梁 卓,譚 蘭,袁哈利,謝全亮,王 斐,李鴻彬
(石河子大學(xué)生命科學(xué)學(xué)院,農(nóng)業(yè)生物技術(shù)重點實驗室,新疆石河子832003)
棉花磷脂酶C基因的克隆及參與油脂代謝的功能分析
梁 卓,譚 蘭,袁哈利,謝全亮,王 斐,李鴻彬*
(石河子大學(xué)生命科學(xué)學(xué)院,農(nóng)業(yè)生物技術(shù)重點實驗室,新疆石河子832003)
以陸地棉胚珠和纖維為實驗材料,利用RT-PCR技術(shù)克隆得到磷脂酶C(Phospholipase C,PLC)基因(Gh-PLC,GenBank登錄號:KR154219),將棉花磷脂酶C基因轉(zhuǎn)化擬南芥,分析其在油脂代謝過程中的重要作用。測序鑒定顯示,GhPLC基因的全長開放讀碼框為1 524bp,編碼包含508個氨基酸的蛋白質(zhì),理論分子量約為55kD。序列比對分析顯示,GhPLC屬于典型的堿性磷酸酶超家族的磷脂酶。利用pET32a-GhPLC原核表達獲得分子量約為55kD左右的重組蛋白GhPLC;酶活力分析顯示,重組GhPLC蛋白具有較高的將卵磷脂(PC)催化為二酰甘油(DAG)的酶活力。半定量RT-PCR結(jié)果表明,GhPLC基因參與棉花種子和纖維發(fā)育過程。構(gòu)建植物過量表達載體35S∷GhPLC并轉(zhuǎn)化哥倫比亞野生型擬南芥,轉(zhuǎn)基因擬南芥中GhPLC基因的表達和PLC酶活力顯著提高,且轉(zhuǎn)基因擬南芥種子的油脂含量提高了5.3%。
棉花;胚珠和纖維;磷脂酶C;油脂含量;擬南芥
Key words:Gossypium hirsutum;ovule and fiber;phospholipase C;oil content;Arabidopsis
植物磷脂酶C(phospholipase C,PLC)是一種脂質(zhì)水解酶,在種子發(fā)育過程廣泛存在,在植物的生長發(fā)育過程發(fā)揮重要作用[1]。植物中PLC包括磷脂酰肌醇特異性磷脂酶C(phosphatidylinositol-specific phospholipase C,PI-PLC)、非特異性磷脂酶(non-specific phospholipase C,NPC)和糖基磷脂酰肌醇特異性磷脂酶(glycosylphosphatidylinositol-specific phospholipase C,GPI-PLC)。PLC在脂類代謝、膜再建及脂類信號分子(inositol triphosphate,IP3、DAG、phosphatidic acid,PA)和游離脂肪酸(free fatty acid,F(xiàn)FA)的產(chǎn)生等方面都有很重要的催化活性,同時可能參與細胞信息傳遞、膜運輸及降解、分化和生殖、種子萌發(fā)與衰老等生理過程[2-6]。
植物中首先發(fā)現(xiàn)的非特異性PLC活性蛋白NPC4,定位于質(zhì)膜,催化分解磷脂產(chǎn)生磷元素的極性頭部和DAG,產(chǎn)生的DAG可直接或間接的脫酰生成軟脂酸,軟脂酸隨后由半乳糖酯合酶催化生成半乳糖酯用于脂質(zhì)的再生[7-9]。目前關(guān)于PLC功能研究主要集中在植物對鹽、干旱、高溫及病害防御反應(yīng)中的調(diào)節(jié)作用[10-12],如擬南芥磷脂酶C參與植物的花生長發(fā)育、響應(yīng)激素信號以及應(yīng)對環(huán)境因子的反應(yīng)等[13-14],也有一些研究表明其對棉花種子和纖維發(fā)育過程中的脂質(zhì)合成與代謝具有重要作用[15-17]。
棉花(Gossypium hirsutum)是經(jīng)濟價值較高的農(nóng)作物,除了棉花纖維在紡織工業(yè)的利用外,棉籽油的利用也越來越成為熱點。目前關(guān)于PLC參與棉花胚珠和纖維發(fā)育的相關(guān)研究鮮有報道。本研究從棉花開花后15d的胚珠和纖維組織中克隆GhPLC基因,并分析GhPLC基因在種子油脂形成過程中的重要作用,為進一步了解GhPLC基因在脂質(zhì)合成代謝等方面的重要功能及進一步培育高含油量作物品種提供基礎(chǔ)。
1.1 植物材料
植物材料為陸地棉栽培品種‘徐-142’,棉花在大田種植,收集棉花開花后0~40d發(fā)育的胚珠和纖維材料。
