鄭常青,李 娟,金 巍,周建波,施 璐,崔芳華,韓曉萌
吉林大學(xué)地球科學(xué)學(xué)院,長(zhǎng)春 130061
?
松遼盆地西緣斷裂帶中花崗質(zhì)糜棱巖的鋯石SHRIMP和云母氬-氬年齡及其構(gòu)造意義
鄭常青,李 娟,金 巍,周建波,施 璐,崔芳華,韓曉萌
吉林大學(xué)地球科學(xué)學(xué)院,長(zhǎng)春 130061
松遼盆地西緣發(fā)育大型的北北東走向韌性斷裂帶,該韌性斷裂帶的性質(zhì)、活動(dòng)時(shí)限一直存在爭(zhēng)議,制約了對(duì)松遼盆地構(gòu)造成因的認(rèn)識(shí)以及松遼盆地西緣油氣勘探開發(fā)的進(jìn)展。騰克、金星及嘎拉山地區(qū)是松遼盆地西緣韌性斷裂帶的代表性出露區(qū),主體巖石組合為條帶狀花崗質(zhì)糜棱巖、眼球狀花崗質(zhì)糜棱巖等。騰克、金星及嘎拉山地區(qū)發(fā)育一組糜棱面理和線理,其中面理為110°~135°∠45°~65°、線理為傾伏向10°~25°,傾伏角10°~35°;其運(yùn)動(dòng)性質(zhì)均顯示左行走滑特征。確定韌性斷裂帶活動(dòng)時(shí)限的樣品采自構(gòu)造帶內(nèi)花崗質(zhì)糜棱巖的鋯石和同變形云母,其中鋯石SHRIMP諧和年齡為296.9~299.4 Ma;黑云母40Ar-39Ar年齡為(123.0±0.7)Ma ,白云母的40Ar-39Ar年齡為(124.4±0.9)Ma。松遼盆地西緣韌性斷裂帶應(yīng)該屬于嫩江斷裂帶的北段。年齡結(jié)果表明該韌性斷裂帶中花崗巖侵位于晚石炭世,大型北北東向韌性構(gòu)造變形發(fā)生于早白堊世。騰克--金星--嘎拉山剪切帶控制松遼盆地西緣,同時(shí)表明松遼盆地在早白堊世經(jīng)歷了走滑擠壓盆地演化階段,這種大型北北東向韌性斷裂帶的形成可能與當(dāng)時(shí)西太平洋伊澤納崎板塊向歐亞大陸俯沖發(fā)生轉(zhuǎn)向有關(guān)。
花崗質(zhì)糜棱巖;鋯石SHRIMP U-Pb年齡; 云母40Ar-39Ar年齡; 松遼盆地;嫩江斷裂
松遼盆地位于我國(guó)東北部,大地構(gòu)造位置屬于中亞--蒙古巨型造山帶的東段和太平洋構(gòu)造域的疊加部位,是我國(guó)較大的中、新生代陸相含油氣盆地,盆地呈北東向展布。松遼盆地西緣發(fā)育大型的北北東走向韌性斷裂帶,傳統(tǒng)稱該斷裂帶為嫩江斷裂帶[1-5],并認(rèn)為其是以伸展性質(zhì)為主的深大斷裂。由于地表覆蓋嚴(yán)重,前人對(duì)其研究主要基于地球物理的宏觀展布方面,而對(duì)其運(yùn)動(dòng)性質(zhì)、活動(dòng)時(shí)限及其影響的研究不夠深入,這些制約著對(duì)松遼盆地構(gòu)造成因的認(rèn)識(shí)以及松遼盆地西緣的油氣勘探開發(fā)的進(jìn)展。
嫩江斷裂帶地跨三省一自治區(qū),北端自黑龍江省呼瑪一帶,向南沿嫩江流域到內(nèi)蒙古自治區(qū)莫力達(dá)瓦旗,經(jīng)黑龍江省齊齊哈爾、泰來,吉林省白城,再入內(nèi)蒙古自治區(qū)境內(nèi),由扎魯特旗以東的白音諾爾、奈曼旗西、平莊、八里罕,再向南延入河北省,與平場(chǎng)--桑園大斷裂相接,總體呈北北東向延伸,長(zhǎng)度1 200 km以上[1-3]。
從大地構(gòu)造單元上來說,張梅生等[6]認(rèn)為嫩江斷裂帶主體構(gòu)成了興安地塊與松嫩地塊的分界線,根據(jù)重磁場(chǎng)及滿洲里--綏芬河地殼結(jié)構(gòu)構(gòu)造大剖面可知該斷裂表現(xiàn)為向東的低角度正斷層。郭孟習(xí)等[7]認(rèn)為其與撫順--密山斷裂帶、伊通--依蘭斷裂帶、沈陽(yáng)--長(zhǎng)春--哈爾濱(四平--德惠)斷裂帶、東吳--昌圖斷裂帶構(gòu)成了郯廬斷裂帶北延系。陳洪州等[8]綜合地球物理資料認(rèn)為嫩江斷裂并非傳統(tǒng)意義上的深達(dá)莫霍面甚至切過莫霍面的深大斷裂,而是松遼盆地的拆離斷層。林存東等[9]認(rèn)為斷裂在莫霍面圖上也明顯顯示,是松嫩幔隆區(qū)深部西部斜坡區(qū)與中央幔凹區(qū)的分界斷裂和盆地的西緣斷裂,對(duì)松遼盆地的形成具有明顯的控制作用??傮w上,多數(shù)學(xué)者根據(jù)斷裂兩側(cè)地球物理異常值差異及兩側(cè)同時(shí)代沉積地層深度的差異,認(rèn)為其為伸展性質(zhì)的正斷層或拆離斷層,傾向向東[1, 8, 10-12];另外有少數(shù)學(xué)者根據(jù)地球物理異常曲線的彎曲及區(qū)域應(yīng)力場(chǎng)分析,認(rèn)為其為張扭斷層或平移斷層。近年來,有些學(xué)者通過對(duì)嫩江斷裂部分地區(qū)的野外地質(zhì)調(diào)研,認(rèn)為其應(yīng)該具有韌性走滑性質(zhì)[13-16]。
筆者在嫩江斷裂帶北段的騰克、金星、嘎拉山等地分別發(fā)現(xiàn)了具有構(gòu)造變質(zhì)特征的花崗質(zhì)糜棱巖、條帶狀花崗質(zhì)糜棱巖等,根據(jù)對(duì)其糜棱面理及線理的測(cè)量觀察,及野外宏觀要素綜合分析,初步認(rèn)為嫩江斷裂帶為一個(gè)大型左行韌性走滑斷裂帶;并通過對(duì)其鋯石SHRIMP和云母40Ar-39Ar定年研究,進(jìn)一步厘定其巖漿熱事件及韌性變形時(shí)間,以期對(duì)松遼盆地形成機(jī)制得到更深層次的理解。
