• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage

    2021-10-21 03:31:14YongchaoTangYueWeiAnthonyHollenkampMustafaMusamehAaronSeeberTaoJinXinPanHanZhangYananHouZongbinZhaoXiaojuanHaoJieshanQiuChunyiZhi
    Nano-Micro Letters 2021年11期

    Yongchao Tang ,Yue Wei ,Anthony F.Hollenkamp ,Mustafa Musameh ,Aaron Seeber ,Tao Jin,4,Xin Pan,Han Zhang,Yanan Hou,Zongbin Zhao,Xiaojuan Hao,Jieshan Qiu,Chunyi Zhi

    ABSTRACT As promising anodes for sodium-ion batteries,metal sulfides ubiquitously suffer from low-rate and high-plateau issues,greatly hindering their application in full-cells.Herein,exemplifying carbon nanotubes (CNTs)-stringed metal sulfides superstructure (CSC) assembled by nano-dispersed SnS2 and CoS2 phases,cocktail mediation effect similar to that of high-entropy materials is initially studied in ether-based electrolyte to solve the challenges.The high nano-dispersity of metal sulfides in CSC anode underlies the cocktail-like mediation effect,enabling the circumvention of intrinsic drawbacks of different metal sulfides.By utilizing ether-based electrolyte,the reversibility of metal sulfides is greatly improved,sustaining a long-life effectivity of cocktail-like mediation.As such,CSC effectively overcomes low-rate flaw of SnS2 and highplateau demerit of CoS2,simultaneously realizes a high rate and a low plateau.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1anode at 20 A g-1,far outperforming those of monometallic sulfides (SnS2,CoS2) and their mixtures.Compared with CoS2 phase and SnS2/CoS2 mixture,CSC shows remarkably lowered average charge voltage up to ca. 0.62 V.As-assembled CSC//Na1.5VPO4.8F0.7 full-cell shows a good rate capability(0.05~ 1.0 A g-1,120.3 mAh g-1electrode at 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics analysis verifies that the cocktail-like mediation effect largely boosts the charge transfer and ionic diffusion in CSC,compared with single phase and mixed phases.Further mechanism study reveals that alternative and complementary electrochemical processes between nano-dispersed SnS2 and CoS2 phases are responsible for the lowered charge voltage of CSC.This electrolyte/structure-dependent cocktail-like mediation effect effectively enhances the practicability of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    KEYWORDS Metal sulfide anode;Rate capability;Voltage plateau;Cocktail mediation effect;Sodium-ion batteries

    1 Introduction

    With the merits of high capacity and low cost,metal sulfides have been recognized as promising anode materials for sodium-ion batteries (SIBs) [1,2].However,most metal sulfide anodes examined to date exhibit poor high-rate performance and/or voltage behavior that trends rapidly to relatively high values.The result is full-cells that only operate well at a low rate (≤0.5 A g-1electrode) and maintain average output voltages typically ≤2 V _ENREF_6 [3-8].At this level of performance,such cells are only slightly better than a number of advantages in energy density over aqueous batteries (e.g.,zinc batteries) but noncomparable safety to the latter [9-12].Thus far,many studies on metal sulfide anodes still focus on the enhancement in reversible capacity,rate capability,and cyclability in half-cells.Even few studies concerning the properties of metal sulfide anodes in fullcells,most of them only roughly evaluate the performance of full-cells based on anodes instead of total electrodes.This could result in certain intrinsic flaws of metal sulfide anodes underrated [10].Therefore,from the perspective of full-cell,to solve the low-rate and high-plateau issues of metal sulfide anodes is crucial for the development of high-performance full-cells (Scheme 1a).

    Different metal sulfides usually show electrolyte/structure-dependent electrochemical properties,offering valuable inspiration to rationally design new architectures and investigate their properties in proper electrolyte [3,13,14].Compared with ester-based electrolytes,ether-based electrolytes can effectively inhibit3 the shuttle effect of polysulfides in situ formed during discharge/charge processes,thus more beneficial to obtain reversible properties of metal sulfides [1,13,15].Ferromagnetic metal (Fe,Co,Ni,etc.)sulfides (FMSs) are very promising conversion-reaction anode materials widely studied for SIBs [16-19].Compared with conventional hard carbon or red phosphorous anodes,FMS anodes can display ultrahigh-rate capability (≥20 A g-1) in ether-based electrolyte,holding a great promise in SIBs (Scheme 1b) [20-22].However,FMS anode usually suffers from severe voltage hysteresis and high plateau(~1.9 V vs Na/Na+),largely lowering the discharge plateau of full-cells (Scheme 1c).From this point,mono-component FMSs seem to be difficult to meet the requirements for high-performance full-cells.So far,despite many relevant studies,most of them are inclined to ignoring the severe intrinsic flaws of FMSs,emphasizing to enhance capacity and cyclability.By contrast,another series of metal (Sn,Sb,Bi,etc.) sulfides (AMSs) with conversion/alloying-reaction mechanisms can show acceptable voltage hysteresis and relatively lower voltage plateau [23-30].However,these AMSs always suffer from severe volume change during discharge/charge processes,resulting in poor rate capability and cyclability in ester-based electrolytes (Scheme 1b).Owing to latent catalysis over the decomposition of certain ether,such AMSs remain scarcely investigated in ether-based electrolyte [31,32].Encouragingly,by utilizing fluorine-containing sodium salt in ether solvents as electrolyte,the undesirable catalysis of AMSs can be effectively suppressed to allow a stable battery operation [33,34].The good compatibility enables the investigation of electrochemical properties of FMS/AMS composites in ether-based electrolytes.In the multi-component metal sulfide anodes,each component functions as active material and mutually compete.Thus,the electrochemical behaviors of multi-component metal sulfides are comprehensive results from individual component.Given that exotic properties beyond rule-of-mixtures(cocktail-like mediation effect) in multi-component highentropy nano-systems [35,36],to construct new superstructures assembled by nano-dispersed FMSs and AMSs and to study their properties in ether-based elctrolytes,could be an effective strategy toward high-performance full-cells.Additionally,the poor conductivity of most metal sulfides makes them essential to further combine with highly conductive carbon materials.Such combination can endow rational architectures with fast ion/electron transfer,which is conducive to obtaining satisfactory electrochemical properties [13,37-39].So far,despite some studies pertaining to FMS/AMS composites,the certain agglomeration or phase separation between FMS and AMS remains unsatisfactory to investigate their comprehensive impact.Additionally,such studies mostly involved the electrochemical properties of FMS/AMS composites in carbonate-based electrolytes[40-42].Thus,to study the voltage behavior of metal sulfide composites in ether-based electrolytes will provide a new perspective to pursue desired sodium storage properties.

