李 躍,萬里強(qiáng),李向林
(中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京100193)
內(nèi)源脫落酸生理作用機(jī)制及其與苜蓿耐旱性關(guān)系研究進(jìn)展
李 躍,萬里強(qiáng)*,李向林*
(中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京100193)
隨著全球氣候的惡化,水資源短缺等生態(tài)問題日益嚴(yán)重。在這樣的背景下,作物的耐旱性研究成為人們研究的熱點(diǎn)之一。脫落酸(ABA)作為脅迫激素,在植物干旱脅迫響應(yīng)中發(fā)揮著重要而廣泛的作用。植物細(xì)胞中,ABA通過2-甲基-D-赤蘚糖-4-磷酸(2-C-methyl-D-erythritol-4-phosphate,MEP)途徑合成,并最終與相應(yīng)的受體結(jié)合并通過一系列的信號(hào)轉(zhuǎn)導(dǎo)控制氣孔關(guān)閉,或者通過其他通路調(diào)節(jié)脅迫相關(guān)的基因表達(dá)。紫花苜蓿是栽培廣泛且品質(zhì)優(yōu)良的豆科牧草,干旱脅迫下苜蓿中脫落酸(ABA)會(huì)發(fā)生積累;同時(shí),ABA水平的升高與苜蓿主根貯藏蛋白動(dòng)態(tài)、基因表達(dá)以及一些滲透調(diào)節(jié)物質(zhì)的積累密切相關(guān)。ABA與苜蓿耐旱性關(guān)系的研究正在逐漸深入,這些研究將深化人們對(duì)苜蓿耐旱機(jī)理的認(rèn)識(shí),并對(duì)苜蓿的育種具有深遠(yuǎn)影響。
ABA;生理作用機(jī)制;苜蓿;耐旱性
隨著全球性氣候的變化、土壤沙化和鹽漬化以及水資源短缺等生態(tài)問題日益嚴(yán)重,干旱已經(jīng)成為制約農(nóng)業(yè)發(fā)展的主要因素。據(jù)統(tǒng)計(jì),目前世界上1/3的可耕地處于供水不足的狀態(tài),我國(guó)干旱、半干旱地區(qū)約占國(guó)土面積的1/2,即使在非干旱的主要農(nóng)業(yè)區(qū),也不時(shí)受到旱災(zāi)侵襲[1-2]。通過對(duì)玉米(Zea mays)、水稻(Oryza sativa)、擬南芥(Arabidopsis thaliana)、煙草(Nicotiana tabacum)等植物進(jìn)行研究,人們逐漸發(fā)現(xiàn),在植物響應(yīng)干旱脅迫的過程當(dāng)中,脫落酸(ABA)發(fā)揮著極其重要的調(diào)控作用[3-6]。植物在受到干旱脅迫時(shí)體內(nèi)ABA含量會(huì)上升,并以此調(diào)控氣孔關(guān)閉,從而減少機(jī)體水分的喪失;同時(shí),ABA還可以通過其他途徑影響植物生理代謝,增強(qiáng)植物對(duì)干旱的耐受性。
紫花苜蓿(Medicago sativa)因其高產(chǎn)和營(yíng)養(yǎng)豐富,尤其是蛋白質(zhì)含量高,被譽(yù)為“牧草之王”,是世界上廣泛種植的牧草,近年來在中國(guó)的種植面積也在不斷增長(zhǎng)[7],但干旱對(duì)草產(chǎn)業(yè)造成了極大的威脅。干旱脅迫使苜蓿葉片的氣孔導(dǎo)度下降,光合作用受到抑制,生長(zhǎng)變得緩慢甚至停止,牧草產(chǎn)量及其營(yíng)養(yǎng)組分受到明顯影響。苜蓿對(duì)干旱的生理生化響應(yīng)主要是滲透調(diào)節(jié)物質(zhì)的增加和抗氧化酶活性的增加。隨著干旱程度的加劇,植物體內(nèi)脯氨酸含量、可溶性糖含量、氨基酸含量、丙二醛含量和超氧化物歧化酶活性明顯上升[8-11]。在篩選抗旱品種的研究中,選用合適的抗旱指標(biāo)是準(zhǔn)確篩選的關(guān)鍵前提。