F1.索倫--西拉木倫--長(zhǎng)春縫合帶;F2.延吉斷裂;F3.牡丹江斷裂; F4.嫩江斷裂;F5.賀根山--黑河斷裂;F6.新林--喜桂圖斷裂;F7.依蘭--伊通斷裂;F8.敦化--密山斷裂;F9.俄羅斯遠(yuǎn)東斷裂?!餅椴蓸游恢?。據(jù)文獻(xiàn)[17-20]修編。圖1 東北地區(qū)及俄羅斯遠(yuǎn)東地區(qū)構(gòu)造單元圖Fig.1 Tectonic sub-divisions of Northeast China and Far East Russia
騰克、金星、嘎拉山地區(qū)是嫩江斷裂帶出露的典型地區(qū)(圖1),本次研究分別對(duì)騰克、金星及嘎拉山地區(qū)采集的花崗質(zhì)糜棱巖樣品11-39-183、Ⅰ-Ⅲ-①及14-36-118進(jìn)行詳細(xì)的巖相學(xué)研究(圖2)。
1.1 黑云母花崗質(zhì)糜棱巖(11-39-183)
樣品采自騰克地區(qū)的韌性剪切帶中,其發(fā)育一組糜棱面理及線理,面理產(chǎn)狀為110°∠55°、線理產(chǎn)狀為10°∠35°(圖3a、b)。
據(jù)文獻(xiàn)[1, 3]修編。圖2 大興安嶺北部晚古生代花崗質(zhì)巖石分布簡(jiǎn)圖Fig.2 General map of the Late Paleozoic granitic rocks in the north of the Great Hinggan Mountains
黑云母花崗質(zhì)糜棱巖:糜棱結(jié)構(gòu),眼球狀構(gòu)造(圖3c、d),主要組成礦物為石英(50%±)、斜長(zhǎng)石(35%±)、黑云母(15%±)。其中,基質(zhì)體積分?jǐn)?shù)為60%左右,碎斑顆粒較小,0.2~0.3 mm。石英,他形粒狀,晶粒間呈鑲嵌狀接觸,有明顯的波狀消光,多組成基質(zhì),粒度小于0.1 mm;斜長(zhǎng)石波狀消光明顯,雙晶發(fā)生明顯的扭折現(xiàn)象,在壓應(yīng)力的作用下形成了眼球狀壓力影構(gòu)造;黑云母沿著剪切方向呈帶狀產(chǎn)出,其云母魚顯現(xiàn)出左行剪切的特點(diǎn),S-C組構(gòu)亦提供了其為左行韌性剪切帶的證據(jù)(圖3d)。
1.2 花崗質(zhì)糜棱巖(Ⅰ-Ⅲ-①)
樣品采自嫩江北30 km的金星采石場(chǎng),其風(fēng)化面呈紅色,糜棱面理產(chǎn)狀為120°∠65°,糜棱線理產(chǎn)狀為25°∠10°(圖4a、b)。
花崗質(zhì)糜棱巖:糜棱結(jié)構(gòu),眼球狀構(gòu)造(圖4b、c),主要組成礦物為石英(50%±)、斜長(zhǎng)石(20%±)、微斜長(zhǎng)石(25%±)、黑云母(5%±)。其中,基質(zhì)體積分?jǐn)?shù)為80%~85%。石英,他形粒狀,晶粒間呈鑲嵌狀接觸,有明顯的波狀消光,少量發(fā)育核幔結(jié)構(gòu);斜長(zhǎng)石波狀消光明顯,在壓應(yīng)力的作用下形成了眼球狀壓力影構(gòu)造(圖4c);微斜長(zhǎng)石,他形粒狀,格子雙晶,發(fā)生明顯的雙晶膝折;黑云母多沿碎斑邊緣生長(zhǎng)。這些現(xiàn)象都說明其經(jīng)歷過強(qiáng)烈的構(gòu)造變形(圖4d)。
1.3 條帶狀黑云母花崗質(zhì)糜棱巖(14-36-118)
樣品采自嘎拉山的韌性剪切帶內(nèi),長(zhǎng)英質(zhì)條帶非常發(fā)育,大小不一,分布不均(圖5a)。此外還發(fā)育“A”型褶皺(圖5b),其樞紐是反映剪切運(yùn)動(dòng)的重要矢量。發(fā)育一組弱的糜棱面理,產(chǎn)狀為135°∠45°。
a.野外照片;b.眼球狀構(gòu)造;c.鉀長(zhǎng)石的眼球狀壓力影構(gòu)造;d.微斜長(zhǎng)石發(fā)生明顯的雙晶膝折。Kfs.鉀長(zhǎng)石;Mc.微斜長(zhǎng)石。圖4 金星地區(qū)花崗質(zhì)糜棱巖露頭及其顯微組構(gòu)Fig.4 Outcrop and photomicrographs of the analyzed samples in Jinxing area
a.野外照片;b.“A”型褶皺;c.動(dòng)態(tài)重結(jié)晶的石英;d.黑云母及斜長(zhǎng)石雙晶構(gòu)成的S-C組構(gòu)。Bi.黑云母;Qtz.石英;Pl.斜長(zhǎng)石。圖5 嘎拉山地區(qū)條帶狀黑云母花崗質(zhì)糜棱巖露頭及其顯微組構(gòu)Fig.5 Outcrop and photomicrographs of the analyzed samples in Galashan area
條帶狀黑云母花崗質(zhì)糜棱巖:糜棱結(jié)構(gòu),條帶狀構(gòu)造,主要組成礦物為石英(55%±)、斜長(zhǎng)石(35%±)、黑云母(10%±)。其中,基質(zhì)體積分?jǐn)?shù)為75%左右,碎斑顆粒0.2~0.5 mm。石英為動(dòng)態(tài)重結(jié)晶(圖5c),晶體定向明顯,具波狀消光,邊界呈不規(guī)則的齒狀曲折,多組成基質(zhì),粒度小于0.1 mm;斜長(zhǎng)石波狀消光明顯,雙晶發(fā)生明顯的扭折現(xiàn)象;黑云母沿著剪切方向呈帶狀產(chǎn)出,其與斜長(zhǎng)石構(gòu)成的S-C組構(gòu)顯示出其左行剪切的特點(diǎn)(圖5d)。
2.1 鋯石SHRIMP
