高建軍,谷昭艷,許永星,梁勃然,韋加美,高月花,那宇
死亡相關(guān)蛋白(DAP-5)在慶大霉素誘導(dǎo)的人腎小管上皮細(xì)胞凋亡過程中的表達(dá)變化及機(jī)制
高建軍,谷昭艷,許永星,梁勃然,韋加美,高月花,那宇
目的建立慶大霉素誘導(dǎo)人腎小管上皮細(xì)胞(HK2)凋亡模型;觀察死亡相關(guān)蛋白5(DAP5)在HK2凋亡過程中的表達(dá)變化,并探討其與PI3K/Akt/mTOR通路之間的關(guān)系。方法以3.2mg/ml慶大霉素作用于HK2,應(yīng)用瓊脂糖凝膠電泳觀察凋亡細(xì)胞DNA條帶,流式細(xì)胞儀測(cè)定細(xì)胞凋亡率。采用Western blotting法觀察DAP5與Akt、p-Akt表達(dá)的改變,應(yīng)用雷帕霉素阻斷PI3K/Akt/mTOR通路后觀察DAP5的表達(dá)變化。結(jié)果慶大霉素作用24h后HK2細(xì)胞即出現(xiàn)凋亡,凋亡率隨時(shí)間延長(zhǎng)而增加,24、36、72h的凋亡率分別為5.9%,23.0%,49.9%(P<0.05)。與此同時(shí),細(xì)胞DAP5活化裂解生成DAP5/p86,且表達(dá)逐漸增加(P<0.05)。在凋亡的同時(shí)p-Akt蛋白的表達(dá)水平也逐漸增加(P<0.05),應(yīng)用雷帕霉素阻斷PI3K/Akt/mTOR通路后,裂解產(chǎn)生的DAP5/p86減少(P<0.05)。結(jié)論慶大霉素可誘導(dǎo)HK2細(xì)胞發(fā)生細(xì)胞凋亡,凋亡率隨時(shí)間的延長(zhǎng)而增加。在誘導(dǎo)HK2細(xì)胞凋亡過程中DAP5裂解活化產(chǎn)生DAP5/p86,且這一過程可能是經(jīng)過PI3K/ Akt/mTOR途徑來完成的。
慶大霉素;凋亡;死亡相關(guān)蛋白;腎小管上皮細(xì)胞
氨基糖甙類抗生素的腎毒性已為臨床所證實(shí),其臨床表現(xiàn)主要為急性腎小球壞死和急性腎衰竭,表現(xiàn)為組織及功能上的近端小管毒性損傷[1-2]。氨基糖甙類抗生素進(jìn)入腎小管上皮細(xì)胞(尤其是近端小管上皮細(xì)胞)后,可造成溶酶體酶大量漏出。繼而損害線粒體等細(xì)胞內(nèi)結(jié)構(gòu),細(xì)胞出現(xiàn)變性、壞死[3]。慶大霉素作為氨基糖甙類的代表性藥物,除了造成溶酶體的改變,致細(xì)胞變性、壞死之外,同時(shí)也可使腎臟近端小管上皮細(xì)胞表現(xiàn)出凋亡特征,但慶大霉素誘導(dǎo)腎小管上皮細(xì)胞凋亡的具體機(jī)制尚不完全清楚。
死亡相關(guān)蛋白5(death-associated protein 5,DAP5)是一真核細(xì)胞翻譯調(diào)節(jié)因子,其在調(diào)控蛋白質(zhì)翻譯及細(xì)胞凋亡方面均有重要作用[4-5]。在各種應(yīng)激狀態(tài)下DAP5的表達(dá)增加,通過調(diào)控部分凋亡相關(guān)蛋白的翻譯來發(fā)揮其抑制凋亡的作用[6-8],以維持細(xì)胞正常的生理功能。在慶大霉素誘導(dǎo)的腎小管上皮細(xì)胞凋亡過程中DAP5所發(fā)生的變化至今未見報(bào)道。本實(shí)驗(yàn)在體外觀察慶大霉素誘導(dǎo)的人腎小管上皮細(xì)胞凋亡模型中DAP5表達(dá)的變化,以期進(jìn)一步闡明慶大霉素的腎毒性機(jī)制,并尋找有效的對(duì)抗腎毒性的治療手段。
