)勢,因前者陽性預(yù)測值更高、病灶邊界更清、掃描時間更短,且更易被患者接受。
在對同一組患者同時用2種或3種顯像劑進(jìn)行對比分析時,68Ga-DOTA-TOC的敏感性及準(zhǔn)確性明顯高于99Tcm-HYNIC-TOC(97%比52%、96%比58%),而特異性一致(均為92%)[12]。68Ga-DOTA-TATE總的敏感性及準(zhǔn)確性高于99Tcm-HYNIC-OC(96%比60%、91%比86%),而特異性基本一致(97%比99%)[13]。在診斷嗜鉻細(xì)胞瘤及神經(jīng)節(jié)細(xì)胞瘤方面,68Ga-DOTA-TATE的敏感性為80%~100%,優(yōu)于123I-MIBG(41.6%~60%),兩者特異性基本相當(dāng)[14];同樣,68Ga-DOTA-NOC的準(zhǔn)確性明顯高于131I-MIBG。
2.1.268Ga-DOTA-TOC/TATE/NOC與18F-FDG或18F-DOPA比較 Kayani等[15]發(fā)現(xiàn)NET對68Ga-DOTA-TATE和18F-FDG攝取高低與腫瘤的病理分級密切相關(guān),低級別NET對68Ga-DOTA-TATE攝取優(yōu)于高級別者,而18F-FDG PET/ CT對高級別NET更有優(yōu)勢。對于典型的支氣管類癌,腫瘤對68Ga-DOTA-TOC及68Ga-DOTA-TATE攝取明顯高于18F-FDG,而對非典型類癌18F-FDG則優(yōu)于68Ga-DOTA-TOC及68Ga-DOTA-TATE。但分化型甲狀腺癌復(fù)發(fā)時,則要同時結(jié)合131I掃描情況進(jìn)行綜合評估,對131I掃描陽性的復(fù)發(fā)性分化型甲狀腺癌患者,68Ga-DOTA-TOC與18F-FDG診斷能力相當(dāng),而對于131I掃描陰性患者,18F-FDG優(yōu)于68Ga-DOTATOC[16],可能由于在分化型甲狀腺癌疾病進(jìn)程中,碘攝取減低與SSTR表達(dá)減低是同步進(jìn)行的。18F-DOPA為多巴胺受體顯像劑,對NET也會有陽性顯像,是由于NETs能對胺前體(左旋多巴及5-羥色氨)進(jìn)行攝取和脫羧化。68Ga-DOTA-TOC比18F-DOPA能檢測更多的腎上腺外嗜鉻細(xì)胞瘤病灶(100%比56%)[17]。68Ga-DOTATATE在檢測腫瘤病灶及分期方面同樣優(yōu)于18F-DOPA,但對于68Ga-DOTA-TATE陰性而血5-羥色胺升高的患者可進(jìn)行18F-DOPA顯像。同樣,68Ga-DOTA-NOC優(yōu)于18F-DOPA,尤其在肝、肺及淋巴結(jié)轉(zhuǎn)移方面[18]。
2.1.368Ga-DOTA-TOC/TATE/NOC與CT或MRI比較Kumar等[19]發(fā)現(xiàn)68Ga-DOTA-TOC在診斷腫瘤胰腺NET原發(fā)灶及轉(zhuǎn)移瘤方面優(yōu)于CT增強,檢出率更高。Schraml等[20]對51例NET患者593個轉(zhuǎn)移灶進(jìn)行評估,發(fā)現(xiàn)68Ga-DOTATOC與全身MRI對轉(zhuǎn)移灶的總檢出率相當(dāng),但檢測淋巴結(jié)及肺轉(zhuǎn)移時68Ga-DOTA-TOC更有優(yōu)勢,而對肝及骨轉(zhuǎn)移MRI優(yōu)勢更大。Schmid-Tannwald等[21]發(fā)現(xiàn)68Ga-DOTATATE對NET檢測率明顯優(yōu)于DW MRI及MRI增強,而后兩者檢測率相當(dāng)。Sharma等[22]對141例NET患者進(jìn)行回顧性分析,其中88例同時行CT或MRI檢查,對比發(fā)現(xiàn)68Ga-DOTA-NOC比CT或MRI能檢測更多病灶且特異性更高。說明68Ga-DOTA-TOC/TATE/NOC在診斷NET方面明顯優(yōu)于傳統(tǒng)的影像檢查。