為確定嫩江斷裂帶內(nèi)花崗質(zhì)糜棱巖的侵位時(shí)代,將質(zhì)量約10 kg的樣品破碎到80~100目;經(jīng)常規(guī)浮選和磁選方法分選,在雙目鏡下進(jìn)行人工精選提純;將樣品鋯石與標(biāo)樣鋯石(CZ3)一起粘貼到雙面膠帶上,并灌入環(huán)氧樹脂制成樣靶和切制打磨使鋯石能夠露出約一半的范圍;之后拋光、清洗、鍍金和采集鋯石CL圖像。制靶過程主要在澳大利亞Curtin大學(xué)地質(zhì)系實(shí)驗(yàn)室完成,CL圖像采集應(yīng)用澳大利亞Curtin大學(xué)物理系的Philips XL30掃描電鏡,同位素測(cè)試在澳大利亞Curtin大學(xué)的西澳離子探針中心的SHRIMP Ⅱ進(jìn)行,詳細(xì)的分析流程與文獻(xiàn)[21-27]描述相同。標(biāo)準(zhǔn)鋯石采用CZ3進(jìn)行元素間的分餾校正及U質(zhì)量分?jǐn)?shù)標(biāo)定;CZ3已測(cè)U-Pb諧和年齡, 其206Pb/238U年齡為564 Ma,206Pb/238U值為0.091 4。原始數(shù)據(jù)的處理和鋯石U-Pb諧和圖的繪制采用Ludwig博士等編寫的Squid和Isoplot程序[21-29]。普通鉛校正根據(jù)實(shí)測(cè)的204Pb進(jìn)行。本次的測(cè)試數(shù)據(jù)中年齡的誤差為2σ。
2.2 云母40Ar-39Ar
在較為系統(tǒng)的研究基礎(chǔ)上,對(duì)野外采集的巖石樣品通過鏡下和電子探針鑒定,挑選新鮮、無蝕變巖石樣品初步粉碎成小塊,選擇無風(fēng)化邊、無包體、無裂隙充填物的新鮮小塊巖石進(jìn)一步破碎。用鋼制碎樣器反復(fù)對(duì)巖石樣品進(jìn)行破碎。碎樣前要對(duì)碎樣器進(jìn)行清洗以保證樣品不被污染。碎好的樣品及時(shí)倒入樣品篩中進(jìn)行篩選,選擇粉末粒徑為0.10 mm左右的樣品用于分析測(cè)試。
將篩選好的樣品置于稀硝酸(5%)中浸泡2 h并用去離子水清洗后,低溫(80 ℃左右)烘干。將待測(cè)樣品和用于K、Ca、Cl誘發(fā)同位素校正的K2SO4、CaF2、KCl以及標(biāo)準(zhǔn)樣品稱量后,用鋁箔紙包裝并制成圓球狀,密封于真空石英瓶中,將其送至中國(guó)原子能科學(xué)研究院49-2核反應(yīng)堆H8通道進(jìn)行快中子照射。
實(shí)驗(yàn)所采用的全自動(dòng)全時(shí)標(biāo)高精度激光40Ar/39Ar定年系統(tǒng)主要由激光熔樣系統(tǒng)、純化系統(tǒng)及其自動(dòng)控制閥門、VG5400質(zhì)譜氬同位素分離探測(cè)系統(tǒng)以及計(jì)算機(jī)程序全自動(dòng)控制系統(tǒng)四部分組成。
熔樣系統(tǒng)采用美國(guó)New Wave Research 公司生產(chǎn)的射頻放電激勵(lì)CO2連續(xù)激光器。激光波長(zhǎng)10.6 μm,激光束斑大小為0.5 mm,能量為3.5 W。所激發(fā)的氣體經(jīng)純化系統(tǒng)純化后由VG5400惰性氣體質(zhì)譜儀進(jìn)行氬同位素測(cè)試,該儀器的質(zhì)量分辨率約為400,靈敏度大于1.25×10-3A/Torr(1 Torr≈133.322 Pa)。Ca和K照射產(chǎn)生的干擾反應(yīng)用校正因子校正,校正參數(shù)為:[36Ar/37Ar]Ca=(2.775±0.253)×10-4,[39Ar/37Ar]Ca=(6.633±3.535)×10-4,[40Ar/39Ar]K=(3.944 8±1.542 1)×10-3。年齡計(jì)算[28]中的衰變常數(shù)取Steiger and Jager(1977)的建議值。質(zhì)量歧視因子D=1.004 5±0.001 3。全自動(dòng)測(cè)樣采用Berkley地質(zhì)年代中心Alan博士等編寫的Mass spec 5.26 程序控制,并進(jìn)行數(shù)據(jù)處理[21, 28, 30]。
3.1 樣品11-39-183及Ⅰ-Ⅲ-①的鋯石SHRIMP測(cè)年結(jié)果
對(duì)騰克地區(qū)黑云母花崗質(zhì)糜棱巖樣品11-39-183中的鋯石共測(cè)定了10個(gè)分析點(diǎn),其放射鉛(Pb*)的質(zhì)量分?jǐn)?shù)為(9.1~43.9)×10-6,變化較大,Th/U值為0.59~1.26,具有明顯的巖漿鋯石特征;但是,有7個(gè)測(cè)點(diǎn)給出很好的一致年齡(表1),在諧和圖中分布在一致線附近(圖6a),諧和年齡為(299.4±9.4)Ma(MSWD =9.2),其應(yīng)該為黑云母花崗質(zhì)糜棱巖的侵位年齡。
金星地區(qū)韌性變質(zhì)變形的花崗質(zhì)糜棱巖樣品Ⅰ-Ⅲ-①中的鋯石進(jìn)行了SHRIMP測(cè)年, 其鋯石放射鉛質(zhì)量分?jǐn)?shù)為(0.54~1.00)×10-6(表2),變化不大,Th/U值為1.6~11.6,具有巖漿鋯石特征;測(cè)得7個(gè)測(cè)點(diǎn)比較集中,都落在諧和線上或是在諧和線附近,諧和年齡為(296.9±4.4)Ma(MSWD =3.3)(圖6b), 應(yīng)該為花崗質(zhì)糜棱巖的成巖年齡。
圖6 嫩江斷裂帶內(nèi)鋯石U-Pb諧和年齡及206Pb/238U年齡分布圖Fig.6 U-Pb concordia diagrams and weight main 206Pb/238U age of all samples in Nenjiang fault zone
3.2 嘎拉山條帶狀黑云母花崗質(zhì)糜棱巖云母40Ar-39Ar測(cè)年數(shù)據(jù)分析
嘎拉山條帶狀黑云母花崗質(zhì)糜棱巖14-69-118黑云母激光40Ar-39Ar測(cè)年數(shù)據(jù)見表3(40Ar*為n(39Ar)/n(40Ar)放射成因)。經(jīng)過22次激光探針測(cè)定,得到22組測(cè)定數(shù)據(jù)。樣品14-69-118中黑云母所獲得的正等時(shí)線上的截圖年齡為(123.0±0.7)Ma(圖7a),統(tǒng)計(jì)平均年齡為(121.0±3.0)Ma(圖7b) ,具有很好的正態(tài)分布特征,而且權(quán)重均差為5.1,年齡具有實(shí)際意義。