1.2 方 法
1.2.1 棉花胚珠和纖維總RNA的提取 根據(jù)改良的CTAB法提取棉花開花后0~50d發(fā)育的胚珠和纖維材料的RNA[18-19]。所使用的研缽經(jīng)121℃高溫烘烤2h,其他器皿用DEPC水處理[20]。
1.2.2 GhPLC基因克隆 根據(jù)GenBank棉花EST數(shù)據(jù)庫中獲得PLC基因的序列信息,分析和比對后,該基因具有完整的開放讀碼框,利用Primer Premier 5.0設(shè)計引物克隆PLC基因的完整開放讀碼框,并在上下游引物的兩端分別添加EcoRⅠ和XhoⅠ的酶切位點(下劃線),設(shè)計使用的引物見表1。以總RNA為模板,用反轉(zhuǎn)錄試劑盒合成cDNA[21],通過PCR擴增獲得GhPLC基因的完整開放讀碼框。
1.2.3 蛋白質(zhì)序列比對和結(jié)構(gòu)域分析 蛋白質(zhì)序列比對和進化樹構(gòu)建分別利用DNAMAN和MEGA(Molecular Evolutionary Genetics Analysis)軟件完成。
1.2.4 pET32a-GhPLC原核表達載體的構(gòu)建、誘導(dǎo)表達和酶活力分析 將克隆得到的GhPLC基因片段連接到pET32a載體,構(gòu)建pET32a-GhPLC,利用雙酶切方法進行鑒定[5-6]。將構(gòu)建成功的pET32a-GhPLC表達載體轉(zhuǎn)化大腸桿菌表達菌株BL21(DE3)感受態(tài)細胞,用IPTG誘導(dǎo)表達,蛋白表達情況用SDS-PAGE分析[19]。
表1 使用的引物序列列表Table 1 List of used primer sequences
PLC活力分析參考王常高等[22]的方法,酶反應(yīng)體系為0.25mol/L Tris-HCl(pH 7.2),0.001mol/L ZnCl2,60%山梨醇(W/V)和10nmol/L NPPC。取2mL向其中添加100μL磷脂酶C樣品,37℃保溫反應(yīng)30min。利用分光光度法測定酶反應(yīng)液在410nm處的吸光度A,得到PLC酶解NPPC產(chǎn)生對硝基苯酚的量,從而定量PLC的酶活大小。酶活計算公式:酶活力(U/mL)=1.363 6×103×A/t,式中:A為吸光度;t為反應(yīng)時間。
1.2.5 棉花GhPLC基因表達分析和酶活力分析
根據(jù)改良的CTAB法提取棉花開花后0~50d不同發(fā)育時期的纖維和胚珠材料總RNA[19]。將RNA反轉(zhuǎn)錄成cDNA并作為模板,以UBQ7為內(nèi)參基因,進行GhPLC基因的表達分析,引物序列見表1。棉花PLC活力分析參考王常高等[22]的方法。
1.2.6 擬南芥的遺傳轉(zhuǎn)化及油脂含量的測定 采用農(nóng)桿菌介導(dǎo)的滴花法對開花期的擬南芥進行浸染轉(zhuǎn)化[23]。用酸水解法測定擬南芥種子的油脂含量。將種子在研缽中研碎,置于離心管中并加入滅菌蒸餾水和鹽酸,混勻,75℃中水浴后離心,加入95%乙醇和乙醚,混勻后離心,分離上清液置于三角瓶中并蒸干,置于烘箱中烘干并稱重,參考郝曉云等[24]的方法進行油脂含量計算;數(shù)據(jù)顯著性檢驗用ANOVA軟件分析。
2.1 棉花GhPLC基因克隆
利用CTAB法提取棉花胚珠和纖維材料總RNA,以反轉(zhuǎn)錄得到的cDNA為模板,根據(jù)Gen-Bank的序列信息,利用PCR擴增獲得特異性目標(biāo)條帶(圖1),經(jīng)測序和序列比對鑒定后得到的基因命名為GhPLC(登錄號為KR154219)。GhPLC基因的全長開放讀碼框包含1 524個堿基對,編碼由508個氨基酸組成的蛋白質(zhì)。
2.2 GhPLC序列比對與進化樹構(gòu)建
將GhPLC編碼的氨基酸序列與其它植物的PLC氨基酸序列進行比對,不同物種的NPC在氨基酸序列上保守性較高,GhPLC屬于堿性磷酸酶超家族的非特異性磷酸單酯酶,具有磷酸酯酶的典型酯催化結(jié)構(gòu)域和一個特異性的cAMP和cGMP依賴的蛋白激酶磷酸化位點(圖3,A)。選取植物中已知的PLC氨基酸序列,利用MEGA軟件構(gòu)建分子進化樹,GhPLC屬于NPC類的成員,與可可樹Tc-PLC在進化上親緣關(guān)系較近(圖3,B)。
