高翠翠,林明,錢春雷
(江蘇科技大學電子信息學院,江蘇鎮(zhèn)江212003)
基于正交鏡像濾波器組的子帶脈沖壓縮方法
高翠翠,林明,錢春雷
(江蘇科技大學電子信息學院,江蘇鎮(zhèn)江212003)
針對超寬帶雷達頻帶分割濾波器不理想、導致子帶脈沖壓縮和直接脈沖壓縮結(jié)果相差較大的問題,本文提出了基于正交鏡像濾波器組的子帶脈沖壓縮方法。首先設(shè)計了近似完全重建的正交鏡像濾波器組,定義目標函數(shù)為通帶誤差、阻帶能量和失真轉(zhuǎn)移函數(shù)平方誤差的加權(quán)和,通過無約束的變尺度方法將其最小化,然后用設(shè)計的正交鏡像濾波器作為頻帶分割濾波器,實現(xiàn)子帶脈沖壓縮。仿真結(jié)果表明,本文設(shè)計的正交鏡像濾波器組,相比現(xiàn)有的設(shè)計,具有更小的峰值重建誤差、通帶和阻帶誤差。提出的子帶脈沖壓縮方法,與傳統(tǒng)方法相比,主副瓣比和主瓣寬度等脈壓性能也明顯提高。
超寬帶雷達;脈沖壓縮;正交鏡像濾波器組;FIR原型濾波器
超寬帶雷達因具有高距離分辨率、低截獲概率以及良好的目標識別能力等優(yōu)點,受到國內(nèi)外廣泛關(guān)注。對大時寬帶寬積回波信號進行脈沖壓縮可獲得較高的距離分辨率和較遠的作用距離,但目前受模數(shù)轉(zhuǎn)換器件的限制,還無法直接對超寬帶信號進行處理[1]。參考文獻[2]提出了基于頻帶分割的多通道綜合脈沖壓縮方法,但由于模擬頻帶分割濾波器組不夠理想,使得通過濾波器后的信號會產(chǎn)生混疊以及幅度和相位失真,影響脈沖壓縮的性能。
正交鏡像濾波器組的出現(xiàn),為寬帶信號的處理提供了有效方法。隨著多抽率數(shù)字信號的飛速發(fā)展,其作用越來越重要,在圖像編碼、多載波調(diào)制系統(tǒng)[3]、抽樣理論[4]以及寬帶波束形成聲吶等各領(lǐng)域已被廣泛應用。對近似重建正交鏡像濾波器的設(shè)計方法也有多種,傳統(tǒng)的設(shè)計方法是采用不同的窗函數(shù)設(shè)計濾波器,最優(yōu)解的收斂需要多次迭代,每次迭代之后需要重新對濾波器進行設(shè)計,運算量較大。參考文獻[5]提出了一種基于線性目標函數(shù)的最小加權(quán)二乘方法獲得最優(yōu)濾波器系數(shù),參考文獻[6]提出基于無限脈沖響應的全通濾波器優(yōu)化方法,先將其簡化為線性相位優(yōu)化,通過求解由Toeplitz-plus-Hankel矩陣構(gòu)成的線性方程組得到濾波器系數(shù),但這兩種方法都需要進行矩陣求逆,尤其濾波器長度較長時,計算量很大,引起很多問題,不適合實時應用。
本文提出了一種新的子帶脈沖壓縮方法,首先設(shè)計頻帶分割濾波器組。原型濾波器的設(shè)計,沒有采用窗函數(shù)的非線性優(yōu)化或者切比雪夫逼近法減小重構(gòu)誤差,也避免了求影響優(yōu)化方法性能和有效性的逆矩陣的傳統(tǒng)設(shè)計方法,而是將通帶誤差、阻帶殘余能量和失真轉(zhuǎn)移函數(shù)在正交頻率w=pi/2處的平方誤差的加權(quán)和定義為誤差函數(shù),通過無約束變尺度方法[7]使其最小化,得到原型濾波器的系數(shù)。最后對超寬帶雷達信號進行了仿真,仿真結(jié)果驗證了該算法的正確性和有效性。
設(shè)接收信號為x(n),脈沖壓縮后的輸出信號為y(n),對應的Z變換分別為X(Z),Y(Z)。
子帶脈沖壓縮的基本原理:將接收信號通過分析濾波器組分成子帶信號,對每個子帶信號進行抽取,匹配信號為每個子帶信號頻譜復共軛,接收信號頻譜與匹配信號頻譜相乘,得到子帶脈壓結(jié)果,對其進行同等倍數(shù)的插值后通過綜合濾波器組,得到寬帶脈沖壓縮信號。圖1給出了子帶脈沖壓縮的結(jié)構(gòu)圖。H1(Z),H2(Z)分別是正交鏡像濾波器中分析濾波器的低通和高通濾波器,F(xiàn)1(Z),F(xiàn)2(Z)對應的是綜合濾波器的低通和高通濾波器。
圖1 子帶脈沖壓縮原理框圖
由抽取內(nèi)插理論以及正交鏡像濾波器組性質(zhì)可簡化得到:
令
為獲得完全重建濾波器組,應滿足以下條件:
由式(3)可知,若H1(Z)是一個線性相位濾波器,則T(Z)也是一個線性相位濾波器,可消除相位失真。由數(shù)字信號理論可知,當N階FIR濾波器滿足奇對稱或偶對稱時,F(xiàn)IR濾波器為嚴格線性相位,又H1(Z)為低通濾波器,則低通濾波器的脈沖響應滿足:
式(4)中,N為濾波器長度。
對應的頻率響應為:
其中,A(ω)=±|H1(ejω)|。
消除混疊失真和相位失真后,由于濾波器的鏡像對稱約束條件,只能減小幅度失真,不能完全消除。
當N為奇數(shù)、
不難看出,正交鏡像濾波器組的設(shè)計關(guān)鍵在于低通原型濾波器H1(Z)的設(shè)計。定義誤差函數(shù)為:
Ep和Es分別為低通濾波器H1(Z)的通帶誤差和阻帶能量,Et為T(Z)在過渡帶別為低通濾波器在零頻率和正交率處的幅度響應。因此,平方誤差Et可表示為:
通帶誤差和阻帶誤差分別由式(10)和(11)給出:
其中ωp和ωs分別為通帶和阻帶的邊界頻率。對于長度為偶數(shù)的實對稱序列h1(n),對應的幅頻響應H1(ejω)為:
其中,bT=2h1T,向量b,c分別是:
當ω=0時,
其中1為所有元素為1的列向量。因此,
其中,q=c(π/2),A1=0.707A(0)
同理,可得到通帶誤差和阻帶誤差的另一種表達形式:
由式(5)可知:
其中W,Z是實對稱正定矩陣。
則目標函數(shù)E可表示為:
其中,矩陣U,Y分別為
式(22)給出了目標函數(shù)的表達式,是一個二次函數(shù),矩陣U為對稱正定矩陣,因此,可通過無約束的變尺度方法對誤差函數(shù)E進行最小化,得到最優(yōu)系數(shù)。
設(shè)迭代第i步的最小值為bi,搜索方向的最優(yōu)步長是λi,則bi+1可用下式(25)計算:
其中,▽φi是目標函數(shù)E的梯度,Ji為搜索方向。
[Hi]為海森逆矩陣,初始值為單位矩陣,矩陣更新由牛頓法計算:
參數(shù)設(shè)置:取濾波器長度N=24,通帶頻ωp=0.4π,ωs=0.6π,α1=0.7,α2=0.1,α3=1。圖2(a)給出了分析濾波器低通和高通的歸一化幅頻響應。圖2(b)為正交鏡像濾波器組的重建誤差。該算法的主要性能參數(shù):峰值重建誤差PRE=0.013 9,通帶誤差Ep=1.162×10-8,阻帶誤差Es=7.48×10-5,阻帶邊緣衰減As=25.06 dB。
圖2 分析濾波器的幅頻響應和重構(gòu)誤差
表1給出了本文設(shè)計的濾波器和其他文獻設(shè)計的濾波器性能比較。
線性調(diào)頻信號參數(shù)設(shè)置:脈沖寬度T=2 μs,帶寬B= 150 MHz,采樣頻率F=300 MHz。圖3給出了不同方法的頻帶分割加海明窗后的最終脈壓結(jié)果。直接脈壓主副瓣比約為42 dB,利用巴特沃斯分割主副瓣比僅28.62 dB,而采用本文的正交鏡像濾波器設(shè)計方法,可將主副瓣比提高到約40 dB,主瓣寬度幾乎相同。最大子帶脈壓誤差由原來的32 dB降低到23 dB。
表1 本文設(shè)計的濾波器和其他文獻設(shè)計的濾波器性能比較(均取N=24,ωp=0.4π,ωs=0.6π)
圖3 頻帶分割脈壓結(jié)果
本文提出了一種新的子帶脈沖壓縮方法。本方法主要創(chuàng)新點在于:一是正交鏡像濾波器的設(shè)計,拋棄了傳統(tǒng)的窗函數(shù)或等波紋逼近法設(shè)計原型濾波器方法,而是采用變尺度方法,通過優(yōu)化原型濾波器系數(shù)使誤差函數(shù)達到最小,設(shè)計的濾波器與其他幾種文獻設(shè)計的方法相比,其峰值重建誤差、通帶和阻帶誤差均有所減小。二是采用了將正交鏡像濾波器作為頻帶分割濾波器的子帶脈沖壓縮方法,該方法的優(yōu)越性主要表現(xiàn)在:與現(xiàn)有的通過頻譜搬移實現(xiàn)多通道綜合的脈沖壓縮方法相比,消除了相鄰通道之間的混疊失真和相位失真,幅度失真也降到最小,使子帶脈壓后的結(jié)果和直接脈壓結(jié)果更為接近,仿真結(jié)果驗證了該算法的有效性。
[1]李志強,劉利民,馬彥恒.雷達信號的高速數(shù)據(jù)采集處理系統(tǒng)的設(shè)計[J].電子技術(shù)應用,1998,24(12):34-35.
[2]水鵬朗,保錚.基于頻帶分割的超寬帶雷達脈沖壓縮方法[J].電子學報,1999,27(6):50-53.
[3]CHEN D,QU D,JIANG T,et al.Prototype filter optimization to minimize stopband energy with NPR constraint for filter bank multicarrier modulation systems[J].IEEE Trans. on Signal Processing,2013,61(1):159-169.
[4]SHARMA K K,JOSHI S D,SHARMA S.Advances in Shannon sampling theory[J].Defence Science Journal,2013,63(1):41-45.
[5]CHEN C K,LEE J H.Design of quadrature mirror filters with linear phase in the frequency domain[J].IEEE Trans. Circuits Syst,1992,39(9):593-605.