樣品14-69-118中白云母激光40Ar-39Ar定年結(jié)果見表4。其等時(shí)線年齡和表觀年齡的概率統(tǒng)計(jì)結(jié)果在誤差范圍一致,等時(shí)線年齡和表觀年齡均可靠,白云母的截圖年齡為(124.4±0.9)Ma(MSWD=3.4)(圖7c),表觀年齡為(124.0±2.0)Ma(圖7d),也具有很好的正態(tài)分布特征,其年齡具有實(shí)際意義。
騰克、金星及嘎拉山地區(qū)定向切片的鏡下特征均表現(xiàn)為左行走滑的特點(diǎn);騰克韌性剪切帶的面理產(chǎn)狀為110°∠55°,與嘎拉山韌性剪切帶中的糜棱面理135°∠45°及金星韌性剪切帶的面理產(chǎn)狀120°∠65°具有一致性;并且其逆沖角度都較大,這些都說明它們應(yīng)該屬于同一期變形。其中,騰克、金星的花崗質(zhì)糜棱巖鋯石SHRIMP測(cè)年結(jié)果為296.9~299.4 Ma,說明其侵位年齡為晚石炭世,屬于海西中期,之后被早白堊世甘河組火山巖覆蓋;而嘎拉山條帶狀黑云母花崗質(zhì)糜棱巖也是石炭紀(jì)的巖體變質(zhì)變形而成*黑龍江省地質(zhì)調(diào)查研究總院齊齊哈爾分院.黑龍江省1∶25萬黑河市幅(M52C002001)區(qū)調(diào)修測(cè)地質(zhì)測(cè)量報(bào)告.沈陽(yáng):沈陽(yáng)地質(zhì)礦產(chǎn)研究所,2007.,其云母激光40Ar-39Ar測(cè)年結(jié)果為123.0~124.4 Ma。由此推斷,騰克、金星及嘎拉山韌性剪切帶內(nèi)的花崗質(zhì)糜棱可能同為晚石炭世侵出的花崗巖變質(zhì)變形而成,并且其韌性變形的時(shí)期也是一致,均為早白堊世。
Rad=(40Ar*/39Ark)待測(cè)樣品/(40Ar*/39Ark)標(biāo)準(zhǔn)樣品。圖7 激光40Ar-39Ar等時(shí)線年齡結(jié)果和表觀年齡的概率統(tǒng)計(jì)圖Fig.7 Laser 40Ar-39Ar isochron age and age-probability diagrams
晚石炭世,由于額爾古納--興安地塊和松嫩地塊碰撞拼合后的板片斷離,引起額爾古納-興安地塊下部軟流圈對(duì)流、巖石圈伸展減薄,從而導(dǎo)致了大規(guī)模的高鉀鈣堿性巖漿巖侵位[31-32]。騰克、金星及嘎拉山地區(qū)的花崗質(zhì)糜棱巖也就是這個(gè)時(shí)期侵位的。
三疊紀(jì)之后,整個(gè)東北地區(qū)逐步由古亞洲洋構(gòu)造域向太平洋構(gòu)造域轉(zhuǎn)換[33-40]。到了早侏羅世(距今180 Ma),太平洋北部的法拉隆板塊以10.7 cm/a的速度斜向NNE方向運(yùn)動(dòng),南部的伊澤納崎板塊則以6.5~8.0 cm/a的運(yùn)動(dòng)速度向近N或NNW向運(yùn)動(dòng),與歐亞大陸邊緣呈較小角度(28°~42°)相交,對(duì)歐亞大陸邊緣造成走滑擠壓作用,整個(gè)東北地區(qū)以隆升為主,缺乏沉積[41];中侏羅世時(shí),東亞大陸東部的伊澤納崎板塊是以非常緩慢的低速(4.7 cm/a)正向俯沖于歐亞大陸之下[41-43];晚侏羅世到早白堊世,伊澤納崎板塊突然改變了運(yùn)動(dòng)方向和速度,以30 cm/a的高速向正北斜向俯沖于東亞大陸之下(俯沖帶走向北東);一直到早白堊世中期,伊澤納崎板塊還保持著高速俯沖(20.7 cm/a),運(yùn)動(dòng)方向逐漸變成向NNW,仍為高斜度斜向俯沖[41]。也是在早白堊世,騰克--金星--嘎拉山韌性剪切帶發(fā)生了北東向左行走滑的韌性變形。但是這種變質(zhì)變形的痕跡并不是連續(xù)的出露,而是斷續(xù)的,時(shí)隱時(shí)現(xiàn)的。
總而言之,晚侏羅世時(shí),由于伊澤納崎板塊對(duì)于歐亞大陸邊緣的突然的正面大角度俯沖運(yùn)動(dòng),造成了東北地區(qū)的弧后擴(kuò)張,從而形成了拗陷型盆地——松遼盆地,此時(shí)的松遼盆地處于張性拉伸盆地演化階段;早白堊世伊澤納崎板塊突然出現(xiàn)的高速斜向俯沖同嫩江斷裂帶左行平移在時(shí)間上是一致的,在成因上也是明顯耦合的。也正是由于早白堊世伊澤納崎板塊高速斜向俯沖于歐亞大陸之下,使中國(guó)東部呈現(xiàn)左旋壓扭及活動(dòng)大陸邊緣的巖漿弧環(huán)境,從而發(fā)生了嫩江斷裂帶的大規(guī)模左行平移(即騰克--金星--嘎拉山韌性剪切帶的左行平移)及同期的巖漿活動(dòng)。其位于松遼盆地的西部斜坡帶,是大興安嶺上升區(qū)與松嫩平原沉降區(qū)的邊界,對(duì)于松遼盆地從稍早的張性拉伸演化為走滑擠壓階段起著控制性的因素,并與西緣大楊樹等北東向展布的油氣盆地的形成有密切關(guān)系[44-49]。
[1] 黑龍江省地質(zhì)礦產(chǎn)局. 黑龍江省區(qū)域地質(zhì)志[M]. 北京: 地質(zhì)出版社, 1993. Bureau of Geology and Mineral Resources of Heilongjiang Province. Regional Geology of Heilongjiang Province[M]. Beijing: Geological Publishing House, 1993.
[2] 吉林省地質(zhì)礦產(chǎn)局. 吉林省區(qū)域地質(zhì)志[M]. 北京: 地質(zhì)出版社, 1989. Bureau of Geology and Mineral Resources of Jilin Province. Regional Geology of Jilin Province[M]. Beijing: Geological Publishing House, 1989.