    Herein,CNTs-stringed metal sulfides superstructure anode assembled by nano-dispersed SnS2and CoS2phases(CSC,C:CNT;S: SnS2;C: CoS2) is engineered to combine the merits of FMS-and AMS-type anode materials,aiming at simultaneously solving the dual-problems of poor rate capability/output-voltage characteristics (Scheme 1b-c).The highly nano-dispersed metal sulfides in CSC show remarkable cocktail-like mediation effect,effectively circumventing intrinsic drawbacks of different metal sulfides.The etherbased electrolyte greatly enhances the reversibility of metal sulfides,which can inhibit the aggregation of homogenous metal sulfides,enabling a long-life effectivity of cocktaillike mediation.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1at 20 A g-1,showing remarkably lowered average charge plateau up to 0.62 V vs Na/Na+,compared with CoS2phase and SnS2/CoS2mixture.The asassembled CSC//Na1.5VPO4.8F0.7full-cell shows a good rate capability (0.05~ 1.0 A g-1,120.3 mAh g-1electrodeat 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics and mechanism studies reveal that the cocktail mediation effect largely boosts the charge transfer and ionic diffusion in CSC;along the diffusion direction of Na+carriers,alternative and complementary electrochemical processes between different nano-dispersed metal sulfides (SnS2,CoS2) and Na+carriers are responsible for the lowered average charge plateau of CSC.This exhibited cocktail-like mediation effect evidently improves the practicability of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    Scheme 1 a Prototype of full-cells.b Rate capability comparison of typical metal sulfide anodes in half-cells.c Discharge plateau comparison in full-cells with different metal sulfide anodes showing the merits of FMS/AMS ultrastructure

    2 Results and Discussion

    2.1 Materials Preparation and Characterization

    The CSC was initially obtained by ion-exchange reaction between thiostannate (SnxSyn-) and cobalt-based zeolitic imidazolate framework (ZIF-67) followed by annealing treatment (Fig.1a).For an enhanced conductivity of the resulting CSC,the ZIF-67 particles (C-ZIF-67) are connected together (‘stringed’) by a network of CNTs (Fig.S1). Sn119NMR spectroscopy reveals that several tetravalent thiostannate species (SnS32-,SnS44-,and Sn2S64-)exist in solution and these are referred to collectively as‘SnxSyn-’ (Fig.S2) [43].Within the ion-exchange process,Co2+in ZIF-67 reacts rapidly with SnxSyn-species,forming a unique superstructure comprised of nano-dispersed CoS2and SnS2phases.The overall reaction follows Eq.(1):

    Fig.1 a Schematic illustration of fabrication process of CSC,inset (right) showing the reaction between ZIF-67 and SnxSyn-.b XRD patterns of CNTs and CSC.c Mass content of CoS2,SnS2,and CNTs in the CSC.d N2 adsorption isotherm of CSC and corresponding pore width distribution.e FE-SEM images of CSC (inset displaying the core/shell structure of CSC).f TEM image of CSC and g TEM-EDS element mapping of CSC including C,Co,Sn,and S.HR-TEM images of h shell and i core in CSC showing co-assembly of nano-CoS2 and -SnS2

    As shown in Fig.1b,X-ray diffraction (XRD) patterns exhibit the diffraction peaks of CoS2(PDF No.00-41-1471),SnS2(PDF No.00-23-0677),and carbon,verifying their presence in the CSC.Compared with standard phase,the reflection for the (0 0 1) plane of SnS2registers a slight shift toward lower angles,implying an expanded interlayer spacing [14,44].The expanded interlayer spacing could be associated with the use of thiostannate precursor and low-temperature ion-exchange process.The ion-exchange reaction of thiostannate with ZIF-67 typically occurs at-5 °C in 1 h,where fast reassembly of SnS2results in the expanded interlayer spacing.Also,the relatively low annealing temperature (450 °C) is beneficial to retain the expanded interlayer spacing of SnS2.The content of carbon nanotubes in CSC is obtained by thermogravimetric analysis (TGA),which is ca.3.75 wt% (Fig.S3).By inductively coupled plasma-mass spectrometry (ICP-MS),the elemental content of CSC is analyzed,revealing that the mole ratio of Co/Sn/S isca.1.00/1.73/5.46 (Table S1).The corresponding mass content of CoS2and SnS2in the CSC is 26.95 and 69.30wt%,respectively (Fig.1c).The type-IV N2adsorption isotherms of CSC present an evident hysteresis loop,indicating the presence of mesopores (Fig.1d).The corresponding pore width (inset) mainly centers in the range of 20-45 nm.The theoretical capacity of CSC anode (CT-CSC) can be evaluated roughly according to the equation: CT-CSC=xCT-CoS2+yCT-SnS2,wherexandyis the percentage content of CoS2and SnS2in the CSC.The CT-CoS2and CT-SnS2are the theoretical capacity of CoS2and SnS2,which is 872 and 1136 mAh g-1,respectively.Thus,CT-CSC=0.2695 × 872+0.695 × 1136=1024.5 mAh g-1.

    Figure 1e exhibits field emission scanning electron microscopy (FE-SEM) images of CSC,which consists of carbon nanotubes-stringed core/shell architecture (inset).Such core/shell structures are greatly influenced by precursors,solvents,reaction temperatures,and concentrations (Figs.S4-S6).The content of SnS2in the CSC can be tuned to some extent by varying the concentration of thiostannate solution (Fig.S6).Transmission electron microscope (TEM) image shows the typical radial morphology of the CSC (Fig.1f).Energy-dispersive spectrometer (EDS) elemental mapping yields a distribution of the elements C,Sn,Co,and S in the CSC,which correspond well with the TEM image (Fig.1g).The details of shell and core were further characterized by TEM.The shell is actually composed of nanosheets (Fig.S7a).As displayed in Fig.1h,high-resolution transmission electron microscope (HR-TEM) image clearly exhibits interplanar spacings of 0.248 and 0.615 nm for CoS2(2 1 0) and SnS2(0 0 1) lattice planes,verifying such nanosheets assembled by nano-dispersed SnS2(red) and CoS2(blue-green).The TEM-EDS line-scan profiles show matched peaks with Co,Sn,S elements,further suggesting the superstructure of shell co-assembled by SnS2and CoS2phases (Fig.S7b).Corresponding to SEM image of CSC (inset),the core of CSC shows an abundant microstructure,in which the pore(green) can be observed (Fig.S8a).As shown in Fig.1i,HR-TEM image of the core also exposes the lattice planes of SnS2(0 0 1) and CoS2(2 1 0),which accord with the corresponding selected area electron diffraction (SAED)pattern (Fig.S8b).Such results verify that the core of CSC is also assembled by nano-dispersed SnS2and CoS2phases.The CSC was further analyzed by X-ray photoelectron spectroscopy (XPS).As shown in Fig.S9,compared with commercial CoS2sample,the high-resolution of XPS of Co 2p of CSC shows aca.0.45 eV shift toward higher binding energy.Moreover,the high-resolution of XPS of Sn 3d of CSC also appears a 0.61 eV shift toward higher binding energy.Such results imply the presence of chemical effect between CoS2and SnS2in CSC anodes [45,46].