已有研究表明,根冠比、根系長(zhǎng)度/植株高度、地下生物量脅迫指數(shù)、根冠比脅迫指數(shù)等根系指標(biāo)對(duì)評(píng)價(jià)苜蓿抗旱性的參考價(jià)值較大[12]。而ABA在調(diào)控干旱脅迫下滲透物質(zhì)積累、活性氧代謝以及維持根的生長(zhǎng)等方面都扮演著十分重要的角色。但是,在苜蓿上有關(guān)ABA與耐旱性關(guān)系的研究非常少。本文目的在于闡明干旱脅迫下ABA的生理作用、合成部位、合成與代謝過程以及信號(hào)轉(zhuǎn)導(dǎo)途徑,并對(duì)紫花苜蓿的耐旱的生理生化和分子方面的響應(yīng)進(jìn)行綜述,為今后苜蓿耐旱機(jī)理的研究和生產(chǎn)應(yīng)用提供參考。
1.1 脫落酸的主要合成部位
植物感受到干旱脅迫刺激后ABA合成積累主要在哪些部位發(fā)生,相關(guān)的研究結(jié)果并不十分一致。在植株整體水平上,一種觀點(diǎn)認(rèn)為,發(fā)生干旱脅迫時(shí)ABA首先在根部合成,并作為長(zhǎng)距離信號(hào)調(diào)控氣孔行為。1985年,Blackman和Davies[13]通過玉米幼苗的分根實(shí)驗(yàn)提出了根冠通訊理論,認(rèn)為干旱時(shí)根部產(chǎn)生化學(xué)信號(hào)并向上傳導(dǎo)至葉片,同時(shí)觀察到了根部ABA水平的升高;之后又有研究表明氣孔導(dǎo)度下降伴隨著木質(zhì)部汁液ABA濃度上升[14-15],這些都說明干旱條件下氣孔關(guān)閉可能是來自于根源的ABA信號(hào)[16-17]。根冠通訊理論的支持者必然要面對(duì)根源信號(hào)傳輸?shù)膯栴}。有研究表明,干旱脅迫發(fā)生后根部維管組織中ABA含量增高,并通過維管束向上運(yùn)輸。如膠體金免疫電鏡技術(shù)和酶聯(lián)免疫(ELISA)研究表明,蠶豆(Vicia faba)和花生(Arachis hypogaea)在水分充足或是水分脅迫的情況下,根部和葉片ABA均主要分布在維管組織區(qū)域,但在水分脅迫下維管組織的ABA含量更高[18-19]。Diego等[20]對(duì)ABA進(jìn)行免疫定位的結(jié)果也表明,干旱復(fù)水后,松樹針葉內(nèi)ABA主要分布在維管束內(nèi),少量存在葉肉內(nèi);根部ABA則主要分布在外皮層;而水分脅迫時(shí),針葉內(nèi)的ABA嚴(yán)格分布在保衛(wèi)細(xì)胞內(nèi),與氣孔關(guān)閉現(xiàn)象吻合。這些結(jié)果都暗示維管組織可能在ABA信號(hào)控制中處于支配地位。然而,一些研究不支持以上觀點(diǎn)。Ikegami等[21]發(fā)現(xiàn),在干旱處理后離體葉片中ABA增加的方式與在體葉片相似,而且在干旱處理4 h后離體根中的ABA水平也沒有明顯變化。這暗示ABA主要在葉片中合成。13C同位素示蹤實(shí)驗(yàn)也證明葉片中合成的ABA在干旱脅迫下可以被運(yùn)輸?shù)礁俊R陨辖Y(jié)果表明了在遭遇干旱脅迫時(shí)ABA合成與分布的復(fù)雜性。
在細(xì)胞水平和亞細(xì)胞水平上,據(jù)Pastor等[22]報(bào)道,當(dāng)水分充足時(shí),ABA在細(xì)胞壁、細(xì)胞質(zhì)、細(xì)胞核以及葉綠體內(nèi)分布差異不顯著,即在細(xì)胞內(nèi)均勻分布。干旱脅迫時(shí),細(xì)胞壁、細(xì)胞核和葉綠體的ABA水平分別上升了4,3和2倍。而van Rensburg等[23]的結(jié)果則顯示葉綠體內(nèi)的ABA含量不增加。
1.2 脫落酸的合成與代謝通路