2.268Ga標(biāo)記的不同顯像劑之間的比較
2.2.168Ga-DOTA-TOC與68Ga-DOTA-TATE比較 在68Ga-DOTA-TOC和68Ga-DOTA-TATE對NET診斷能力對比方面,Poeppel等[23]發(fā)現(xiàn)兩者診斷NET準(zhǔn)確性相當(dāng),但68Ga-DOTA-TOC的SUV最大值比68Ga-DOTA-TATE稍高(20.4±14.7比16.0±10.8,P<0.01)。Sandstr?m等[24]對兩者的體內(nèi)分布及吸收劑量進(jìn)行對比,發(fā)現(xiàn)兩者在脾、腎及肝生理性攝取最高,68Ga-DOTA-TATE對肝臟及膽囊的吸收劑量比68Ga-DOTA-TOC稍高,但兩者總吸收劑量相當(dāng)(約0.021 mSv/MBq)。Yang等[25]對68Ga-DOTA-TOC和68Ga-DOTATATE行Meta分析,共包含10個研究416例NET患者,發(fā)現(xiàn)68Ga-DOTA-TOC與68Ga-DOTA-TATE診斷NET的敏感性分別為93%和96%,特異性分別為85%和100%,68Ga-DOTA-TATE在診斷NET方面稍優(yōu)于68Ga-DOTA-TOC。
2.2.268Ga-DOTA-NOC與68Ga-DOTA-TATE比較 Antunes等[26]將68Ga-DOTA-NOC對1例胰腺NET患者進(jìn)行顯像并與68Ga-DOTA-TATE及18F-FDG對比,發(fā)現(xiàn)68Ga-DOTA-NOC比68Ga-DOTA-TATE腫瘤攝取更高(SUVmax=152、103),而18F-FDG無攝取,可能由于68Ga-DOTA-NOC對SSTR2、SSTR3、SSTR5均有親和力,而68Ga-DOTA-TATE主要結(jié)合SSTR2。Wild等[27]對18例胃腸胰腺NET患者進(jìn)行68Ga-DOTA-TATE及68Ga-DOTA-NOC顯像,發(fā)現(xiàn)68Ga-DOTANOC比68Ga-DOTA-TATE能探測更多病灶,敏感性更高(93.5%比85.5%,P=0.005)。Kabasakal等[28]對20例NET患者130個病灶進(jìn)行兩者對比研究,結(jié)果提示兩者診斷NET準(zhǔn)確性相當(dāng),但68Ga-DOTA-TATE比68Ga-DOTA-NOC能探測更多的病灶(130/130 vs 116/130),且對腫瘤攝取更高(SUVmax=29.9±26.4、24.5±20.3,P<0.01),有潛在優(yōu)勢。Ocak等[29]在13例高分化的甲狀腺癌患者身上也印證了68Ga-DOTA-TATE優(yōu)于68Ga-DOTA-NOC,這兩個相悖的結(jié)論還有待臨床大樣本研究進(jìn)一步驗證。此外,鮮有關(guān)于68Ga-DOTA-TOC和68Ga-DOTA-NOC同時應(yīng)用于臨床且相互對比的報道。
2.2.368Ga-DOTA-LAN與68Ga-DOTA-TOC/TATE比較 有關(guān)68Ga-DOTA-LAN的文獻(xiàn)報道較少,Traub-Weidinger等[2]用68Ga標(biāo)記的DOTA-LAN對11例SSTR陽性腫瘤患者顯像,發(fā)現(xiàn)68Ga-DOTA-LAN能發(fā)現(xiàn)大多數(shù)腫瘤病灶(除外肺及大腦的小轉(zhuǎn)移灶)。Putzer等[30]對53例NET患者進(jìn)行68Ga-DOTA-LAN和68Ga-DOTA-TOC顯像,發(fā)現(xiàn)68Ga-DOTA-TOC在探測腫瘤及臨床分期方面優(yōu)于68Ga-DOTA-LAN,只有當(dāng)68Ga-DOTA-TOC顯示陰性時才考慮使用68Ga-DOTA-LAN。 Demirci等[31]發(fā)現(xiàn)68Ga-DOTA-TATE也比68Ga-DOTA-LAN能探測更多病灶(94%比44%),且68Ga-DOTA-LAN背景及骨髓代謝較高,故68Ga-DOTA-TATE明顯優(yōu)于68Ga-DOTALAN。