    2.2 Half-Cell Properties

    The electrochemical properties of anode materials are firstly evaluated by testing half-cells with Na foil as counter electrode and ether-based electrolytes with fluorine-containing sodium salt.For comparison,commercial SnS2and CoS2powders with well-matched XRD patterns to standard phases are also tested (Fig.S10).Compared with the CSC,the N2isotherms of commercial SnS2and CoS2samples typically exhibit no evident hysteresis loop,whereby the corresponding pore diameter distributions display nonporous properties (Fig.S11).After initial three scans at 0.1 mV s-1,mono-component metal sulfides (CoS2and SnS2) and anodes composed of both compounds show gradually stabilized CV curves (Fig.S12).The initial CV curve of the CSC anode shows three oxidation peaks,which are associated with SnS2phase at 0.70-1.55 V and CoS2phase at 1.70-2.10 V,respectively.The reduction peak at 1.60-1.80 V is correlated with the CoS2phase,while the peaks at 0.50-1.10 V are linked to SnS2and formation of solid electrolyte interphase (Fig.S13a).In subsequent scans,the reduction peak related to CoS2gradually disappears,which could result from electrochemical activation of nano-dispersed SnS2and CoS2phases[16,22].As shown in Fig.2a,the activated CSC delivers a main oxidized peak potential range (0.75-1.65 V),which is close to that of SnS2(0.80-1.45 V) but remarkably lower than that of CoS2(1.30-2.18 V) and SnS2/CoS2mixture(1.25-2.15 V).Correspondingly,CSC anode displays an average charge voltage ofca.1.30 V,which is close to that of SnS2but lower than that of CoS2(ca.1.92 V) (Fig.2b).Compared with commercial SnS2/CoS2mixture with average charge voltage ofca.1.81 V,CSC anode also shows evident low-plateau merit (Fig.2c).This verifies that the construction of a superstructure assembled from nano-dispersed SnS2and CoS2phases is crucial for lowering the intrinsically high plateau of the CoS2phase.Specifically,as shown in Fig.2d,the introduction of nano-dispersed SnS2phase into CSC effectively lowers the intrinsic average charge voltage of CoS2up toca.0.62 V.This in turn will translate to a higher plateau voltage for full-cells,thereby improving their energy density.

    Fig.2 a CV curves and b,c corresponding discharge-charge curves of CSC,commercial SnS2 and CoS2,and SnS2/CoS2 mixture.d Histogram showing the average charge plateau voltages of various anodes in half-cells.e Capacity/charge plateau comparison of different anodes.f Rate capability of CSC,commercial SnS2 and CoS2 in half-cells.g Rate capability comparison of different anodes.h Long-life cyclability of CSC anode at 1 and 10 A g-1 (CE Coulombic efficiency)

    Compared with other metal chalcogenide anodes,CSC exhibits obvious high-capacity and low-plateau advantages(Fig.2e).Moreover,compared with commercial SnS2and CoS2,and mixtures of the two,CSC shows a remarkably improved rate capability,ranging from 0.5 to 20 A g-1with a high capacity of 327.6 mAh g-1anodeat 20 A g-1(Fig.2f).The corresponding discharge/charge curves are exhibited in Fig.S14.When tested with ester-based electrolyte,CSC shows similar CV curves to that in ether-based electrolyte,but the reversible capacity,to the same cutoffvoltage,shrinks markedly (Fig.S15).In addition,compared with in ether-based electrolyte,the rate capability of CSC is greatly deteriorated (Fig.S16),along with an increased resistance of charge transfer (Fig.S17).Such phenomena suggest the key role of ether-based electrolyte in stabilizing metal sulfide anodes and realizing fast charge transfer,which could be associated with good compatibility between metal sulfide and ether solvent [1,15].Evidently,the CSC anode effectively circumvents the intrinsic high voltage of CoS2and low-rate drawback of SnS2in etherbased electrolyte.Compared with other anode materials in half-cells,CSC also shows a remarkable high-rate capability(Fig.2g,Table S2)_ENREF_12_ENREF_13_ENREF_14_ENREF_15_ENREF_16_ENREF_17_ENREF_18 [47-54].The CSC can be cycled at high current densities (1 and 10 A g-1) with excellent long-life cyclability,specifically,410.8 mAh g-1anodeat 10 A g-1over 500 cycles without decay(Fig.2h).

    2.3 Electrochemical Kinetics

    The electrochemical kinetics of the CSC anode in half-cells is studied in detail by reference to the results of electrochemical impedance spectroscopy (EIS).Compared with electrodes made from commercial samples of SnS2and CoS2,the Nyquist curve for a typical CSC anode shows a semi-circle with smaller diameter,implying a faster charge transfer (Fig.3a).Based on the derived equivalent circuit,the resistances of charge transfer for CSC,commercial SnS2and CoS2anodes are 9.5,32.7,and 13.4 Ω,respectively(Fig.3b).To compare Na+diffusion coefficient (DNa+) in CSC and SnS2/CoS2mixture,galvanostatic intermittent titration technique (GITT) was conducted at 0.05 A g-1for 0.5 h,followed by relaxation for 2 h.The typical GITT discharge profiles of CSC and SnS2/CoS2mixture are shown in Fig.3c.As illustrated in Fig.3d,can be calculated following equationDNa+=,where L is Na+diffusion length(cm),τis the current impulse time (s),tis relaxation time(s),ΔESis steady-state potential change (V),ΔEtis the instantaneous potential change (V) used to deduce IR drop[55,56].Corresponding to the GITT profiles,the calculated averageDNa+isca.0.5 × 10-9cm2s-1,which is around twice that in half-cell with SnS2/CoS2mixture (Fig.3e).Evidently,compared with simply mixed SnS2/CoS2anode,the CSC assembly of nano-dispersed SnS2and CoS2particles shows remarkable superiority in terms of charge transfer kinetics and ionic diffusion.