ABA屬于萜類化合物,包含三個(gè)異戊烯單位。植物體內(nèi)的萜類化合物均由異戊烯基二磷酸(isopentenyl pyrophosphate,IPP)參與合成。在高等植物體內(nèi)存在著兩種合成IPP的途徑-甲羥戊酸(mevalonic acid,MVA)途徑和2-甲基-D-赤蘚糖醇-4-磷酸(2-C-methyl-D-erythritol-4-phosphate,MEP)途徑。首先,通過MEP途徑產(chǎn)生IPP,進(jìn)而合成C40前體——類胡蘿卜素,類胡蘿卜素通過裂解氧化形成ABA。ABA與類胡蘿卜素的關(guān)系已經(jīng)由18O同位素標(biāo)記試驗(yàn)、營(yíng)養(yǎng)缺陷體遺傳學(xué)分析以及生化試驗(yàn)證實(shí)[24]。類胡蘿卜素裂解氧化的過程在擬南芥中研究的最為透徹。玉米黃素環(huán)氧化酶(zeathanxinepoxidase,ZEP)(在擬南芥中由ABA1基因編碼,在煙草中由ABA2基因編碼)催化玉米黃素(zeaxanthin)轉(zhuǎn)化為黃素(violaxanthin);堇菜黃素可能先形成新黃素再異構(gòu)為9-順-新黃素(9-cis-neoxanthin),也可能直接異構(gòu)為9-順-黃素(9-cis-violaxanthin);9-順-環(huán)氧類胡蘿卜素氧化酶(9-cis-epoxycarotenoid dioxygenase,NCED)進(jìn)一步催化9-順-新黃素或9-順-黃素產(chǎn)生黃氧素(xanthoxin),黃氧素在短鏈乙醇脫氫酶(ABA2)的作用下轉(zhuǎn)化為脫落酸醛,最后,鉬輔因子(molybdenum cofactor sulfurase,Mo-Co)激活脫落酸醛氧化酶(ABA-aldehydeoxidase,AAO)將脫落酸醛氧化生成ABA。以上的每一步反應(yīng),只有催化黃素轉(zhuǎn)變?yōu)?-順-新黃素或9-順-黃素產(chǎn)生黃氧素的酶尚未得到突變體的證實(shí),催化其他步驟的所有酶均在擬南芥突變體中得到證實(shí),個(gè)別酶在番茄(Lycopersicon esculentum)、玉米、水稻和煙草突變體中得到證實(shí),具體見表1。所有這些酶中NCED所催化的反應(yīng)步驟可能為ABA合成途徑中的限速步驟[40]。最近在轉(zhuǎn)錄水平上的研究顯示,擬南芥在受到水分脅迫時(shí),PSY(phytoene synthase)基因的轉(zhuǎn)錄水平與合成ABA相關(guān)酶的基因轉(zhuǎn)錄水平協(xié)同性很高,這暗示該基因與胡蘿卜素前體的合成密切相關(guān)[41]。Ruiz-Sola等[42]進(jìn)一步研究發(fā)現(xiàn),ABA處理后PSY表達(dá)上調(diào),胡蘿卜素和ABA的水平上升,藥理學(xué)阻斷胡蘿卜素合成途徑后,ABA水平下降,說明PSY不僅對(duì)ABA合成有關(guān),而且其表達(dá)受外源ABA的誘導(dǎo),同時(shí)這種上調(diào)反應(yīng)只是特異性地在根中進(jìn)行。Ruiz-Sola等[42]的結(jié)果同時(shí)表明誘導(dǎo)調(diào)控ABA合成的途徑可能并不唯一。不僅干旱脅迫可以誘導(dǎo)ABA合成酶系基因的表達(dá)上調(diào),葡萄糖也可以誘導(dǎo)擬南芥的ABA合成途徑中ZEP、AAO3、ABA 3基因表達(dá)[43],但NCED的表達(dá)不受葡萄糖的誘導(dǎo)。同時(shí),某些研究也暗示著施用ABA可以促進(jìn)ABA自身的合成,這說明ABA對(duì)其自身的合成可能具有正反饋調(diào)節(jié)作用[44]。
表1 不同物種中編碼ABA合成相關(guān)酶的基因Table 1 Genes encoding enzymes related with synthesis of ABA in various species