1.1 實(shí)驗(yàn)材料及儀器 人腎小管上皮細(xì)胞(HK2)購于美國(guó)菌種保藏中心(ATCC)。培養(yǎng)條件為45% DMEM+45% F12+10%胎牛血清,37℃,5%CO2。硫酸慶大霉素(gentamicin)溶液購于美國(guó)Sigma公司;DMEM、F12培養(yǎng)基購于美國(guó)Gibco公司,胎牛血清、Mede1.680型Mic130platereader(美國(guó)Bio Rad公司);DU800型Speetropho.tometer(美國(guó)Beckman Coulter公司)。
1.2 凋亡細(xì)胞DNA片段的檢測(cè) 將慶大霉素溶液(終濃度3.2mg/ml)與處于對(duì)數(shù)生長(zhǎng)期的HK2細(xì)胞分別共同培養(yǎng)12、24、48、72h,以不加慶大霉素溶液進(jìn)行培養(yǎng)24h的細(xì)胞作為陰性對(duì)照。經(jīng)胰蛋白酶消化細(xì)胞后收集細(xì)胞,按天根生化科技(北京)有限公司基因組DAN提取試劑盒說明書提取細(xì)胞DNA,在加有EB的1.2%的瓊脂糖凝膠上電泳后,在紫外燈下觀察并攝影。
1.3 流式細(xì)胞儀檢測(cè)細(xì)胞凋亡率 收集3×105個(gè)細(xì)胞,加入6孔板中,培養(yǎng)24h細(xì)胞貼壁后,棄去培養(yǎng)液,用無血清的培養(yǎng)集同步培養(yǎng)12h后,分別加入正常培養(yǎng)液及3.2mg/ml慶大霉素溶液的培養(yǎng)液,繼續(xù)培養(yǎng)24、48、72h后終止培養(yǎng)。收集細(xì)胞用PBS清洗2遍,以70%乙醇溶液固定4h以上,離心棄去固定液,3ml PBS重懸5min,500~1000r/min離心5min,棄去PBS,加入FITC標(biāo)記的Annexin-V,室溫4℃避光30min,再加入PI,避光反應(yīng)5min,加入適量Buffer,上流式細(xì)胞儀測(cè)定10 000個(gè)細(xì)胞的細(xì)胞凋亡率。實(shí)驗(yàn)重復(fù)3次。
1.4 Western blotting法檢測(cè)Akt、p-Akt及DAP5的表達(dá) 細(xì)胞接種于6孔板中培養(yǎng)24h后,移去原有培養(yǎng)液,加入含3.2mg/ml慶大霉素的培養(yǎng)液,分別培養(yǎng)12、24、48、72h后終止培養(yǎng)。以不加慶大霉素培養(yǎng)24h作為空白對(duì)照。經(jīng)胰蛋白酶消化后收集細(xì)胞,加入RIPA裂解液(1ml 1×RIPA+1μl leupeptin+1μl aprotinin+10μl PMSF)裂解細(xì)胞,冰浴30min,在4℃下12 000r/min離心30min。用BCA法測(cè)定細(xì)胞蛋白濃度后加入RIPA配成等濃度等體積,加入等體積2×SDS,100℃煮沸5min蛋白變性,冰浴10min。經(jīng)聚丙烯酰胺凝膠電泳,100V電泳4h后轉(zhuǎn)移至醋酸纖維素膜,轉(zhuǎn)膜電流50mA,時(shí)間2h。以脫脂奶粉封閉1h,分別加入DAP5(1:200)、Akt(1:800)、p-Akt(1:300)及β-actin(1:1000)一抗,4℃過夜,TBST充分洗膜,加入對(duì)應(yīng)二抗,室溫下孵育1h,TBST洗膜,加熒光液后于暗室顯影。