    Next,the pseudocapacitive contribution to charge storage in the Na//CSC half-cell was evaluated,on the basis that this component gives rise to faster charge transfer kinetics.CV curves at different rates are shown in Fig.3f,and the correlation of peak currents (i) and scan rates (v) was assessed against the relationshipi=avb,whereaandbare adjustable constants [57].As shown in Fig.3g,the resultantb-values are 0.98,0.81,and 0.93,respectively,which implies the presence of a substantial pseudocapacitive contribution.The latter can be quantified through the equationi=k1v+k2v1/2,wherek1vandk2v1/2represent pseudocapacitive and iondiffusion controlled contribution,respectively [57-59].As shown in Fig.3h,CSC anodes exhibit dominant pseudocapacitive contributions at scan rates of 0.1,0.2,0.4,0.8,and 1.5 mV s-1,specifically,64.0%,67.0%,71.6%,78.3%,and 86.3%,respectively.Figure 3i displays the CV curves of Na//CSC at 1.5 mV s-1,in which the shaded region represents the pseudocapacitive contribution.This,together with the small charge transfer resistance and highDNa+,explains the excellent rate capability of the CSC anode.

    Fig.3 a Nyquist plots of different anodes in half-cells and b corresponding equivalent circuit and charge transfer resistance (Rct).c GITT profiles of Na//CSC half-cell discharged and d typical profile in a single GITT test.e Na+ diffusion coefficient distribution corresponding to a typical discharge curve of Na//CSC half-cell (inset).f CV curves of Na//CSC half-cell at different scan rates.g b-values obtained by fitting peak current-scan rate correlation based on CV curves of Na//CSC half-cell.h Pseudocapacitive contribution (pseudocapa.contri.) of Na//CSC at different scan rates.i CV profiles of Na//CSC at 1.5 mV s-1 and corresponding pseudocapacitive contribution (shaded region)

    2.4 Electrochemical Mechanism

    To investigate the mechanism that underpins the superior electrochemical behavior of CSC anodes,samples were at various states-of-(dis)charge characterized by ex situ XRD.The copper current collector in a Na//Cu half-cell discharged to 0.4 V shows only the intrinsic diffraction peaks for metallic copper,verifying no evident electrochemical reaction between Na and Cu collector in etherbased electrolyte (Fig.S18).Compared with original samples (CSC,commercial SnS2and CoS2),the samples after electrochemical activation exhibit dramatically different XRD patterns,indicating the occurrence of phase transition (Fig.S19).For CoS2,the relevant electrochemical reactions are as follows: CoS2+xNa++xe-→ NaxCoS2,NaxCoS2+(4 -x)Na++(4 -x)e-? 2Na2S+Co [60].For SnS2,the corresponding electrochemical reactions are as follows:xNa++SnS2+xe-→ NaxSnS2,NaxSnS2+(4-x)Na++(4-x)e-? 2Na2S+Sn,Sn+yNa++ye-? NaySn[40,61].Compared with single phases,the CSC anode shows similar featured diffraction peaks to pure SnS2,while the peaks from the CoS2diffraction pattern are difficult to discern.This could be associated with differences in crystallinity between products derived from SnS2and CoS2.For investigating the mechanism of activated CSC,original CSC anodes were activated for at least 3 cycles to obtain phase-transformed materials.Corresponding to the discharge-charge-time curves in Fig.4a,the activated CSC anodes at various states-of-charge show repeatable XRD patterns,implying good reversibility during the discharge/charge processes (Fig.4b).The peak intensity of XRD pattern of anode (such as C-0.97 V,blue) is lower than that of initially charged anode (such as C-0.97 V,pink),which could be associated with the decreased diameter and gradually aggravated amorphization of metal sulfide phases.Similar phenomena have been reported in other metal chalcogenide anodes such as CoSe2and CoS2[13,60].At different (dis)charge states,the corresponding XRD of anodes shows different patterns,which should be correlated to the successive formation of different products.

    As shown in Fig.4c,HR-TEM image of CSC discharged to 0.4 V displays interplanar spacings of 0.569 and 0.316 nm,corresponding to lattice plane (0 0 4) of Na29.58Sn8and (1 0 1) of Co.Selected area electron diffraction (SAED) patterns reveal the lattice plane (2 1 1)of Co,(5 1 3) and (1 3 1) of Na29.58Sn8in the discharged product (Fig.4d).When charged back to 2.9 V,the crystalline domains in the resulting product are remarkably smaller than those in the discharged state.As shown in Fig.4e,HR-TEM image of CSC charged to 2.9 V displays interplanar spacings of 0.184 and 0.295 nm,which are assigned to lattice plane of (2 2 1)’ of NaxCoS2and (0 0 2)’ of NaxSnS2(with CoS2and SnS2standard phases as reference),respectively.The SAED pattern exhibits typical polycrystalline features,in which lattice plane (2 2 0) of NaxCoS2,(1 0 3) and (1 0 0) of NaxSnS2can be identified (Fig.4f).Based on the characterization above,the progress of electrochemical reduction,followed by oxidation,for the CSC electrode is illustrated in Fig.4g.Typically,SnS2and CoS2phases in CSC experience an initial phase transition to Na+-intercalated intermediates(NaxMS2,M=Sn,Co),which act as active materials for subsequent discharge/charge cycles.Based on the analysis above,the exotic property mediation beyond rule-of-mixtures [35,36] (cocktail mediation effect) among nanodispersed SnS2and CoS2phases in CSC is schematically illustrated in Fig.4h-i.Specifically,along the different ionic diffusion directions,the nano-dispersed SnS2and CoS2phases in CSC will alternatively react with Na+carriers,as schematically illustrated in Fig.4i.The nanodispersion of SnS2and CoS2phases effectively shortens the ion diffusion path,which can kinetically boost electrochemical processes of both metal sulfide anodes.Due to intrinsic thermodynamics difference,the electrochemical competition is present between SnS2and CoS2phases.Also,it does not exclude one of the two phases could show local kinetic merit owing to the diameter difference between them.Thus,in the CSC anode,the alternative electrochemical reaction processes could coexist between the two phases.It enables complementary charge voltage plateau of different metal sulfide phases,resulting in lowered charge plateau of CSC anode.