[6]STANCIC G,NIKOLIC S.Digital linear phase notch filter design based on IIR all-pass filter application[J].Digital Signal Processing,2013,23(3):1065-1069.
[7]RAO S S.Engineering optimization theory and practice[M]. New Delhi:New Age International(P)Limited,1998.
[8]UPENDAR J,GUPTA C P,SINGH G K.Designing of two channel quadrature mirror filter bank using Particle Swarm Optimization[J].Digital Signal Processing,2010,20(10):304-313.
[9]KUMAR A,SINGH G K,ANAND R S.An improved method for the designing quadrature mirror filter banks via unconstrained optimization[J].J.Math.Model.Algorithm,2010,9(1):99-111.
[10]OM P S,SONI M K,TALWAR I M.Marquardt optimization method to design two channel quadrature mirror filter banks[J].Digital Signal Process,2006,16(6):870-879.
The subband pulse compression method based on quadratture mirror filter(QMF)banks
Gao Cuicui,Lin Ming,Qian Chunlei
(Department of Electronic Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China)
For the problem that ultra-wideband(UWB)radar channel dropping filter isn′t ideal,which causes big error between subband pulse compression and direct pulse compression,a new method of subband pulse compression of UWB radar is presented. In the new method,nearly perfect-reconstruction two-channel quadrature mirror filter banks is designed at first.The objective function is formulated as a weighted sum of pass-band error and stop-band residual energy of low-pass prototype filter,and the square error of the distortion transfer function,which is minimized by unconstrained indirect update optimization method.The QMF replaces channel dropping filter.Compared with traditional subband pulse pressure method,simulation results show that the mainlobe to sidelobe and mainlobe width in proposed method are improved obviously.
ultra-wideband(UWB)radar;pulse compression;quadrature mirror filter banks;FIR prototype filter
TP335+.1
A
1674-7720(2015)19-0027-03
2015-06-01)
高翠翠(1990-),通信作者,女,碩士研究生,主要研究方向:信號理論與信息處理。E-mail:1103069951@qq.com。
林明(1960-),男,教授,碩士生導師,主要研究方向:雷達信號處理及高速實時信號處理。
錢春雷(1990-),男,碩士研究生,主要研究方向:信號理論與信息處理。