圖1 GhPLC基因克隆電泳結(jié)果M.DNA分子量標(biāo)準;1、2.PCR產(chǎn)物電泳條帶Fig.1 Agarose gel electrophoresis of PCR products of GhPLCgene cloning M.DNA molecular weight standard;1,2.Electrophoresis bands of PCR products
圖2 GhPLC重組蛋白SDS-PAGE分析(A)與酶活性測定(B)A.GhPLC重組蛋白SDS-PAGE分析;M.蛋白質(zhì)分子量標(biāo)準;1.pET32a空載體(不誘導(dǎo));2.pET32a空載體(IPTG誘導(dǎo)2h);3.重組體誘導(dǎo)前的蛋白表達;4~6.誘導(dǎo)2h、4h、6h的蛋白表達;B.GhPLC重組蛋白的酶活性分析Fig.2 SDS-PAGE analysis(A)and enzyme activity assay(B)of recombinant GhPLC protein SDS-PAGE analysis of recombinant GhPLC protein;M.Protein marker;1.Protein lysate of pET32avector without induction;2.Protein lysate of pET32avector induced by IPTG for 2h;3.Protein lysate of recombinant GhPLC without induction;4-6.Protein lysate of recombinant GhPLC induced by IPTG for 2h,4hand 6h;B.Enzyme activity of recombinant GhPLC assay
2.3 重組GhPLC蛋白的誘導(dǎo)表達與酶活力測定
將經(jīng)過篩選、鑒定后構(gòu)建成功的pET32a-Gh-PLC重組子轉(zhuǎn)入大腸桿菌表達菌株BL21(DE3)中,用IPTG進行誘導(dǎo)表達,SDS-PAGE蛋白質(zhì)電泳分析誘導(dǎo)后蛋白的表達情況。成功誘導(dǎo)出Gh-PLC重組蛋白,該重組蛋白分子量約為55kD左右(圖2,A);對誘導(dǎo)產(chǎn)生的重組GhPLC蛋白酶活力分析發(fā)現(xiàn)重組蛋白在誘導(dǎo)2h后就具有較高的酶活力(圖2,B)。
2.4 GhPLC組織表達特征分析
通過半定量RT-PCR分析GhPLC基因在棉花不同組織中的表達情況,GhPLC基因在干種子中幾乎沒有表達,在根、莖、葉中有一定表達,在發(fā)育的胚珠與纖維組織中有一定表達(圖4,A)。進一步檢測胚珠和纖維不同發(fā)育時期的PLC活力,開花后15~25d的胚珠和纖維組織中具有較高的PLC活力(圖4,B)。
圖3 棉花GhPLC氨基酸序列與其他物種PLC序列的多重序列比對(A)與進化樹構(gòu)建(B)分支上的數(shù)字表示Bootstrap驗證中基于1 000次重復(fù)該節(jié)點可信度的百分比;標(biāo)尺代表遺傳距離Fig.3 Amino acid sequence alignment(A)and phylogenetic tree construction(B)of GhPLC and other plant PLCs The numbers at the branch nodes represent the reliability percent of Bootstrap values based on 1 000replications;The scale bar represents genetic distance
2.5 轉(zhuǎn)基因擬南芥種子油脂含量分析
在經(jīng)過篩選、鑒定獲得多個過量表達轉(zhuǎn)基因擬南芥株系中,2個轉(zhuǎn)基因株系OE3和OE5中,Gh-PLC基因在擬南芥中具有穩(wěn)定的表達,在轉(zhuǎn)錄水平和蛋白質(zhì)酶活性水平表達較高(圖5)。