    Fig.4 a Discharge-charge-time curve and b ex situ XRD patterns of CSC anode at different potentials.c HR-TEM image and d SAED pattern of CSC discharged to 0.4 V.e HR-TEM image and f SAED pattern of CSC charged to 2.9 V.g Schematic illustration of discharge/charge mechanisms of CSC anode.h Schematic illustration of reaction route and charge voltage change trend of CoS2 anode.i Schematic illustration of reaction route and charge voltage change trend of CSC anode,showing cocktail mediation effect among nano-dispersed metal sulfide phases in CSC

    2.5 Full-Cell Properties

    To verify the practicability of the CSC anode,a highvoltage cathode material Na1.5VPO4.8F0.7was employed to assemble CSC//Na1.5VPO4.8F0.7full-cells.Synthesis of Na1.5VPO4.8F0.7followed a modified literature method(Supporting Information),and yielded a micro-particle morphology with a well-matched XRD pattern with the standard phase (Fig.S20) [33].Corresponding to CV curves,Na1.5VPO4.8F0.7cathode showsca.3.9 V discharge plateau with low electrochemical polarization,which is suitable for demonstrating the practicability of different anodes (Fig.S21a,b).The Na1.5VPO4.8F0.7cathode delivers a good rate capability from 0.05 to 0.5 A g-1,showing a high reversible capacity of 124.1 mAh g-1electrodeat 0.05 A/g (Fig.S21c,d).Over 350 cycles at 0.1 A g-1,the Na1.5VPO4.8F0.7cathode shows a capacity of 106.4 mAh g-1electrode,corresponding to a low capacity decay of 0.02%per cycle (Fig.S22).Figure 5a shows the typical CV curves of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7full-cells at 0.5 mV s-1.Evidently,the main redox peaks of CoS2//Na1.5VPO4.8F0.7appear at 1.0-2.5 V,implying that its average discharge voltage is in the range.In contrast,the ranges of main redox peaks of SnS2//Na1.5VPO4.8F0.7and CSC//Na1.5VPO4.8F0.7full-cells are in 2.0-4.0 V,which imply a higher average discharge voltage than that of the former.Figure 5b shows that the discharge capacity available from the CSC//Na1.5VPO4.8F0.7cell,while the voltage is above 2 V,isca.61.7 mAh g-1electrode,which is 1.62 times that of CoS2//Na1.5VPO4.8F0.7.As displayed in Fig.5c,CSC//Na1.5VPO4.8F0.7full-cells present an average discharge voltage of 2.57 V,which is close to that of SnS2//Na1.5VPO4.8F0.7andca.0.62 V higher than that with CoS2anode.The CSC anode confers a significantly higher average voltage during discharge of full-cells when compared with CoS2cells.Compared with other full-cells reported previously,CSC//Na1.5VPO4.8F0.7full-cells also show obvious merits in terms of discharge voltage and capacity (Fig.5d).Moreover,CSC//Na1.5VPO4.8F0.7full-cells show a high-rate capability from 0.05 to 1 A g-1,delivering a high capacity of 120.3 mAh g-1electrodeat 0.05 A g-1(Fig.5e).The corresponding discharge/charge curves are shown in Fig.S23,where the voltage plateaus are well-retained.As exhibited in Fig.5f,compared with other full-cells with different electrode materials,CSC//Na1.5VPO4.8F0.7full-cell delivers comparable merits in terms of energy/power density.[62-67]Specifically,~106.1 Wh kg-1electrode/1278.3 W kg-1electrodeare achieved at 1 A g-1.When operated over 120 cycles at 0.25 A g-1,CSC//Na1.5VPO4.8F0.7full-cell shows a high capacity of 63.0 mAh g-1electrodewith a low decay of 0.20%per cycle (Fig.5g).Such results suggest a good practicability of CSC in full-cells.

    Fig.5 a CV curves of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7 full-cells at 0.5 mV s-1.b Corresponding discharge/charge curves and c discharge plateaus of full-cells at 0.05 A g-1.d Discharge plateau/capacity comparison of different full-cells.e Rate capability of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7 full-cells.f Ragone plots comparison of different fullcells.g Long-life cyclability of CSC//Na1.5VPO4.8F0.7 full-cells at 0.25 A g-1

    3 Conclusions

    Despite with high-capacity and low-cost merits,the ubiquitous low-rate and high-plateau issues greatly lower the practicability of metal sulfide anodes in full-cells.Herein,enlightened by electrolyte/structure-dependent properties of metal sulfides,CSC anode assembled by nano-dispersed SnS2and CoS2phases is engineered as a case study in ether-based electrolyte,simultaneously realizing high-rate and low-plateau properties.The high nano-dispersity of metal sulfides endows CSC anode with evident cocktail mediation effect similar to high-entropy materials,effectively circumventing intrinsic drawbacks of different metal sulfides.The utilized ether-based electrolyte greatly enhances the reversibility of metal sulfides,sustaining a long-life effectivity of cocktail-like mediation.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1anodeat 20 A g-1and remarkably lowered average charge voltage up toca.0.62 V,far outperforming CoS2phase and SnS2/CoS2mixture.The as-assembled CSC//Na1.5VPO4.8F0.7full-cell shows a good rate capability (0.05-1.0 A g-1,120.3 mAh g-1electrodeat 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics and mechanism studies further verify that the cocktail-like mediation effect largely boosts charge transfer and ionic diffusion in CSC,while alternative and complementary electrochemical processes between different nano-dispersed metal sulfides (SnS2and CoS2) and Na+carriers account for the lowered charge plateau of CSC.This work shows a unique electrolyte/structure-dependent cocktaillike mediation effect of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    AcknowledgementsThis work was supported by Guangdong Basic and Applied Basic Research Foundation,China (No.2019A1515110980),research project from the National Natural Science Foundation of China (No.21361162004),China Scholarship Council,and CSIRO.We acknowledge Dr Yesim Gozukara,Dr Malisja de Vries,and Dr Yunxia Yang from CSIRO (Clayton)for their help with material characterization training.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http:// creat iveco mmons.org/ licen ses/ by/4.0/.

    Supplementary InformationThe online version contains supplementary material available at https:// doi.org/ 10.1007/s40820-021-00686-4.