1.5 Western blotting檢測(cè)雷帕霉素(rapamicin)作用后DAP5的表達(dá) 細(xì)胞接種于6孔板中培養(yǎng)24h后,移去原有培養(yǎng)液,分別設(shè)立正常對(duì)照組、慶大霉素組(3.2mg/ml gentamicin)、慶大霉素+雷帕霉素組(3.2mg/ml gentamicin+1ng/ml rapamicin),培養(yǎng)72h后終止培養(yǎng)。余消化細(xì)胞,提取蛋白,Western blotting法檢測(cè)DAP5,方法同1.4。
1.6 統(tǒng)計(jì)學(xué)處理 采用SPSS 17.0 軟件進(jìn)行分析。所有數(shù)據(jù)均用表示,多組間比較采用單因素方差分析檢驗(yàn),組間兩兩比較采用LSD-t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 瓊脂糖凝膠電泳檢測(cè)結(jié)果 對(duì)照組細(xì)胞基因組DNA經(jīng)瓊脂糖電泳后未見不同大小片段的DNA梯形條帶,僅見距離加樣孔不遠(yuǎn)的一條大分子基因組DNA條帶;而以3.2mg/ml的慶大霉素干預(yù)24h后細(xì)胞DNA電泳均呈現(xiàn)出特征性梯形條帶,大小為180~200bp的不同條帶,其中48~72h時(shí)的細(xì)胞DNA條帶較多,也較為清晰。表明凋亡細(xì)胞隨時(shí)間而增加(圖1)。
2.2 細(xì)胞凋亡檢測(cè)結(jié)果 應(yīng)用流式細(xì)胞儀分析慶大霉素干預(yù)后的HK2細(xì)胞的凋亡率,可觀察到隨時(shí)間的延長(zhǎng),Annexin V染色陽性細(xì)胞增多,表明凋亡率增加(P<0.05,圖2),24、36、72h的凋亡率分別為5.9%、23.0%和49.9%。
2.3 Western blotting法檢測(cè)DAP5及Akt的表達(dá) 用3.2mg/ml慶大霉素干預(yù)HK2細(xì)胞后,細(xì)胞中p-Akt及DAP5蛋白表達(dá)的檢測(cè)如圖3A,應(yīng)用β-actin作為內(nèi)參照,對(duì)兩者的比值進(jìn)行統(tǒng)計(jì)分析,結(jié)果表明隨時(shí)間延長(zhǎng),p-Akt表達(dá)增加,DAP5/p97表達(dá)下降。同時(shí)發(fā)現(xiàn),隨時(shí)間的延長(zhǎng),DAP5/p86逐漸出現(xiàn)且表達(dá)增加,證實(shí)在慶大霉素的作用下,DAP5/p97裂解為DAP5/p86,且隨時(shí)間的延長(zhǎng)而增加(圖3B)。
圖1 DNA瓊脂糖凝膠電泳檢測(cè)HK2細(xì)胞凋亡Fig.1 Detection of HK2 apoptosis by DNA agarose gel electrophoresis1. Control; 2. 24h; 3. 48h; 4. 72h; M. Molecule marker
2.4 雷帕霉素對(duì)DAP5蛋白表達(dá)的影響 雷帕霉素+慶大霉素組與慶大霉素組比較,DAP5/p97表達(dá)明顯增加(P<0.05),DAP5/p86表達(dá)明顯下降(P<0.05)。雷帕霉素+慶大霉素組與正常組比較差異無統(tǒng)計(jì)學(xué)意義(圖4)。
圖2 慶大霉素處理不同時(shí)間細(xì)胞凋亡的變化Fig.2 HK2 apoptosis after gentamicin treatment (flow cytometry)(1)P<0.05 compared with control group; (2)P<0.05 compared with 24h group; (3)P<0.05 compared with 36h group