干旱脅迫條件下,除了ABA的合成,植物體內(nèi)ABA的積累還與ABA的降解和失活密切相關(guān)。目前,催化ABA降解的基因還沒有被分離鑒定。生化實(shí)驗(yàn)暗示一種細(xì)胞色素P450單氧酶催化ABA氧化降解的第一步[45-46],將ABA羥基化為8-OH-ABA,然后異構(gòu)為紅花菜豆酸(phaseic acid,PA),并最終被還原為沒有活性的二氫紅花菜豆酸(dihydrophaseic acid,DPA)。該酶在擬南芥中由CYP 707As基因編碼。植物受到ABA、脫水和復(fù)水處理后,該基因的表達(dá)量增高[47]。ABA還可通過糖基化失去活性。另外,ABA可以通過根滲漏到土壤中[20,48],至于土壤中的ABA對(duì)植物的生長(zhǎng)有無影響,相關(guān)研究極少。
2.1 脅迫激素及其作用
作為一種重要的植物激素,ABA不僅參與抑制種子萌發(fā)、促進(jìn)休眠、抑制生長(zhǎng)、促進(jìn)葉片衰老脫落、調(diào)節(jié)花期和果實(shí)成熟等多個(gè)植物生長(zhǎng)發(fā)育過程,而且ABA作為脅迫激素還參與植物對(duì)外界脅迫刺激的響應(yīng)。很多研究也表明ABA參與對(duì)干旱脅迫的響應(yīng)。不同植物的ABA缺失突變體研究也證明了這點(diǎn)[25,32,35]。從目前的研究來看,ABA在植株受到干旱脅迫時(shí)所做出的響應(yīng)和所起的作用主要表現(xiàn)在兩個(gè)方面,即控制水分平衡和提高細(xì)胞耐受性。ABA控制植物水分平衡主要通過調(diào)控氣孔開度來實(shí)現(xiàn)的,一方面抑制氣孔的開放,另一方面促進(jìn)氣孔的關(guān)閉。這一過程在干旱脅迫發(fā)生后較短時(shí)間內(nèi)發(fā)生。同時(shí)ABA通過信號(hào)轉(zhuǎn)導(dǎo),誘導(dǎo)調(diào)控一些基因表達(dá),合成滲透調(diào)節(jié)物質(zhì)(如脯氨酸和甜菜堿等)、功能蛋白(如胚胎晚期表達(dá)蛋白等)和調(diào)節(jié)蛋白(包括蛋白激酶、轉(zhuǎn)錄因子、磷脂酶等)。這一過程相對(duì)前一過程較慢。也有研究表明,脅迫發(fā)生時(shí)老葉產(chǎn)生的ABA會(huì)調(diào)節(jié)新生葉片氣孔的發(fā)育,增加氣孔密度,從而使植物適應(yīng)干旱環(huán)境[49]。最近,Yusuke等[50]通過對(duì)煙草ABA缺陷體(aba1)的研究發(fā)現(xiàn),葉片ABA還會(huì)降低煙草葉肉細(xì)胞導(dǎo)度。葉肉細(xì)胞導(dǎo)度降低可以降低光合速率,同時(shí)也就減少了水分的消耗。
2.2 脫落酸受體
目前報(bào)道了3種與脅迫相關(guān)的ABA受體:CHLH蛋白、GPCR(GCR2/GTG1/GTG2)和RCARs/PYR1/PYLs。2006年,Shen等[51]報(bào)道鎂離子螯合酶H亞基(Mg-chelatase H subunit,CHLH)是ABA受體,并能與ABA結(jié)合形成ABAR/CHLH復(fù)合體,引起一系列相關(guān)基因的表達(dá)。Tsuzuki等[52]研究發(fā)現(xiàn)CHLH RNAi植株和鎂離子螯合酶I亞基敲除植株對(duì)ABA均不敏感,因此推測(cè)鎂螯合酶可能以整體形式參與調(diào)控氣孔的運(yùn)動(dòng);但放射性標(biāo)記ABA試驗(yàn)結(jié)果顯示CHLH并沒有結(jié)合ABA,所以認(rèn)為CHLH不是ABA受體。Müller和Hansson[53]發(fā)現(xiàn)CHLH在大麥(Hordeum vulgare)中的同源蛋白Xan F也不能與ABA結(jié)合,其突變體對(duì)ABA信號(hào)應(yīng)答相關(guān)表型與野生型一致。因此,CHLH蛋白是否為ABA受體還有待于進(jìn)一步的研究確定。
Liu等[54]報(bào)道的G蛋白偶聯(lián)受體GCR2以及Pandey等[55]報(bào)道的另外2種的G蛋白偶聯(lián)受體GTG1和GTG2都疑似為ABA受體。但Johnston等[56]通過生物信息學(xué)的方法預(yù)測(cè)GCR2不是一種跨膜蛋白,更不是一種G蛋白偶聯(lián)受體,而是一種細(xì)菌羊毛膜合成酶同源蛋白,同時(shí)GTG1和GTG2與ABA的結(jié)合率很低,因此GCR2的ABA受體地位受到質(zhì)疑。