Wester等[3]用18F輔基標(biāo)記法合成糖基化的SSTA Gluc-Lys([18F]FP)-TOCA(Nα-(1-deoxy-D-fructosyl)-Nε-(2-[18F] fl uoropropionyl)-Lys0-Tyr3-octreotate),對SSTR2親和力較高[IC50=(2.8±0.4)nM],示蹤劑在荷瘤小鼠體內(nèi)能快速通過腎臟排泄,肝腸攝取低,而腫瘤攝取高,其將Gluc-Lys([18F] FP)-TOCA首次應(yīng)用于臨床,對1例原發(fā)灶不明的肝轉(zhuǎn)移患者進(jìn)行PET顯像并與111In-DTPA-OC進(jìn)行對比,結(jié)果顯示Gluc-Lys([18F]FP)-TOCA擁有良好的藥代動力學(xué)特性,比111In-DTPA-OC能檢測出更多、邊界更清的肝轉(zhuǎn)移灶,而且還能發(fā)現(xiàn)中腹部的原發(fā)灶。Meisetschl?ger等[32]用該示蹤劑對25例SSTR陽性腫瘤患者進(jìn)行PET/CT顯像,并與111In-DTPA-OC及68Ga-DOTA-TOC對比,結(jié)果示Gluc-Lys([18F] FP)-TOCA較111In-DTPA-OC能檢測兩倍多的病灶,且其藥代動力學(xué)及診斷特性要優(yōu)于111In-DTPA-OC,與68Ga-DOTATOC相當(dāng)。
Seemann等[33]在31例胃腸NET患者身上發(fā)現(xiàn)Gluc-Lys([18F]FP)-TOCA PET/CT比單獨PET及單獨CT檢測肝及淋巴結(jié)轉(zhuǎn)移的準(zhǔn)確性更高。Wieder等[34]用對10例轉(zhuǎn)移性NET患者進(jìn)行Gluc-Lys([18F]FP)-TOCA顯像,探討個體間及個體內(nèi)腫瘤攝取變化以及SUV與腫瘤大小、動脈期CT值的相關(guān)性,結(jié)果示部分容積效應(yīng)是個體內(nèi)腫瘤攝取變化的主要因素,腫瘤直徑<2 cm時SUV與腫瘤大小呈明顯指數(shù)正相關(guān),而腫瘤直徑>3 cm時SUV可能會下降;另外無論個體間還是個體內(nèi),CT值與SUV及腫瘤大小無相關(guān)性。Astner等[35]用Gluc-Lys([18F]FP)-TOCA對8例血管球瘤患者進(jìn)行顯像,發(fā)現(xiàn)Gluc-Lys([18F]FP)-TOCA能減少觀察者間的差異,使觀察者更準(zhǔn)確地描繪腫瘤體積,尤其是術(shù)后復(fù)發(fā)的血管球瘤患者。
雖然Gluc-Lys-([18F]FP)-TOCA加入了親水輔基,藥代動力學(xué)明顯改善,顯像效果良好,但其合成耗時(>3 h)、步驟多,導(dǎo)致總產(chǎn)率降低,限制了其臨床應(yīng)用。
目前,應(yīng)用于臨床的64Cu標(biāo)記的SSTA有64Cu-TETAOC和64Cu-DOTA-TATE。Anderson等[4]將64Cu-TETA-OC與111In-DTPA-OC進(jìn)行對比研究,發(fā)現(xiàn)64Cu-TETA-OC血液清除快,59.2%的患者通過尿排泄,比111In-DTPA-OC能發(fā)現(xiàn)更多的腫瘤病灶。Pfeifer等[5]將64Cu-DOTA-TATE首次應(yīng)用于人,對14例確診的NET患者行64Cu-DOTA-TATE以及111In-DTPA-OC對比顯像,結(jié)果兩者分別探測219及105個病灶,且前者圖像質(zhì)量及空間分辨率更高,說明64Cu-DOTATATE明顯優(yōu)于111In-DTPA-OC。作者對上述2篇文獻(xiàn)進(jìn)行對比分析發(fā)現(xiàn)64Cu-DOTA-TATE比64Cu-TETA-OC圖像質(zhì)量略好,此兩種顯像劑在血液及肝臟保留時間都較長,注射后24 h肝臟攝取仍很高,其臨床使用有待進(jìn)一步研究。