在2個轉(zhuǎn)基因株系OE3和OE5中,OE5株系中GhPLC的表達較高,選擇OE5轉(zhuǎn)基因株系進行油脂含量測定,用酸水解法測定成熟種子的油脂含量,野生型和轉(zhuǎn)基因擬南芥種子的油脂含量分別為24.3%和29.6%,轉(zhuǎn)基因擬南芥種子的油脂含量提高了5.3%(圖6)。
圖4 GhPLC基因的表達特征分析Fig.4 GhPLCexpression characteristic analysis
圖5 轉(zhuǎn)GhPLC基因擬南芥的鑒定WT.野生型擬南芥;OE3和OE5分別表示過量表達的轉(zhuǎn)基因擬南芥株系3和株系5Fig.5 Identification of transgenic GhPLC Arabidposis plants WT represents wide type Arabidopsis plants;OE3and OE5indicate overexpression transgenic Arabidopsis line 3and line 5respectively
圖6 轉(zhuǎn)基因擬南芥種子油脂含量分析WT.野生型擬南芥;OE5.過量表達的轉(zhuǎn)基因擬南芥株系5;**.P<0.01Fig.6 Oil content analysis of transgenic Arabidposis seeds WT represents widetype Arabidopsis plant;OE5shows overexpression transgenic Arabidopsis line 5;**indicates P<0.01
NPC能水解諸多磷脂衍生物產(chǎn)生DAG和磷酸膽堿,由此生成的DAG可以和脂酰-CoA生成油脂。近期的研究發(fā)現(xiàn)NPC相關(guān)的脂質(zhì)代謝在器官發(fā)育中可能起重要作用[8-9,25]。目前已從擬南芥、可可樹等物種中克隆了PLC基因[26-28]。本研究從發(fā)育的棉花胚珠和纖維組織中克隆得到GhPLC基因,這也是在棉花中首次報到該基因。GhPLC基因在棉花胚珠和纖維組織中有一定表達,尤其在開花后15~25d的胚珠和纖維材料中表達較高,暗示了GhPLC基因可能與胚珠和纖維的發(fā)育相關(guān),這與PLC在植物器官發(fā)揮重要作用的報道相似。磷脂酶C可以催化產(chǎn)生多種脂肪酸的衍生物,可以作為信號分子參與細胞發(fā)育過程[29],多個脂肪酸合成相關(guān)基因以及脂肪酸的組成和含量對于胚珠和纖維發(fā)育具有重要意義[29-30]。本實驗結(jié)果顯示GhPLC基因在發(fā)育的胚珠與纖維組織中有一定表達,重組GhPLC蛋白具有較高的催化產(chǎn)生脂肪酸的酶活力,這暗示了GhPLC基因可能通過調(diào)控細胞脂質(zhì)代謝進一步參與胚珠和纖維的發(fā)育過程。
磷脂酶C催化產(chǎn)生的脂肪酸的衍生物可以進一步參與到油脂的再生合成,脂質(zhì)代謝與種子含油量密切相關(guān),PLC屬于脂肪酶家族,多個脂肪酶家族成員均能夠促進細胞內(nèi)油脂的合成[24,31],與脂質(zhì)代謝相關(guān)的多類不同基因都能夠參與種子油脂含量,如ACC合成酶、三?;视王ズ铣上嚓P(guān)酶等[3234]。本研究將棉花GhPLC轉(zhuǎn)化擬南芥,轉(zhuǎn)GhPLC基因擬南芥種子含油量提高了5.3%,表明棉花GhPLC與種子油脂含量之間的密切聯(lián)系,推測棉花GhPLC與這些已報道的酶具有類似的功能,可能具有催化油脂合成的功能。棉花GhPLC作為NPC家族的成員之一,能夠通過磷脂產(chǎn)生細胞內(nèi)信號分子如DAG、磷脂酸和三磷酸肌醇[35],這些信號分子可能能夠與細胞內(nèi)的Ca2+信號共同作用參與激素信號或調(diào)控脂質(zhì)代謝。
[1] WANG F W(王法微),WANG Q(王 騏),DENG Y(鄧 宇),et al.Advance in the research of phospholipase C gene family[J].Biotechnology Bulletin(生物技術(shù)通報),2014,12(6):33-39(in Chinese).