    欧美激情高清一区二区三区 | 成人亚洲欧美一区二区av| 女人久久www免费人成看片| 欧美激情 高清一区二区三区| 亚洲精品美女久久久久99蜜臀 | 性色avwww在线观看| 国精品久久久久久国模美| 中国国产av一级| 少妇猛男粗大的猛烈进出视频| 黑人欧美特级aaaaaa片| 伦理电影免费视频| 最近中文字幕高清免费大全6| 精品少妇内射三级| 中文字幕精品免费在线观看视频| 国产精品一区二区在线不卡| 亚洲精品av麻豆狂野| 亚洲,一卡二卡三卡| 97在线视频观看| 叶爱在线成人免费视频播放| 国语对白做爰xxxⅹ性视频网站| 黑人欧美特级aaaaaa片| 一本久久精品| 日韩免费高清中文字幕av| 在现免费观看毛片| 久久青草综合色| av又黄又爽大尺度在线免费看| 少妇的丰满在线观看| 国产精品欧美亚洲77777| 人妻 亚洲 视频| 亚洲精品中文字幕在线视频| 爱豆传媒免费全集在线观看| 国产精品一区二区在线观看99| 老汉色av国产亚洲站长工具| 飞空精品影院首页| 亚洲精品成人av观看孕妇| 一级黄片播放器| 五月天丁香电影| av不卡在线播放| 久久久久网色| 王馨瑶露胸无遮挡在线观看| videossex国产| 又黄又粗又硬又大视频| 国产精品久久久久成人av| 免费观看无遮挡的男女| 国产亚洲一区二区精品| 亚洲国产精品999| 国产极品天堂在线| 国精品久久久久久国模美| 18禁动态无遮挡网站| 亚洲精品美女久久久久99蜜臀 | 国产高清不卡午夜福利| 久久久久国产一级毛片高清牌| 天天躁日日躁夜夜躁夜夜| 久久久久久人妻| 成人亚洲精品一区在线观看| 国产精品亚洲av一区麻豆 | 韩国精品一区二区三区| 丝袜美腿诱惑在线| 久久久久视频综合| 下体分泌物呈黄色| 欧美老熟妇乱子伦牲交| 欧美日韩一级在线毛片| 亚洲精品av麻豆狂野| 免费黄网站久久成人精品| 岛国毛片在线播放| 一级毛片 在线播放| 一区二区三区乱码不卡18| 亚洲伊人色综图| 夫妻性生交免费视频一级片| 自拍欧美九色日韩亚洲蝌蚪91| av不卡在线播放| 欧美97在线视频| 在线看a的网站| 2018国产大陆天天弄谢| 欧美精品亚洲一区二区| 国产精品二区激情视频| 亚洲天堂av无毛| 免费观看无遮挡的男女| 男女午夜视频在线观看| 亚洲第一区二区三区不卡| 99热国产这里只有精品6| 亚洲,一卡二卡三卡| 国产精品 欧美亚洲| 天堂8中文在线网| 久久久久精品性色| 成年女人在线观看亚洲视频| 日韩人妻精品一区2区三区| 夫妻午夜视频| 国产成人欧美| 国产av码专区亚洲av| 亚洲精品乱久久久久久| 最近2019中文字幕mv第一页| 国产精品二区激情视频| 七月丁香在线播放| 水蜜桃什么品种好| 国产精品不卡视频一区二区| 制服诱惑二区| 人妻人人澡人人爽人人| av视频免费观看在线观看| 亚洲激情五月婷婷啪啪| 日日爽夜夜爽网站| 国产一区有黄有色的免费视频| 波野结衣二区三区在线| 大片电影免费在线观看免费| 麻豆乱淫一区二区| av有码第一页| 免费久久久久久久精品成人欧美视频| 国产精品一二三区在线看| 伦精品一区二区三区| 免费在线观看黄色视频的| 一级毛片我不卡| 国产精品麻豆人妻色哟哟久久| 寂寞人妻少妇视频99o| 亚洲内射少妇av| 在线免费观看不下载黄p国产| 亚洲视频免费观看视频| 免费播放大片免费观看视频在线观看| 亚洲欧美中文字幕日韩二区| 亚洲在久久综合| 26uuu在线亚洲综合色| 午夜日韩欧美国产| h视频一区二区三区| 免费人妻精品一区二区三区视频| 嫩草影院入口| 老女人水多毛片| 高清黄色对白视频在线免费看| 激情五月婷婷亚洲| 九九爱精品视频在线观看| 国产熟女欧美一区二区| 欧美精品av麻豆av| 久久精品国产亚洲av天美| av.在线天堂| 国产精品 欧美亚洲| 另类精品久久| 国产免费现黄频在线看| 国产亚洲最大av| 超碰97精品在线观看| 精品酒店卫生间| av免费在线看不卡| 韩国av在线不卡| 欧美日本中文国产一区发布| 啦啦啦在线观看免费高清www| 国产成人aa在线观看| 免费在线观看完整版高清| 国产国语露脸激情在线看| 亚洲精品国产av成人精品| 男女无遮挡免费网站观看| 国产精品偷伦视频观看了| av卡一久久| 在线观看一区二区三区激情| 国产精品国产三级专区第一集| 91在线精品国自产拍蜜月| 国产在线一区二区三区精| 纵有疾风起免费观看全集完整版| 综合色丁香网| videos熟女内射| a级毛片在线看网站| 天美传媒精品一区二区| 国产免费又黄又爽又色| 69精品国产乱码久久久| 欧美人与性动交α欧美软件| 不卡视频在线观看欧美| 国产成人免费观看mmmm| 韩国高清视频一区二区三区| 国产成人精品久久久久久| 伦理电影免费视频| 丝袜喷水一区| 欧美日韩一级在线毛片| 一级a爱视频在线免费观看| 国产精品二区激情视频| av网站在线播放免费| 另类精品久久| 国产成人精品久久二区二区91 | 国产在视频线精品| 99国产精品免费福利视频| 美女国产视频在线观看| 国产乱来视频区| 国产精品一区二区在线观看99| 国产男女内射视频| 日韩制服丝袜自拍偷拍| 国产极品天堂在线| 国产精品嫩草影院av在线观看| 蜜桃在线观看..