圖3 慶大霉素處理不同時(shí)間DAP5及Akt的表達(dá)變化Fig.3 Expressions of DAP5 and Akt after gentamicin treatment (Western blotting)A. Western blotting; B. Quantitative analysis; (1)P<0.05, (2)P<0.01 compared with 0h group; (3)P<0.05 compared with 24h group; (4)P<0.01 compared with 24h group
圖4 雷帕霉素作用后各組DAP5蛋白表達(dá)的Western blotting檢測(cè)結(jié)果Fig.4 Expression of DAP5 after rapamycin treatment (Western blotting)A. Western blotting; B. Quantitative analysis; (1)P<0.05 compared with control group
慶大霉素的腎毒性已受到廣泛關(guān)注,但其機(jī)制尚未完全闡明,目前有線粒體損傷、溶酶體損傷和氧自由基損傷等學(xué)說。有研究證實(shí),腎小管上皮細(xì)胞在應(yīng)激狀態(tài)下可通過多條途徑發(fā)生凋亡[9]。接受小劑量慶大霉素治療的大鼠近曲小管上皮細(xì)胞可發(fā)生明顯的凋亡而無壞死的發(fā)生,且凋亡程度與用藥劑量間呈線性關(guān)系[10]。
本研究以人近端腎小管上皮細(xì)胞HK2為研究對(duì)象,將慶大霉素刺激后的細(xì)胞DNA行瓊脂糖凝膠電泳可觀察到細(xì)胞凋亡的特異性“梯形”DNA條帶,反映了細(xì)胞核內(nèi)核酸內(nèi)切酶作用的結(jié)果。流式細(xì)胞儀檢測(cè)發(fā)現(xiàn)凋亡率隨慶大霉素作用時(shí)間的延長(zhǎng)而增加。上述結(jié)果證實(shí)慶大霉素的腎毒性是部分通過誘導(dǎo)小管上皮細(xì)胞凋亡而實(shí)現(xiàn)的。
DAP5為eIF4G翻譯起始因子家族中的一員,分子量為97kD,故又名p97。真核生物蛋白質(zhì)的翻譯起始有賴于eIF4G結(jié)合eIF4A和eIF4E形成起始復(fù)合物eIF4F。其中eIF4A的結(jié)合位點(diǎn)位于eIF4G的中部及C末端;eIF4E的結(jié)合位點(diǎn)在eIF4G的N末端;eIF4G中部還包涵一個(gè)eIF3結(jié)合位點(diǎn),eIF4G和eIF3的相互作用能募集40S核糖體亞單位。因DAP5擁有類似于eIF4G羧基端的eIF4A及eIF3結(jié)合位點(diǎn),因此能競(jìng)爭(zhēng)性抑制eIF4G與eIF4A和eIF3的結(jié)合;但又不能與eIF4E結(jié)合,因此無法使eIF4E與mRNA帽狀結(jié)構(gòu)結(jié)合,因此,其可抑制起始翻譯復(fù)合物的形成,阻斷蛋白質(zhì)的翻譯。另一方面,除經(jīng)典的依賴帽子結(jié)構(gòu)的翻譯途徑外,真核生物中同時(shí)也存在另一條稱為經(jīng)內(nèi)部核糖體進(jìn)入位點(diǎn)(Internal Ribosome Entry Site,IRES)的翻譯途徑。這一途徑在IRES反式作用因子的協(xié)助下能夠直接啟動(dòng)翻譯,而不需要翻譯起始復(fù)合物的形成。目前發(fā)現(xiàn)的IRES反式作用因子有DAP5、PTB、hnRNPK等[11]。這一翻譯途徑在正常情況下受到嚴(yán)密的調(diào)控,而在輻射、缺氧、凋亡、休克及氨基酸饑餓等對(duì)生存不利的條件下,即使依賴帽狀結(jié)構(gòu)的翻譯途徑受阻甚至關(guān)閉,經(jīng)IRES途徑介導(dǎo)的翻譯仍能進(jìn)行,從而維系細(xì)胞的基本生理功能[12-13]。