[2] ZHANG W H,QIN C B,ZHAO J,et al.Phospholipase Dα1-derived phosphatidic acid interacts with ABI1phosphatase 2Cand regulates abscisic acid signaling[J].PNAS,2004,101(25):9 508-9 513.
[3] QIN C B,WANG X M.The Arabidopsis phospholipase D family characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1with distinct regulatory domains[J].Plant Physiology,2002,128(3):1 057-1 068.
[4] WANG X M.Regulatory functions of phospholipase D and phosphatidic acid in plant growth,development,and stress responses[J].Plant Physiology,2005,139(2):566-573.
[5] ZHENG P Z,ALLEN W B,ROESLER K A.Phenylalanine in DGAT is a key determinant of oil content and composition in maize[J].Nature Genetics,2008,40(3):367-373.
[6] LI M Y,HANG Y Y,WANG X M.Phospholipase D and phosphatidic acid mediated signaling in plants[J].Biochim.Biophysic.Acta,2009,1 791(9):927-935.
[7] WANG S W,DENG X P,ZHANG S Q,et al.Maintenance of chloroplast structure and function by overexpression of the rice monogalactosyldiacylglycerol synthase gene leads to enhanced salt tolerance in tobacco[J].Plant Physiology,2014,165(3):1 144-1 155.
[8] NAKAMURA Y.Phosphate starvation and membrane lipid remodeling in seed plants[J].Progress in Lipid Research,2013,52(1):43-50.
[9] JOUHET J,MARECHAL E,BLOCK M A,et al.Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria[J].Journal of Cell Biology,2004,167(5):863-874.
[10] ZHENG S Z,LIU Y L,LI B,et al.Phosphoinositide-specific phospholipase C9is involved in the thermotolerance of Arabidopsis[J].Plant Journal,2012,69(4):689-700.
[11] VOSSEN J H,HALIEM A A,F(xiàn)RADIN E F,et al.Identification of tomato phosphatidylinositol-specific phospholipase C(PI-PLC)family members and the role of PLC4and PLC6in HR and disease resistance[J].Plant Journal,2010,62(2):224-239.
[12] PETERS C,LI M,NARASIMHAN R,et al.Nonspecific phospholipase C NPC4promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis[J].Plant Cell,2010,22(8):2 642-2 659.