| 两性夫妻黄色片| 精品国产国语对白av| 成人午夜精彩视频在线观看| 亚洲伊人久久精品综合| 建设人人有责人人尽责人人享有的| 成年人免费黄色播放视频| 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| 国产一区二区三区综合在线观看| 亚洲精品国产一区二区精华液| 在线观看www视频免费| 黑丝袜美女国产一区| 国产精品免费大片| 精品人妻一区二区三区麻豆| 黄片无遮挡物在线观看| 亚洲精品日本国产第一区| 国产探花极品一区二区| 午夜久久久在线观看| 如何舔出高潮| 国产成人精品无人区| av国产精品久久久久影院| 波多野结衣av一区二区av| 视频在线观看一区二区三区| 夜夜骑夜夜射夜夜干| 人人妻人人爽人人添夜夜欢视频| 亚洲欧洲日产国产| 国产亚洲精品第一综合不卡| 一区在线观看完整版| 99久久精品国产国产毛片| 久久av网站| 亚洲成国产人片在线观看| 亚洲精品成人av观看孕妇| 国产男女超爽视频在线观看| 免费观看性生交大片5| 天天影视国产精品| 久久久精品国产亚洲av高清涩受| 亚洲精品中文字幕在线视频| 伊人亚洲综合成人网| 亚洲,一卡二卡三卡| 在线观看免费视频网站a站| 日韩精品有码人妻一区| 一级黄片播放器| 久久久久久久久久久免费av| 久久久久久久久免费视频了| 日韩精品免费视频一区二区三区| 七月丁香在线播放| 在线观看www视频免费| 亚洲第一区二区三区不卡| 看免费av毛片| 在线观看免费视频网站a站| 国产欧美日韩综合在线一区二区| 丰满饥渴人妻一区二区三| 一区二区日韩欧美中文字幕| 99久久中文字幕三级久久日本| 免费看av在线观看网站| freevideosex欧美| 老司机亚洲免费影院| 黄片小视频在线播放| 免费播放大片免费观看视频在线观看| 免费看av在线观看网站| 男女下面插进去视频免费观看| 亚洲精品av麻豆狂野| 一区福利在线观看| 国产精品亚洲av一区麻豆 | 久久精品国产亚洲av涩爱| 十分钟在线观看高清视频www| 蜜桃国产av成人99| 亚洲av中文av极速乱| 丰满少妇做爰视频| 免费大片黄手机在线观看| 国产激情久久老熟女| 成年av动漫网址| 亚洲精品久久久久久婷婷小说| 日日爽夜夜爽网站| 成年女人在线观看亚洲视频| 十分钟在线观看高清视频www| 国产成人欧美| 欧美精品一区二区免费开放| 国产精品免费视频内射| 边亲边吃奶的免费视频| 我要看黄色一级片免费的| 黄色配什么色好看| 人人澡人人妻人| 精品一区二区三卡| 日韩一卡2卡3卡4卡2021年| 黄网站色视频无遮挡免费观看| 国产福利在线免费观看视频| 国产精品久久久久成人av| 岛国毛片在线播放| 最近中文字幕高清免费大全6| 午夜福利一区二区在线看| 日本vs欧美在线观看视频| 999精品在线视频| 精品福利永久在线观看| 欧美人与性动交α欧美软件| 叶爱在线成人免费视频播放| videossex国产| 老汉色av国产亚洲站长工具| 在线观看美女被高潮喷水网站| 男人添女人高潮全过程视频| 一本—道久久a久久精品蜜桃钙片| 欧美亚洲日本最大视频资源| 街头女战士在线观看网站| 中文乱码字字幕精品一区二区三区| 国产成人精品福利久久| 校园人妻丝袜中文字幕| 午夜福利,免费看| 多毛熟女@视频| 久久久国产欧美日韩av| 女人精品久久久久毛片| 国产日韩欧美亚洲二区| 99热网站在线观看| 九九爱精品视频在线观看| 街头女战士在线观看网站| 国产精品99久久99久久久不卡 | 日韩中文字幕视频在线看片| av在线老鸭窝| 亚洲av男天堂| videos熟女内射| 成人国产麻豆网| 老汉色∧v一级毛片| 婷婷色麻豆天堂久久| 免费在线观看视频国产中文字幕亚洲 | 国产白丝娇喘喷水9色精品| 久久午夜综合久久蜜桃| 宅男免费午夜| 亚洲av电影在线观看一区二区三区| 国产xxxxx性猛交| 亚洲伊人久久精品综合| 国产乱人偷精品视频| 69精品国产乱码久久久| 晚上一个人看的免费电影| 国产精品国产三级专区第一集| 下体分泌物呈黄色| 老鸭窝网址在线观看| 一本大道久久a久久精品| 90打野战视频偷拍视频| 在线观看免费高清a一片| 国产毛片在线视频| 国产成人av激情在线播放| 蜜桃在线观看..| 夫妻午夜视频| av视频免费观看在线观看| 高清av免费在线| 午夜影院在线不卡| 国产精品人妻久久久影院| 丁香六月天网| 久久久久视频综合| 精品一区二区三卡| 国产精品三级大全| 亚洲人成网站在线观看播放| av天堂久久9| 赤兔流量卡办理| 精品午夜福利在线看| 精品亚洲成a人片在线观看| 国产国语露脸激情在线看| 国产精品蜜桃在线观看| av免费观看日本| 国产精品久久久久久精品古装| 亚洲精品久久久久久婷婷小说| 国产精品99久久99久久久不卡 | 国产精品欧美亚洲77777| 男人添女人高潮全过程视频| 色哟哟·www| 青春草视频在线免费观看| 99久久中文字幕三级久久日本| 九九爱精品视频在线观看| 看非洲黑人一级黄片| 欧美 日韩 精品 国产| 91aial.com中文字幕在线观看| 国产精品一二三区在线看| 欧美日韩成人在线一区二区| 亚洲成人一二三区av| 91国产中文字幕| 黄网站色视频无遮挡免费观看| 亚洲av中文av极速乱| 亚洲欧美日韩另类电影网站| 亚洲av中文av极速乱| 少妇人妻精品综合一区二区| 免费人妻精品一区二区三区视频| 亚洲精品中文字幕在线视频| 26uuu在线亚洲综合色| 中文字幕制服av| 亚洲熟女精品中文字幕| 亚洲国产欧美日韩在线播放| 99热国产这里只有精品6| 狠狠精品人妻久久久久久综合| 日本av免费视频播放| 超碰97精品在线观看| 国产精品一国产av| 三上悠亚av全集在线观看| 国产熟女午夜一区二区三区| 欧美成人午夜免费资源| 99久久中文字幕三级久久日本| 国产野战对白在线观看| 大码成人一级视频| 精品人妻在线不人妻| 有码 亚洲区| 成年女人在线观看亚洲视频| 国产视频首页在线观看| 欧美激情 高清一区二区三区| 9色porny在线观看| 黄色一级大片看看| 咕卡用的链子| 男女下面插进去视频免费观看| 美女国产高潮福利片在线看| 天天躁夜夜躁狠狠久久av| 亚洲精品第二区| 欧美日韩成人在线一区二区| 欧美成人精品欧美一级黄| 欧美bdsm另类| 久久精品国产a三级三级三级| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂| 18禁裸乳无遮挡动漫免费视频| 午夜影院在线不卡| 黑人猛操日本美女一级片| 热99久久久久精品小说推荐| 伦理电影免费视频| 不卡视频在线观看欧美| 精品卡一卡二卡四卡免费| 亚洲人成77777在线视频| 午夜福利影视在线免费观看| 男女免费视频国产| 一边摸一边做爽爽视频免费| 中文欧美无线码| 欧美日韩亚洲高清精品| 日本wwww免费看| 久久久a久久爽久久v久久| 亚洲国产欧美在线一区| 另类亚洲欧美激情| 国产综合精华液| 黄色一级大片看看| 日韩免费高清中文字幕av| 久久99一区二区三区| 最近2019中文字幕mv第一页| 香蕉国产在线看| 国产精品久久久久久久久免| 只有这里有精品99| 黄色 视频免费看| 日韩不卡一区二区三区视频在线| 精品亚洲成国产av| av网站在线播放免费| 久久毛片免费看一区二区三区| www.