隨著研究的不斷深入,人們發(fā)現(xiàn)在凋亡環(huán)境中DAP5/p97可裂解掉C末端成為86kD的蛋白DAP5/ p86,這一過程是由Caspase對(duì)p97氨基酸790位點(diǎn)進(jìn)行裂解來完成的[14]。DAP5/p86可與某些特殊mRNA的IRES元件結(jié)合,使其可在經(jīng)典翻譯途徑受抑的情況下,仍可通過IRES途徑翻譯合成,因此這一IRES元件被稱為“death IRESes”。這類mRNA目前發(fā)現(xiàn)的有:Apaf-1、c-myc、XIAP及HIAP2 mRNAs[13,15-16]。這些作用元件在凋亡過程中發(fā)揮著不同的作用。另外,DAP5也可經(jīng)IRES途徑促進(jìn)自身mRNA的翻譯,形成正反饋環(huán)路,擴(kuò)大其在IRES途徑中的作用。全長(zhǎng)的DAP5/p97對(duì)IRES翻譯途徑卻無調(diào)控作用,這進(jìn)一步證實(shí)DAP5在凋亡因素的作用下,裂解后形成有功能的翻譯調(diào)控因子DAP5/ p86,進(jìn)而增強(qiáng)IRES翻譯途徑的效率[17]。這與我們的研究結(jié)果是相同的。
本研究觀察了在慶大霉素誘導(dǎo)的腎小管上皮細(xì)胞凋亡過程中,DAP5/p97裂解成為DAP5/p86,并隨時(shí)間的延長(zhǎng)生成量逐漸增加。通過本研究推測(cè)DAP5/p86可能是作為一種代償機(jī)制來抑制慶大霉素誘導(dǎo)的凋亡。有研究證實(shí)DAP5在三氧化二砷(ATO)誘導(dǎo)的急性粒細(xì)胞白血病細(xì)胞凋亡時(shí)表達(dá)增加,用雷帕霉素抑制Akt/mTOR途徑可使DAP5的表達(dá)增加,故而認(rèn)為PI3K/Akt/mTOR途徑可抑制DAP5的活性[18]。本研究結(jié)果也發(fā)現(xiàn)在慶大霉素誘導(dǎo)的HK2凋亡中p-Akt表達(dá)增加,p-Akt作為PI3K/ Akt/mTOR通路的代表之一,其表達(dá)增加可表明PI3K/Akt/mTOR通路激活。PI3K/Akt/mTOR通路是調(diào)控細(xì)胞內(nèi)蛋白總量合成的主要信號(hào)通路,其激活與DAP5的裂解相似,可抑制凋亡過程中的蛋白合成下降,從而發(fā)揮抑制凋亡的作用。本研究還發(fā)現(xiàn)應(yīng)用雷帕霉素抑制PI3K/Akt/mTOR通路后,DAP5/ p97裂解為DAP5/p86減少。表明DAP5的活化裂解功能是通過PI3K/Akt/mTOR途徑調(diào)控的,兩者可共同發(fā)揮抑制凋亡的作用。
綜上所述,本結(jié)果表明,在慶大霉素誘導(dǎo)的細(xì)胞凋亡過程中,DAP5/p97可代償性激活而發(fā)揮抑制凋亡的作用,這一作用可能是通過PI3K/Akt/ mTOR途徑來完成的。
[1]Appel GB, Neu HC. Gentamicin in 1978[J]. Ann Intern Med, 1978, 89(4): 528-538.