[3] 內(nèi)蒙古自治區(qū)地質(zhì)礦產(chǎn)局. 內(nèi)蒙古自治區(qū)區(qū)域地質(zhì)志[M]. 北京: 地質(zhì)出版社, 1991. Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region. Regional Geology of Inner Mongolia Autonomous Region[M]. Beijing: Geological Publishing House, 1991.
[4] 王荃,劉雪亞,李錦軼. 中國(guó)華夏與安哥拉古陸間的板塊構(gòu)造[M]. 北京: 北京大學(xué)出版社, 1991:122-134. Wang Quan, Liu Xueya, Li Jinyi. Plate Tectonics Between Cathaysia and Angaraland in China[M]. Beijing: Peking University Press, 1991: 122-134.
[5] 黃汲清,任紀(jì)舜. 關(guān)于大地構(gòu)造研究的幾個(gè)重要問題:構(gòu)造地質(zhì)學(xué)進(jìn)展[M]. 北京: 科學(xué)出版社, 1982. Huang Jiqing, Ren Jishun. Several Important Problems of the Tectonic Research:Progress of Structural Geology[M]. Beijing: Science Press, 1982.
[6] 張梅生,彭向東,孫曉猛. 中國(guó)東北區(qū)古生代構(gòu)造古地理格局[J]. 遼寧地質(zhì),1998(2): 91-96. Zhang Meisheng, Peng Xiangdong, Sun Xiaomeng. The Paleozoic Tectonic Geographicalopattern of Northeast China[J]. Liaoning Geology,1998(2): 91-96.
[7] 郭孟習(xí),孫煒,尹國(guó)義,等. 郯廬斷裂系的北延及地質(zhì)-地球物理特征[J]. 吉林地質(zhì), 2000,19(3): 35-44. Guo Mengxi, Sun Wei, Yin Guoyi, et al. North-extension of the Tanlu Fracture and Geologic-Geophysical Characterisitics[J]. Jilin Geology, 2000, 19(3): 35-44.
[8] 陳洪洲,余中元,許曉艷,等. 嫩江斷裂構(gòu)造及其與地震活動(dòng)的關(guān)系[J]. 東北地震研究, 2004,20(4): 43-49. Chen Hongzhou, Yu Zhongyuan, Xu Xiaoyan, et al. Characteristics of Nenjiang Fracture Structure and the Relation Between This Fracture and Earthquake Activity[J]. Seismological Research of Northeast China, 2004, 20(4): 43-49.
[9] 林存東,戴昕志,李貴明,等. 嫩江斷裂帶地震活動(dòng)特征分析[J]. 地震地磁觀測(cè)與研究, 2005, 26(4): 18-21. Lin Cundong, Dai Xinzhi, Li Guiming, et al. Analysis of the Earthquake Activity Characterisitics Around the Nenjiang Fracture Belt[J]. Seismological and Geomagnetic Observation and Reserch, 2005, 26(4): 18-21.
[10] 傅維洲,賀日政. 松遼盆地及周邊地帶地震構(gòu)造特征[J]. 世界地質(zhì), 1999, 18(2): 95-100. Fu Weizhou, He Rizheng. Structural Characteristics of Earthquakes in Songliao Basin and Its Peripheral Regions[J].World Geology, 1999, 18(2): 95-100.
[11] Wang Yufang,Zheng Yadong,Zang Qijia,et al.Glassy Matrix of Pseudotachylite in the Yagan Extensional Detachment Fault in the Sino-Mongolian Boundary and Its Kinematic Implications[J]. Chinese Science Bulletin, 1994, 22(39): 1895-1899.
[12] Han Baofu,Zheng Yadong, Gan Jiangwu. The Luozidian Normal Fault Near Chifeng, Inner Mongolia: Master Fault of a Quasi-Metamorphic Core Complex[J]. International Geology, 2001, 3(43): 254-264.