90Y標(biāo)記的DOTA-TOC被認(rèn)為是治療神經(jīng)內(nèi)分泌腫瘤的靶向藥物,但其不能直接用于顯像,故在治療前需先行顯像以了解體內(nèi)腫瘤的分布情況和估算90Y-DOTA-TOC的治療劑量。既往多用111In-DTPA-OC進(jìn)行治療前顯像,但111In及90Y標(biāo)記的示蹤劑在體內(nèi)生物分布不同,因此用90Y的同位素86Y標(biāo)記的示蹤劑即86Y-DOTA-TOC能精確估算90Y-DOTATOC的治療劑量。F?rster等[6]對3例轉(zhuǎn)移性類癌患者進(jìn)行86Y-DOTA-TOC和111In-DTPA-OC對比研究,結(jié)果顯示86Y-DOTA-TOC對腫瘤的攝取較111In-DTPA-OC高。Helisch等[36]對86Y-DOTA-TOC的藥代動力學(xué)和劑量學(xué)進(jìn)行了大量研究,發(fā)現(xiàn)86Y-DOTA-TOC能準(zhǔn)確定量腫瘤及腎臟劑量,可為進(jìn)一步用90Y治療腫瘤提供幫助,另外可通過共同注射氨基酸的方式減少腎臟的受照射劑量,從而增加腫瘤的吸收劑量。
Lubberink等[7]制備了110Inm-DTPA-OC,對1例有胸部轉(zhuǎn)移的小腸癌患者顯像且與111In-DTPA-OC進(jìn)行對比,結(jié)果示110Inm-DTPA-OC比111In-DTPA-OC空間分辨率高3倍,大大改善了小腫瘤的探測率,而且比111In-DTPA-OC更能準(zhǔn)確地量化腫瘤的攝取。雖然顯像效果尚可,但110Inm要通過回旋加速器產(chǎn)生,半衰期較短(1.15 h),藥代動力學(xué)研究只限于2 h內(nèi),不適合后段時間的顯像。
PET顯像具有高靈敏性及高空間分辨率等優(yōu)點,而SSTA能與NET細(xì)胞表面的SSTR高特異性、高選擇性及高親和性結(jié)合,因此正電子核素標(biāo)記SSTA的PET顯像可對SSTR陽性腫瘤進(jìn)行診斷,且優(yōu)于傳統(tǒng)的SPECT顯像。18F標(biāo)記方法步驟多、耗時,且總產(chǎn)率較低,64Cu標(biāo)記方法在肝臟保留時間較長,110Inm標(biāo)記方法需要回旋加速器的存在且半衰期較短,限制了其在臨床上進(jìn)一步使用。86Y-DOTATOC顯像主要用于估算90Y-DOTA-TOC的治療劑量。因68Ga易于標(biāo)記等優(yōu)點,目前臨床上常用的靶向SSTR的正電子顯像劑多為68Ga標(biāo)記的SSTA,其診斷NET的準(zhǔn)確性高于CT、MRI、SPET/CT及18F-FDG、18F-DOPA PET/CT,可為臨床分期提供幫助,進(jìn)而指導(dǎo)臨床治療以及療效監(jiān)測。臨床最常用68Ga-DOTA-TOC/TATE/NOC此3種SSTR顯像劑,但目前并沒有優(yōu)先使用哪一種的臨床指南。
[1] Henze M, Schuhmacher J, Hipp P, et al. PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: fi rst results in patients with meningiomas. J Nucl Med, 2001, 42(7): 1053-1056.