熟女人妻精品国产| 国产一区二区三区综合在线观看| 久久精品国产综合久久久| 日本-黄色视频高清免费观看| 国产老妇伦熟女老妇高清| 母亲3免费完整高清在线观看 | 欧美xxⅹ黑人| 国产精品99久久99久久久不卡 | 校园人妻丝袜中文字幕| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 黄频高清免费视频| 亚洲五月色婷婷综合| 在线观看免费日韩欧美大片| 18禁观看日本| 可以免费在线观看a视频的电影网站 | 亚洲,欧美,日韩| 亚洲 欧美一区二区三区| 久久久久久久久久人人人人人人| 免费观看无遮挡的男女| 成人亚洲欧美一区二区av| 国产精品嫩草影院av在线观看| 亚洲激情五月婷婷啪啪| 女的被弄到高潮叫床怎么办| 一本—道久久a久久精品蜜桃钙片| 成年动漫av网址| 9色porny在线观看| 老司机影院毛片| 成年人午夜在线观看视频| 亚洲一区二区三区欧美精品| 狠狠精品人妻久久久久久综合| 成人国产av品久久久| 国产成人精品福利久久| 久久国内精品自在自线图片| 电影成人av| 成人二区视频| 十分钟在线观看高清视频www| 午夜福利乱码中文字幕| xxxhd国产人妻xxx| 国产熟女欧美一区二区| 少妇人妻精品综合一区二区| 国产极品粉嫩免费观看在线| 在线观看一区二区三区激情| 国产日韩一区二区三区精品不卡| av有码第一页| 国产老妇伦熟女老妇高清| av在线观看视频网站免费| 女人被躁到高潮嗷嗷叫费观| 成年女人毛片免费观看观看9 | 丝袜脚勾引网站| 91国产中文字幕| 99久久人妻综合| 高清av免费在线| 欧美人与善性xxx| 咕卡用的链子| 亚洲精品视频女| 欧美 日韩 精品 国产| 中国三级夫妇交换| 熟女av电影| 美女福利国产在线| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 精品久久久久久电影网| 青春草视频在线免费观看| 久久久久久久久免费视频了| 丝袜美腿诱惑在线| 麻豆乱淫一区二区| 亚洲伊人久久精品综合| 亚洲人成网站在线观看播放| 91精品伊人久久大香线蕉| 高清黄色对白视频在线免费看| 久久久精品区二区三区| 色吧在线观看| 亚洲国产精品999| 午夜91福利影院| 电影成人av| 三上悠亚av全集在线观看| 亚洲av福利一区| 亚洲久久久国产精品| 精品久久久精品久久久| 国产精品国产三级专区第一集| 黑人巨大精品欧美一区二区蜜桃| 国产精品 欧美亚洲| 欧美激情极品国产一区二区三区| 国产老妇伦熟女老妇高清| 如日韩欧美国产精品一区二区三区| 99久久人妻综合| 欧美国产精品一级二级三级| videosex国产| 9热在线视频观看99| av福利片在线| 一区福利在线观看| 国产1区2区3区精品| 交换朋友夫妻互换小说| 国产欧美日韩一区二区三区在线| 大码成人一级视频| 国产在线视频一区二区| 中文乱码字字幕精品一区二区三区| 亚洲熟女精品中文字幕| 欧美在线黄色| 啦啦啦在线免费观看视频4| 永久网站在线| 成人二区视频| 亚洲综合色网址| 欧美日本中文国产一区发布| 久久久久网色| 久久久久精品久久久久真实原创| 日韩一区二区视频免费看| 高清不卡的av网站| 一级片免费观看大全| 久久人人97超碰香蕉20202| 男女边吃奶边做爰视频| 日韩熟女老妇一区二区性免费视频| 色婷婷久久久亚洲欧美| 日韩中字成人| 午夜免费观看性视频| 久久国产亚洲av麻豆专区| 一级片免费观看大全| 日韩制服丝袜自拍偷拍| av一本久久久久| 国产高清不卡午夜福利| 青春草国产在线视频| 色婷婷av一区二区三区视频| 18禁国产床啪视频网站| 精品久久久精品久久久| 国产精品无大码| 国产免费又黄又爽又色| 黄色毛片三级朝国网站| 男女边摸边吃奶| 伊人久久国产一区二区| 亚洲情色 制服丝袜| 免费女性裸体啪啪无遮挡网站| 丰满饥渴人妻一区二区三| 中文字幕色久视频| 捣出白浆h1v1| 水蜜桃什么品种好| 少妇人妻久久综合中文| 午夜福利,免费看| 亚洲av免费高清在线观看| 欧美日韩精品成人综合77777| h视频一区二区三区| 大片免费播放器 马上看| 丝袜人妻中文字幕| 精品亚洲成a人片在线观看| 天堂8中文在线网| 男女下面插进去视频免费观看| 欧美成人精品欧美一级黄| 午夜激情久久久久久久| www.av在线官网国产| 狂野欧美激情性bbbbbb| 一级毛片 在线播放| 久久精品国产亚洲av涩爱| 久久久久精品性色| 少妇人妻 视频| 亚洲精华国产精华液的使用体验| 丰满少妇做爰视频| 国产 一区精品| 男人添女人高潮全过程视频| 国产精品久久久久久av不卡| 免费人妻精品一区二区三区视频| 免费少妇av软件| 啦啦啦在线免费观看视频4| 亚洲激情五月婷婷啪啪| 丝袜喷水一区| 中文字幕av电影在线播放| 91午夜精品亚洲一区二区三区| 国产乱人偷精品视频| 欧美日韩视频高清一区二区三区二| 寂寞人妻少妇视频99o| 伊人久久大香线蕉亚洲五| 成人18禁高潮啪啪吃奶动态图| 欧美日韩一区二区视频在线观看视频在线| 飞空精品影院首页| 91久久精品国产一区二区三区| 大陆偷拍与自拍| 在线观看www视频免费| 精品国产一区二区久久| 在线观看一区二区三区激情| 我的亚洲天堂| 交换朋友夫妻互换小说| 亚洲美女搞黄在线观看| 亚洲国产欧美在线一区| 人人妻人人爽人人添夜夜欢视频| 午夜福利影视在线免费观看| 久久精品国产自在天天线| 久久毛片免费看一区二区三区| 超碰成人久久| 日本wwww免费看|