[13] 張曉暉,李鐵勝,蒲志平,等. 內(nèi)蒙古赤峰婁子店--大城子韌性剪切帶的40Ar-39Ar年齡及其構(gòu)造意義[J]. 科學(xué)通報(bào), 2002, 47(12): 951-956. Zhang Xiaohui, Li Tiesheng, Pu Zhiping, et al.40Ar-39Ar Ages of Louzidian-Dachengzi Ductile Shear Zone in Chifeng, Inner Mongolia and Its Tectonic Significance[J]. Chinese Science Bulletin, 2002, 47(12): 951-956.
[14] 楊承先,王貴華,陳健. 內(nèi)蒙紅山--八里罕斷裂地質(zhì)特征及其地震活動(dòng)性[J]. 地震研究, 1984, 4(7): 391-398. Yang Chengxian, Wang Guihua, Chen Jian. The Hongshan-Balihan Fault Zone, Inner Mongolia-Its Geologic Features and Seismicity[J]. Journal of Seismological Research, 1984, 4(7): 391-398.
[15] 王新社,鄭亞東. 樓子店變質(zhì)核雜巖韌性變形作用的40Ar/39Ar年代學(xué)約束[J]. 地質(zhì)論評(píng), 2005, 51(5): 574-582. Wang Xinshe,Zheng Yadong.40Ar/39Ar Age Constraints on the Ductile Deformation of the Detachment System of the Louzidian Core Complex, Southern Chifeng, China[J]. Geological Review, 2005, 51(5): 574-582.
[16] 劉偉,楊進(jìn)輝,李潮峰. 內(nèi)蒙赤峰地區(qū)若干主干斷裂帶的構(gòu)造熱年代學(xué)[J]. 巖石學(xué)報(bào), 2003, 19(4): 717-728. Liu Wei,Yang Jinhui,Li Chaofeng.Thermochronology of Three Major Faults in the Chifeng Area, Inner Mongolia of Chian[J]. Acta Petrologica Sinica, 2003, 19(4): 717-728.
[17] Zhou Jianbo, Simon A W, Zhao Guochun, et al. Pan-African Metamorphic and Magmatic Rocks of the Khanka Massif, NE China: Further Evidence Regarding Their Affinity[J]. Geological Magazine, 2010, 147(5): 737-749.
[18] Zhou Jianbo,Simon A W. The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1365.
[19] Wu Fuyuan, Zhao Guochun, Sun Deyou, et al. The Hulan Group: Its Role in the Evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3): 542-556.
[20] Simon A W, Zhang Xingzhou, Wu Fuyuan. Extension of a Newly-Identified 500 Ma Metamorphic Terrain in Northeast China: Further U-Pb SHRIMP Dating of the Mashan Complex, Heilongjiang Province, China[J]. Tectonophysics, 2000(328): 115-130.
[21] 鄭常青,周建波,金巍,等. 大興安嶺地區(qū)德爾布干斷裂帶北段構(gòu)造年代學(xué)研究[J]. 巖石學(xué)報(bào), 2009, 25(8): 1989-2000. Zheng Changqing, Zhou Jianbo, Jin Wei, et al. Geochronology in the North Segment of the Derbugan Fault Zone, Great Xing’an Range, NE China[J].Acta Petrologica Sinica, 2009, 25(8): 1989-2000.
[22] Zhou Jianbo, Simon A W, Zhao Guochun, et al. SHRIMP U-Pb Zircon Dating of the Neoproterozoic Penglai Group and Archean Gneisses from the Jiaobei Terrane, North China, and Their Tectonic Implications[J]. Precambrian Research, 2008(160): 323-340.
[23] Zhou Jianbo, Simon A W, Zhao Guochun, et al. SHRIMP U-Pb Zircon Dating of the Wulian Complex: Defining the Boundary Between the North and South China Cratons in the Sulu Orogenic Belt, China[J]. Precambrian Research, 2008(162): 559-576.
[24] Zhou Jianbo, Simon A W, Zhao Guochun, et al. Detrial Zircon U-Pb Dating of Low-Grade Metamorphic Rocks in the Sulu UHP Belt: Evidence for Overthrusting of the North China Block Above the South China Block During Continental Subduction[J]. Journal of Geological Society,2008(165): 423-433.
[25] 劉樹文,呂勇軍,鳳永剛,等. 冀北單塔子雜巖的地質(zhì)學(xué)和鋯石U-Pb年代學(xué)[J]. 高校地質(zhì)學(xué)報(bào), 2007(3): 484-497. Liu Shuwen, Lü Yongjun, Feng Yonggang, et al. Geology and Zircon U-Pb Isotopic Chronology of Dantazi Complex, Norhern Hebei Province[J]. Geological Journal of China Universities, 2007(3): 484-497.
[26] Wan Yusheng, Li Renwei, Simon A W, et al. UHP Metamorphism and Exhumation of the Dabie Orogen, China: Evidence from SHRIMP Dating of Zircon and Monazite from a UHP Granitic Gneiss Cobble from the Hefei Basin[J]. Geochimica Et Cosmochimica Acta, 2005(69): 4333-4348.
[27] Liu Fulai, Xu Zhiqin, Xue Huaimin. Tracing the Protolith, UHP Metamorphism, and Exhumation Ages of Orthogneiss from the SW Sulu Terreane (Eastern China):SHRIMP U-Pb Dating of Mineral Inclusion Bearing Zircons[J]. Lithos, 2004(78): 411-429.
[28] Kenneth R L. Users Manual for Isoplot/Ex (rev. 2.49): A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Special Publication, 2001: 1-55.
[29] Simon A W, John W V, William H P, et al. Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on the Earth 4.4 Gyr Ago[J]. Nature, 2001, 409: 175-178.
[30] 閆全人,王宗起,閆臻,等. 構(gòu)造變形/變質(zhì)作用的精細(xì)測(cè)年及其在造山帶研究中的應(yīng)用[J]. 地學(xué)前緣, 2001,8(3): 147-156. Yan Quanren, Wang Zongqi, Yan Zhen, et al. Detailed Dating of Deformation/Metamorphism of Shear Zones on the Scale of Orogen and Its Application[J]. Earth Science Frontiers, 2001,8(3): 147-156.