[13] KOCOURKOVA D,KRCHOVA Z,PEJCHAR P,et al.The phosphatidylcholine-h(huán)ydrolysing phospholipase C NPC4plays a role in response of Arabidopsis roots to salt stress[J].Journal of Experimental Botany,2011,62(11):3 753-3 763.
[14] CANONNE J,F(xiàn)ROIDURE N S,RIVAS S.Phospholipases in action during plant defense signaling[J].Plant Signaling and Behavior,2011,6(1):13-18.
[15] WANG X C,LI Q,JIN X,et al.Quantitative proteomics and transcriptomics reveal key metabolic processes associated with?cotton fiberinitiation[J].Journal of Proteomics,2014,114(2):16-27.
[16] YUAN D,TU L,ZHANG X.Generation,annotation and analysis of first large-scale expressed sequence tags from developing fiber of Gossypium barbadense L.[J].PLoS One,2011,6(7):e22758.
[17] SONG W Q,QIN Y M,SAITO M,et al.Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif[J].Journal of Experimental Botany,2009,60(6):1 839-1 848.
[18] JIANG J X(蔣建雄),ZHANG T ZH(張?zhí)煺妫?Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method[J].Cotton Science(棉花學(xué)報),2003,15(3):166-167(in Chinese).
[19] LI X N(李學(xué)寧),DU J W(杜軍偉),LI H B(李鴻彬).Cloning,prokaryotic expression and purification of a cotton dehydroascorbate reductase gene[J].Journal of Shihezi University(Nat.Sci.Edi.)(石河子大學(xué)學(xué)報·自然科學(xué)版),2010,24(5):542-545(in Chinese).
[20] XIA L Q(夏蘭芹),GUO S D(郭三堆).A method of RNA fast extracting in cotton tissues[J].Cotton Science(棉花學(xué)報),2000,12(4):205-207(in Chinese).
[21] TIAN D P(田大鵬),GE J(葛 娟),LI H B(李鴻彬),et al.Cloning,functional sequence analysis and prokaryotic expression of cotton GhDHAR2cDNA[J].Biotechnology Bulletin(生物技術(shù)通報),2012,7(2):65-69(in Chinese).
[22] WANG CH G(王常高),LI W(李 偉),GAN X(干 信),et al.Bacillus mycoides phospholipase C purification and preparation research[J].Anhui Agricultural Science Bulletin(安徽農(nóng)學(xué)通報),2007,13(8):55-56(in Chinese).
[23] ZHANG P(張 萍),WANG F(王 斐),XU D X(徐登獻),et al.Cotton GhACO3gene promotes adventitious root development of Arabidopsis thaliana and tobacco[J].Acta Bot.Boreal.-Occident.Sin.(西北植物學(xué)報),2011,31(12):2 394-2 398(in Chinese).
[24] HAO X Y(郝曉云),CAI Y ZH(蔡永智),YUAN H L(袁哈利),et al.Overexpression of a cotton GDSL lipase increases the oil content of BrassicanapusL.[J].Journal of Chinese Cereals and Oils Association(中國糧油學(xué)報),2014,29(6):63-68(in Chinese).
[25] LIU L(劉 露),TIAN H(田 華),DUAN Y(段 愿),et al.Preparation of phospholipase C and removal of rapeseed colloidal by phospholipase C[J].Farm Machinery(農(nóng)業(yè)機械),2013,42(5):32-36(in Chinese).
[26] YUKI N,KOICHIRO A,TATSURU M.A novel phosphatidylcholine-h(huán)ydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis[J].The Journal of Biological Chemisitry,2005,280(9):7 469-7 476.
[27] SUE G R.Regulation of phosphoinositide-specific phospholipase C[J].Annual Review of Biochemistry,2001,70(20):281-312.
[28] PAN Y Y(潘延云),ZHU ZH G(朱正歌),SUN D Y(孫大業(yè)).Plant phosphplipase C and its involved in signal transduction[J].Plant Physiology Communication(植物生理學(xué)通訊),2005,41(2):229-234(in Chinese).