[2] Traub-Weidinger T, Von Guggenberg E, Dobrozemsky G, et al. Preliminary experience with (68)Ga-DOTA-lanreotide positron emission tomography. Q J Nucl Med Mol Imaging, 2010, 54(1): 52-60.
[3] Wester HJ, Schottelius M, Scheidhauer K, et al. PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide. Eur J Nucl Med Mol Imaging, 2003, 30(1): 117-122.
[4] Anderson CJ, Dehdashti F, Cutler PD, et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med, 2001, 42(2): 213-221.
[5] Pfeifer A, Knigge U, Mortensen J, et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med, 2012, 53(8): 1207-1215.
[6] F?rster GJ, Engelbach MJ, Brockmann JJ, et al. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of (86) Y-DOTATOC and (111)In-DTPA-octreotide. Eur J Nucl Med, 2001, 28(12): 1743-1750.
[7] Lubberink M, Tolmachev V, Widstr?m C, et al. 110mIn-DTPA-DPhe1-octreotide for imaging of neuroendocrine tumors with PET. J Nucl Med, 2002, 43(10): 1391-1397.
[8] Ambrosini V, Nanni C, Fanti S. The use of gallium-68 labeled somatostatin receptors in PET/CT imaging. PET Clin, 2014, 9(3): 323-329.
[9] Buchmann I, Henze M, Engelbrecht S, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging, 2007, 34(10): 1617-1626.
[10] Srirajaskanthan R, Kayani I, Quigley AM, et al. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. J Nucl Med, 2010, 51(6): 875-882.
[11] Krausz Y, Freedman N, Rubinstein R, et al. 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with 11In-DTPA-octreotide (OctreoScan?). Mol Imaging Biol, 2011, 13(3): 583-593.
[12] Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med, 2007, 48(4): 508-518.
[13] Etchebehere EC, De Oliveira Santos A, Gumz B, et al. 68Ga-DOTATATE PET/CT, 99mTc-HYNIC-octreotide SPECT/CT, and whole-body Mr imaging in detection of neuroendocrine tumors: a prospective trial. J Nucl Med, 2014, 55(10): 1598-1604.
[14] Mojtahedi A, Thamake S, Tworowska I, et al. The value of (68)Ga-DOTATATE PET/CT in diagnosis and management of neuroendocrine tumors compared to current FDA approved imaging modalities: a review of literature. Am J Nucl Med Mol Imaging, 2014, 4(5): 426-434.
[15] Kayani I, Bomanji JB, Groves A, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer, 2008, 112(11): 2447-2455.
[16] Middendorp M, Selkinski I, Happel C, et al. Comparison of positron emission tomography with [(18)F]FDG and [(68)Ga] DOTATOC in recurrent differentiated thyroid cancer: preliminary data. Q J Nucl Med Mol Imaging, 2010, 54(1): 76-83.
[17] Kroiss A, Putzer D, Frech A, et al. A retrospective comparison between 68Ga-DOTA-TOC PET/CT and18F-DOPA PET/CT in patients with extra-adrenal paraganglioma. Eur J Nucl Med Mol Imaging, 2013, 40(12): 1800-1808.
[18] Ambrosini V, Tomassetti P, Castellucci P, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging, 2008, 35(8): 1431-1438.
[19] Kumar R, Sharma P, Garg P, et al. Role of (68)Ga-DOTATOC PET-CT in the diagnosis and staging of pancreatic neuroendocrine tumours. Eur Radiol, 2011, 21(11): 2408-2416.
[20] Schraml C, Schwenzer NF, Sperling O, et al. Staging of neuroendocrine tumours: comparison of [Ga]DOTATOC multiphase PET/CT and whole-body MRI. Cancer Imaging, 2013, (13): 63-72.