[31] 趙芝. 大興安嶺北部晚古生代巖漿作用及其構(gòu)造意義[D]. 長(zhǎng)春:吉林大學(xué),2011. Zhao Zhi. Late Paleozoic Magmatism and Its Tectonic Significance in the Northern Great Xing’an Range, Northeastern China[D].Changchun: Jilin University, 2011.
[32] 趙芝,遲效國(guó),潘世語(yǔ),等. 小興安嶺西北部石炭紀(jì)地層火山巖的鋯石LA-ICP-MS U-Pb年代學(xué)及其地質(zhì)意義[J]. 巖石學(xué)報(bào), 2010, 26(8): 2452-2464. Zhao Zhi, Chi Xiaoguo, Pan Shiyu, et al. Zircon U-Pb LA-ICP-MS Dating of Carboniferous Volcanics and Its Geological Significance in the Norhwestern Lesser Xing’an Range[J]. Acta Petrologica Sinica, 2010,26(8): 2452-2464.
[33] 葛文春,吳福元,周長(zhǎng)勇,等. 大興安嶺中部烏蘭浩特地區(qū)中生代花崗巖的鋯石U-Pb年齡及地質(zhì)意義[J]. 巖石學(xué)報(bào). 2005,21(3): 749-762. Ge Wenchun, Wu Fuyuan, Zhou Changyong, et al. Zircon U-Pb Ages and Its Significance of the Mesozoic Granites in the Wulanhaote Region, central Da Hinggan Mountain[J]. Acta Petrologica Sinica, 2005,21(3): 749-762.
[34] 柳長(zhǎng)峰,楊帥師,武將偉,等. 內(nèi)蒙古中部四子王旗地區(qū)晚二疊--早三疊世過鋁花崗巖定年及成因[J]. 地質(zhì)學(xué)報(bào), 2010,21(7): 1002-1016. Liu Changfeng, Yang Shuaishi, Wu Jiangwei, et al. Dating and Petrogenesis of Late Permian-Early Triassic Peraluminous Granites in the Siziwangqi Area, Inner Mongolia[J]. Acta Geologica Sinica, 2010,21(7): 1002-1016.
[35] 石玉若,劉敦一,張旗,等. 內(nèi)蒙古中部蘇尼特左旗地區(qū)三疊紀(jì)A型花崗巖鋯石SHRIMP U-Pb年齡及其區(qū)域構(gòu)造意義[J]. 地質(zhì)通報(bào), 2007, 26(2): 183-189. Shi Yuruo, Liu Dunyi, Zhang Qi, et al. SHRIMP U-Pb Zircon Dating of Triassic A-Type Granites in Sonid Zuoqi, Central Inner Mongolia, China and Its Tectonic Implications[J]. Geological Bulletin of China, 2007, 26(2): 183-189.
[36] 張連昌,英基豐,陳志廣,等. 大興安嶺南段三疊紀(jì)基性火山巖時(shí)代與構(gòu)造環(huán)境[J]. 巖石學(xué)報(bào), 2008, 24(4): 911-920. Zhang Lianchang, Ying Jifeng, Chen Zhiguang, et al. Age and Tectonic Setting of Triassic Basic Volcanic Rocks in Southern Da Hinggan Range[J]. Acta Petrologica Sinica, 2008, 24(4): 911-920.
[37] 張萬益,聶鳳軍,高延光,等. 內(nèi)蒙古查干敖包三疊紀(jì)堿性石英閃長(zhǎng)巖的地球化學(xué)特征及成因[J]. 巖石學(xué)報(bào), 2012, 28(2): 525-534. Zhang Wanyi,Nie Fengjun,Gao Yanguang,et al.Geochemical Characteristics and Genesis of Triassic Chagan Obo Alkaline Quartz Diorites in Inner Mongolia[J]. Acta Petrologica Sinica, 2012, 28(2): 525-534.
[38] 張維,簡(jiǎn)平,劉敦一,等. 內(nèi)蒙古中部達(dá)茂旗地區(qū)三疊紀(jì)花崗巖和鉀玄巖的地球化學(xué)、年代學(xué)和Hf同位素特征[J]. 地質(zhì)通報(bào), 2010, 29(7): 821-832. Zhang Wei, Jian Ping, Liu Dunyi, et al. Geochemistry, Geochronology and Hf Isotopic Compositions of Triassic Granodioritediorite and Shoshonite from the Damaoqi Area, Central Inner Mongolia, China[J]. Geological Bulletin of China, 2010, 29(7):821-832.
[39] 周漪,葛文春,王清海. 大興安嶺中部烏蘭浩特地區(qū)中生代花崗巖的成因: 地球化學(xué)及Sr-Nd-Hf同位素制約[J]. 巖石礦物學(xué)雜志. 2011,30(5): 901-923. Zhou Yi, Ge Wenchun, Wang Qinghai. Petrogenesis of Mesozoic Granite in Wulanhaote Region, Central Da Hinggan Mountains: Constraints from Geoche-mistry and Sr-Nd-Hf Isotope[J]. Acta Petrologica Et Mineralogica, 2011,30(5): 901-923.
[40] 徐久磊,鄭常青,施璐,等. 大興安嶺北段雅爾根楚Ⅰ型花崗巖年代學(xué)、巖石地球化學(xué)及其地球動(dòng)力學(xué)意義[J]. 地質(zhì)學(xué)報(bào), 2013,87(9): 1311-1323. Xu Jiulei, Zheng Changqing, Shi Lu, et al. Geochronology and Geochemistry of the Yaergenchu I Type Granites in Northern Da Hinggan Range and Its Geodynamic Implications[J]. Acta Geologica Sinica, 2013, 87(9): 1311-1323.
[41] Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic Maps of the JapaneseIslands: Plate Tectonic Synthesis from 750 Ma to the Present[J]. The Island Arc, 1997, 6: 121-142.
[42] Engebretson D C, Thompson G A, Cox A. Correlation of Plate Motions with Continental Tectonics: Laramide to Basin-Range[J]. Tectonics, 1984, 3(2): 115-119.
[43] Maruyama S, Send T. Orogeny and Relative Plate Motions: Example of the Japanese Islands[J]. Tectonophysics, 1986, 127(3/4): 305-329.