[2]Zhu QZ. Gentamicin nephrotoxicity and its induced acute renal failure[J]. Med J Chin PLA, 1986, 11(3): 178-183.[朱起之. 慶大霉素的腎毒性及其所致的急性腎功能衰竭[J]. 解放軍醫(yī)學(xué)雜志, 1986, 11(3): 178-183.]
[3]Nagai J, Takano M. Entry of aminoglycosides into renal tubular epithelial cellsviaendocytosis-dependent and endocytosisindependent pathways[J]. Biochem Pharmacol, 2014, 90(4): 331-337.
[4]Ma YY, Zhou SJ, Chen FY,et al. Induction effects of decitabine in combination with valproic acid sodium on apoptosis of myeloma cells and its underlying mechanism[J]. Med J Chin PLA, 2013, 38(10): 837-841.[馬泳泳, 周淑娟, 陳楓煜, 等. 地西他濱聯(lián)合丙戊酸鈉誘導(dǎo)的骨髓瘤細(xì)胞凋亡及其機(jī)制研究[J]. 解放軍醫(yī)學(xué)雜志, 2013, 38(10): 837-841.]
[5]Zhang HT, Wang YJ, Fan DH,et al. Inhibition of glutamate induced apoptosis of SH-SY5Y cells by C-terminal tail of DAPK[J]. Med J Chin PLA, 2010, 35(7): 839-844.[張海濤, 汪亞君, 范大華, 等. 死亡相關(guān)蛋白激酶C末端對(duì)谷氨酸誘導(dǎo)的SH-SY5Y細(xì)胞凋亡的抑制作用研究[J]. 解放軍醫(yī)學(xué)雜志, 2010, 35(7): 839-844.]
[6]Nevins TA, Harder ZM, Korneluk RG,et al. Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/ DAP5/NAT1[J]. J Biol Chem, 2003, 278(6): 3572-3579.
[7]Liberman N, Gandin V, Svitkin YV,et al. DAP5 associates with eIF2beta and eIF4AI to promote Internal Ribosome Entry Site driven translation[J]. Nucleic Acids Res, 2015, 43(7): 3764-3775.
[8]Gao JJ, Cai GY, Ning YC,et al. DAP5 ameliorates cisplatininduced apoptosis of renal tubular cells[J]. Am J Nephrol, 2012, 35(5): 456-465.
[9]Wang YD. Hong Q, Lv Y,et al. Role of endoplasmic reticulum stress-induced apoptosis of renal tubular epithelial cells in rhabdomyolysis-associated acute kidney injury[J]. Med J Chin PLA, 2013, 40(3): 194-199.[王遠(yuǎn)大, 洪權(quán), 呂楊, 等. 內(nèi)質(zhì)網(wǎng)應(yīng)激途徑誘導(dǎo)腎小管上皮細(xì)胞凋亡在橫紋肌溶解腎損傷過程中的作用[J]. 解放軍醫(yī)學(xué)雜志, 2015,40(3): 194-199.]
[10] El Mouedden M, Laurent G, Mingeot-Leclercq MP,et al. Apoptosis in renal proximal tubules of rats treated with low doses of aminoglycosides[J]. Antimicrob Agents Chemother, 2000, 44(3): 665-675.
[11] Lewis SM, Holcik M. For IRES trans-acting factors, it is all about location[J]. Oncogene, 2008, 27(8): 1033-1035.
[12] Lopez-Lastra M, Rivas A, Barria MI. Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation[J]. Biol Res, 2005, 38(2-3): 121-146.
[13] Gilbert WV, Zhou K, Butler TK,et al. Cap-independent translation is required for starvation-induced differentiation in yeast[J]. Science, 2007, 317(5842): 1224-1227.
[14] Henis-Korenblit S, Strumpf NL, Goldstaub D,et al. A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation[J]. Mol Cell Biol, 2000, 20(2): 496-506.