[21] Schmid-Tannwald C, Schmid-Tannwald CM, Morelli JN, et al. Comparison of abdominal MRI with diffusion-weighted imaging to68Ga-DOTATATE PET/CT in detection of neuroendocrine tumors of the pancreas. Eur J Nucl Med Mol Imaging, 2013, 40(6): 897-907.
[22] Sharma P, Arora S, Dhull VS, et al. Evaluation of (68)Ga-DOTANOC PET/CT imaging in a large exclusive population of pancreatic neuroendocrine tumors. Abdom Imaging, 2015, 40(2): 299-309.
[23] Poeppel TD, Binse I, Petersenn S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med, 2011, 52(12): 1864-1870.
[24] Sandstr?m M, Velikyan I, Garske-Román U, et al. Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J Nucl Med, 2013, 54(10): 1755-1759.
[25] Yang J, Kan Y, Ge BH, et al. Diagnostic role of Gallium-68 DOTATOC and Gallium-68 DOTATATE PET in patients with neuroendocrine tumors: a meta-analysis. Acta Radiol, 2014, 55(4): 389-398.
[26] Antunes P, Ginj M, Zhang H, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging, 2007, 34(7): 982-993.
[27] Wild D, Bomanji JB, Benkert P, et al. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med, 2013, 54(3): 364-372.
[28] Kabasakal L, Demirci E, Ocak M, et al. Comparison of Ga-DOTATATE and Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging, 2012, 39(8): 1271-1277.
[29] Ocak M, Demirci E, Kabasakal L, et al. Evaluation and comparison of Ga-68 DOTA-TATE and Ga-68 DOTA-NOC PET/CT imaging in well-differentiated thyroid cancer. Nucl Med Commun, 2013, 34(11): 1084-1089.
[30] Putzer D, Kroiss A, Waitz D, et al. Somatostatin receptor PET in neuroendocrine tumours: 68Ga-DOTA0, Tyr3-octreotide versus 68Ga-DOTA0-lanreotide. Eur J Nucl Med Mol Imaging, 2013, 40(3): 364-372.
[31] Demirci E, Ocak M, Kabasakal L, et al. Comparison of Ga-68 DOTA-TATE and Ga-68 DOTA-LAN PET/CT imaging in the same patient group with neuroendocrine tumours: preliminary results. Nucl Med Commun, 2013, 34(8): 727-732.
[32] Meisetschl?ger G, Poethko T, Stahl A, et al. Gluc-Lys([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [111In]DTPA-octreotide. J Nucl Med, 2006, 47(4): 566-573.
[33] Seemann MD. Detection of metastases from gastrointestinal neuroendocrine tumors: prospective comparison of 18F-TOCA PET, triple-phase CT, and PET/CT. Technol Cancer Res Treat, 2007, 6(3): 213-220.
[34] Wieder H, Beer AJ, Poethko T, et al. PET/CT with Gluc-Lys-([(18) F]FP)-TOCA: correlation between uptake, size and arterial perfusion in somatostatin receptor positive lesions. Eur J Nucl Med Mol Imaging, 2008, 35(2): 264-271.
[35] Astner ST, Bundschuh RA, Beer AJ, et al. Assessment of tumor volumes in skull base glomus tumors using Gluc-Lys[(18)F]-TOCA positron emission tomography. Int J Radiat Oncol Biol Phys, 2009, 73(4): 1135-1140.
[36] Helisch A, F?rster GJ, Reber H, et al. Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging, 2004, 31(10): 1386-1392.
R445.6
2014-12-19
2015-05-27
(本文編輯 馮 婕)
廣東省自然科學(xué)基金項目(S2012010010685);廣
東省教育部產(chǎn)學(xué)研結(jié)合項目(1212225700004)。
1.廣州軍區(qū)廣州總醫(yī)院核醫(yī)學(xué)科 廣東廣州510010;2.南方醫(yī)科大學(xué) 廣東廣州 510515
尹吉林 E-mail: 13922116201@139.com
10.3969/j.issn.1005-5185.2015.08.018