[44] Deino A L, Orsi G, De Vita S, et al. The Age of the Neapolitan Yellow Tuff Caldera-Forming Eruption (Campi Flegrei Caldera-Italy) Assessed by40Ar/39Ar Dating Method[J]. Journal of Volcanology and Geothermal Research, 2004, 133(1/2/3/4): 157-170.
[45] 關(guān)德范. 松遼盆地的形成與發(fā)展[J]. 大慶石油學(xué)院學(xué)報(bào), 1981(4): 1-10. Guan Defan. The Formation and Development of Songliao Basin[J]. Journal of Daqing Petroleum Institute, 1981(4): 1-10.
[46] 李娟,舒良樹. 松遼盆地中、新生代構(gòu)造特征及其演化[J]. 南京大學(xué)學(xué)報(bào):自然科學(xué)版, 2002,38(4): 525-531. Li Juan, Shu Liangshu. Mesozoic-Cenozoic Tectonic Features and Evolution of the Songliao Basin, NE China[J]. Journal of Nanjing University:Natural Sciences, 2002,38(4): 525-531.
[47] 劉福春,程日輝,解啟來,等. 松遼盆地梨樹斷陷頁(yè)巖氣資源潛力評(píng)價(jià)[J]. 吉林大學(xué)學(xué)報(bào):地球科學(xué)版, 2014, 44 (3): 762-773. Liu Fuchun, Cheng Rihui, Xie Qilai, et al. The Potential Evaluation of Shale Gas Resources of Lishu Fault Depression in Songliao Basin[J]. Journal of Jilin University:Earth Science Edition, 2014, 44 (3): 762-773.
[48] 朱光,王道軒,劉國(guó)生,等. 郯廬斷裂帶的演化及其對(duì)西太平洋板塊運(yùn)動(dòng)的響應(yīng)[J]. 地質(zhì)科學(xué),2004, 39(1): 36-49. Zhu Guang, Wang Daoxuan, Liu Guosheng, et al. Evolution of the Tan-Lu Fault Zone and Its Responses to Plate Movements West Pacific Basin[J]. Chinese Journal of Geology, 2004, 39(1): 36-49.
[49] 張興洲, 馬玉霞, 遲效國(guó), 等. 東北及內(nèi)蒙古東部地區(qū)顯生宙構(gòu)造演化的有關(guān)問題[J]. 吉林大學(xué)學(xué)報(bào):地球科學(xué)版, 2012, 42(5): 1269-1285. Zhang Xingzhou, Ma Yuxia, Chi Xiaoguo, et al. Discussion on Phanerozoic Tectonic Evolution in Nor-theastern China[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(5): 1269-1285.
SHRIMP U-Pb Zircon Dating and Mica Laser40Ar-39Ar Ages of the Granitic Mylonites in Ductile Fracture Belt in the Western Songliao Basin and Its Tectonic Implication
Zheng Changqing,Li Juan,Jin Wei,Zhou Jianbo,Shi Lu,Cui Fanghua,Han Xiaomeng
CollegeofEarthSciences,JilinUniversity,Changchun130061,China
The large NNE trending ductile shear zone extends along the western boundary of Songliao basin. Its kinematics and movement age have not been thoroughly studied, which limits the study of the tectonic evolution and the oil and gas exploration of Songliao basin. Tengke, Jinxing, Galashan are typical outcrops of the ductile shear zone and they consist of banded granitic mylonite and augen granitic mylonite. There is one set of mylonitic foliation and lineation in Tengke, Jinxing and Galashan ductile shear zones. The foliation is ca. 110°-135°∠45°-65° with a lineation of ca. 10°-25° to 10°-35°. The motion indicates that the three ductile shear zones are left-lateral strike-ship faults. In this study, the SHRIMP zircon U-Pb dating from a granitic mylonite gives an age of 296.9-299.4 Ma, the biotite laser40Ar-39Ar dating of the same rock samples yields an age of (123.0±0.7) Ma, while the muscovite laser40Ar-39Ar dating of the same rock samples yields an age of (124.4±0.9) Ma. The ductile fracture belt in the western Songliao basin should belong to the northern Nenjiang fault. The age indicates that the protolith of the granitic mylonite is formed in Late Carboniferous and its deformation from the same sample was in Early Cretaceous. These ages show that Songliao basin experienced transgression evolution, and the western boundary was controlled by the Tengke-Jinxing-Galashan shear zone during Early Cretaceous. In consideration of the regional tectonic setting of the Northeastern China, we believe that the formation of this large-scale ductile shear zone with NNE trending might be related to the subduction of Izanagi plate under Eurasian plate.
granitic mylonite; SHRIMP Zircon U-Pb ages; laser40Ar-39Ar mica ages; Songliao basin; Nenjiang fault
10.13278/j.cnki.jjuese.201502102.
2014-08-12
國(guó)家自然科學(xué)基金項(xiàng)目(41472164);中國(guó)石油化工集團(tuán)總公司項(xiàng)目(GO800-06)
鄭常青(1962--),男,教授,博士, 主要從事巖石學(xué)、造山帶變質(zhì)地質(zhì)學(xué)方面的研究,E-mail:zhengchangqing@jlu.edu.cn
李娟(1985--),女,博士研究生,主要從事變質(zhì)巖石學(xué)方面的研究,E-mail:jiqi530@qq.com。
10.13278/j.cnki.jjuese.201502102
P581; P597
A
鄭常青,李娟,金巍,等.松遼盆地西緣斷裂帶中花崗質(zhì)糜棱巖的鋯石SHRIMP和云母氬-氬年齡及其構(gòu)造意義.吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2015,45(2):349-363.
Zheng Changqing,Li Juan,Jin Wei,et al.SHRIMP U-Pb Zircon Dating and Mica Laser40Ar-39Ar Ages of the Granitic Mylonites in Ductile Fracture Belt in the Western Songliao Basin and Its Tectonic Implication.Journal of Jilin University:Earth Science Edition,2015,45(2):349-363.doi:10.13278/j.cnki.jjuese.201502102.
吉林大學(xué)學(xué)報(bào)(地球科學(xué)版)2015年2期