[15] Warnakulasuriyarachchi D, Cerquozzi S, Cheung HH,et al. Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediatedviaan inducible internal ribosome entry site element[J]. J Biol Chem, 2004, 279(17): 17148-17157.
[16] Henis-Korenblit S, Shani G, Sines T,et al. The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins[J]. Proc Natl Acad Sci U S A, 2002, 99(8): 5400-5405.
[17] Liberman N, Marash L, Kimchi A. The translation initiation factor DAP5 is a regulator of cell survival during mitosis[J]. Cell Cycle, 2009, 8(2): 204-209.
[18] Ozpolat B, Akar U, Zorrilla-Calancha I,et al. Death-associated protein 5 (DAP5/p97/NAT1) contributes to retinoic acidinduced granulocytic differentiation and arsenic trioxide-induced apoptosis in acute promyelocytic leukemia[J]. Apoptosis, 2008, 13(7): 915-928.
Expression of DAP-5 in HK2 cell apoptosis induced by gentamicin
GAO Jian-jun1, GU Zhao-yan2, XU Yong-xing1, LIANG Bo-ran1, WEI Jia-mei1, GAO Yue-hua1, NA Yu1*1Department of Nephrology, 306 Hospital of Chinese PLA, Beijing 100101, China
2Healthcare Department, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan 572000, China
*< class="emphasis_italic">Corresponding author, E-mail: nayu306@163.com
, E-mail: nayu306@163.com
This work was supported by the National Natural Science Foundation of China (81300265), and Army Medical Science Youth Development Project (13QNP088)
ObjectiveTo reproduce a model of gentamicin induced apoptosis of human kidney epithelial cell (HK2), to observe the expression of death-associated protein 5 (DAP5) in HK2 cells, and to explore the relationship between PI3K/Akt/ mTOR signal pathway and DAP5.MethodsHK2 cells were cultured with 3.2mg/ml gentamicin. Cell apoptosis was determined by DNA agarose gel electrophoresis, the apoptotic rate was determined with flow cytometry. Protein expressions of DAP5, Akt and p-Akt were assessed with Western blotting. Rapamycin was used to block PI3K/Akt/mTOR signal pathway in HK2 cell apoptosis model, and the change in DAP5 expression was observed.ResultsHK2 apoptosis appeared 24h after gentamicin treatment, and the apoptotic rate was found to be increased with the prolongation of gentamicin treatment. The apoptotic rates were 5.9%, 23.0% and 49.9%, respectively, at 24h, 36h and 72h after gentamicin treatment (P<0.05). At the same time, lysis of DAP5 protein occurred to form DAP5/p86, and the expressions of DAP5/p86 and p-Akt protein were also upregulated gradually in the process (P<0.05). However, generation of DAP5/p86 was reduced when PI3K/Akt/mTOR signal pathway was blocked by rapamycin during this period (P<0.05).ConclusionGentamicin may induce apoptosis of HK2 cell in time-dependent manner. During the process of apoptosis of HK2 cells, lysis of DAP5 may occur to form DAP5/p86, and PI3K/Akt/mTOR signal pathway may positively regulate the expression of DAP5.
gentamicin; apoptosis; death-associated protein 5; kidney epithelial cell
R595.3
A
0577-7402(2015)11-0906-05
10.11855/j.issn.0577-7402.2015.11.10
2015-03-10;
2015-08-14)
(責(zé)任編輯:張小利)
國(guó)家自然科學(xué)基金(81300265);全軍醫(yī)學(xué)科技青年培育項(xiàng)目(13QNP088)
高建軍,醫(yī)學(xué)碩士,主治醫(yī)師。主要從事藥物性腎損害方面的研究
100101 北京 解放軍306醫(yī)院腎內(nèi)科(高建軍、許永星、梁勃然、韋加美、高月花、那宇);572000 海南三亞 解放軍總醫(yī)院海南分院保健科(谷昭艷)
那宇,E-mail:nayu306@163.com