[29] QIN Y M,HU C Y,PANG Y,et al.Saturated very long chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosythesis[J].Plant Cell,2007,19(11):3 692-3 704.
[30] SHI Y H,ZHU S W,MAO X Z,et al.Transcriptome profiling,molecular biological,and physiological studies reveal a major role for ethylene in cotton fiber cell elongation[J].Plant Cell,2006,18(3):651-664.
[31] WEI M W(魏明玉),ZHOU J(周 佳),YAN S ZH(閆素珍),et al.Cloning and expression analysis of an oil-content related lipase(BnSDP1)gene in Brassica napus[J].Chinese Journal of Oil Crop Science(中國油料作物學(xué)報),2011,33(4):338-343(in Chinese).
[32] THELEN J J,OHLROGGE J B.Both antisense and sense expression of biotin carboxyl carrier protein isoform 2inactivates the plastid acetylcoenzyme A carboxylase in Arabidopsis thaliana[J].Plant Journal,2002,32(4):419-431.
[33] ZOU J,KATAVIC V,GINLIN E M.Modification of seed oil content and aeyl composition in the Brassicaceae by expression of a yeast sn-2aeyltransferase gene[J].Plant Cell,1997,9(6):909-923.
[34] JAKO C,KUMAR A,WEI Y.Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol aeyltransferase enhances seed oil content and seed weight[J].Plant Physiology,2001,126(9):861-874.
[35] ZHANG W H,YU L J,ZHANG Y Y,et al.Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species[J].Biochimica Biophysica Acta,2005,1 736(1):1-9.
(編輯:宋亞珍)
Cloning of a Phospholipase C Gene fromGossypium hirsutum and Its Functional Analysis of Participating in Lipid Metabolism
LIANG Zhuo,TAN Lan,YUAN Hali,XIE Quanliang,WANG Fei,LI Hongbin*
(College of Life Sciences,Key Laboratory of Agrobiotechnology,Shihezi Universtiy,Shihezi,Xinjiang 832003,China)
AGossypium hirsutumphospholipase C(GhPLC,GenBank Accession Number:KR154219)gene was cloned using RT-PCR method from developing ovule and fiber tissues,and the function of lipid metabolism was analyzed through transforming GhPLCinto Arabidopsis.Sequencing identification showed that the full open reading frame of GhPLCwas 1 524bp containing aprotein of 508amino acids with a theoretical molecular weight of 55kD.Sequence alignment analysis displayed that GhPLCgene belongs to the classical alkaline phosphatase superfamily.The recombinant proteins of GhPLC was obtained with molecular weight of 55kD by prokaryotic expression of pET32a-GhPLC.Enzyme activity determination showed that recombinant GhPLC proteins has high activity of catalyzing phosphatidylcholine(PC)to diacylglycerol(DAG).Semi-quantitative PCR analysis indicated that GhPLCgene participates in cotton seed and fiber development.Plant overexpression vector 35S∷GhPLC was constructed and transformed into Columbia wildtype Arabidopsis.Transgenic GhPLC Arabidopsis showed significant promotion both in transcription and enzyme levels,and the oil content of transgenic Arabidopsis seeds increased with 5.3%higher than widetype.
Q785;Q789
A
10.7606/j.issn.1000-4025.2015.06.1085
1000-4025(2015)06-1085-07
2015-02-03;修改稿收到日期:2015-04-22
兵團項目(2012BB050,2014CD003);國家自然科學(xué)基金(31260039);石河子大學(xué)杰青項目(2012ZRKXJQ03)
梁 卓(1987-),男,在讀碩士研究生,從事植物發(fā)育生物學(xué)研究。E-mail:540496573@qq.com
*通信作者:李鴻彬,博士,教授,主要從事植物分子生物學(xué)與基因工程研究。E-mail:lihb@shzu.edu.cn