RCARs/PYR1/PYLs家族作為ABA受體已經(jīng)得到鑒定[57],其調(diào)控ABA經(jīng)典應(yīng)答反應(yīng)的機(jī)制如下:ABA響應(yīng)元件為ABRE(ABA responsive element),受ABA響應(yīng)元件結(jié)合因子ABFs(ABA responsive element binding factors)的調(diào)控。ABI5屬ABFs,其功能的發(fā)揮還需要ABI3的輔助作用,屬共激活子。擬南芥中介子亞單位MED25(MEDIATOR25)能夠結(jié)合于ABI5靶基因啟動(dòng)子區(qū)與ABI5之間,從而抑制ABI5調(diào)控基因的表達(dá)。ABI4為CE反式作用因子,與CE順式作用元件相互結(jié)合。ABI3,ABI4和ABI5共同作用執(zhí)行ABA應(yīng)答反應(yīng),然而ABFs需要磷酸化才能有活性,它由磷酸化的SNF1相關(guān)蛋白激酶Sn RK2(SNF1-related protein kinase 2)執(zhí)行。SnRK2本身能夠進(jìn)行自我磷酸化,由于PP2Cs家族中一些成員(如ABI1)的結(jié)合使其去磷酸化而失去活性,導(dǎo)致ABA應(yīng)答基因不能夠正常轉(zhuǎn)錄[58]。即正常生長(zhǎng)條件下,PP2Cs家族中一些成員(如ABI1)與SnRK2結(jié)合使其去磷酸化而失去活性;失活的SnRK2不能將ABFs磷酸化,ABFs便沒有活性,不能執(zhí)行ABA應(yīng)答反應(yīng)[59]。滲透脅迫下,植物體產(chǎn)生的ABA與其受體RCARs/PYR1/PYLs結(jié)合后,又和PP2Cs結(jié)合,形成RCARs/ABA/PP2Cs三元復(fù)合物,PP2Cs便脫離SnRK2,SnRK2恢復(fù)活性,將ABFs磷酸化,從而啟動(dòng)ABA應(yīng)答反應(yīng)。RCARs/ABA/PP2Cs三元復(fù)合物與氣孔開放因子(open stomata 1,OST1)激酶結(jié)合執(zhí)行ABA應(yīng)答反應(yīng)[60]。OST1在ABA調(diào)控氣孔開閉過程中的作用非常關(guān)鍵,是重要的限制因素[61]。OST1激酶既控制S型陰離子通道SLAC1,也控制R型陰離子通道QUAC1[62]。在擬南芥中,ABA通過一系列的信號(hào)反應(yīng),最終通過OST1調(diào)控保衛(wèi)細(xì)胞膜上的這兩種離子通道來調(diào)節(jié)保衛(wèi)細(xì)胞滲透壓,是實(shí)現(xiàn)氣孔開閉調(diào)節(jié)的重要途徑之一。
2.3 脫落酸控制氣孔關(guān)閉的信號(hào)轉(zhuǎn)導(dǎo)
2.3.1 脫落酸與鈣離子信號(hào) 保衛(wèi)細(xì)胞內(nèi)鈣離子濃度與氣孔關(guān)閉行為密切相關(guān),ABA可引起保衛(wèi)細(xì)胞內(nèi)鈣離子濃度變化。采用激光共聚焦顯微鏡技術(shù)觀察到的結(jié)果是,氣孔關(guān)閉前ABA可引起胞內(nèi)鈣離子濃度的明顯升高;用膜片鉗技術(shù)觀察到的結(jié)果是,ABA可使胞內(nèi)鈣離子濃度瞬間升高,之后則忽高忽低的振蕩[63]。同時(shí)有證據(jù)表明ABA可激活保衛(wèi)細(xì)胞質(zhì)膜鈣離子通道[64]。鈣離子通道激活后可使鈣離子內(nèi)流,同時(shí)抑制鈣離子外流。Lee等[65]用ABA處理蠶豆保衛(wèi)細(xì)胞后,10 s內(nèi)IP3濃度迅速增加,并呈現(xiàn)類似鈣離子的震蕩現(xiàn)象。IP3可激活液泡膜鈣離子通道,而液泡被認(rèn)為是細(xì)胞內(nèi)鈣庫。另外,c ADPR(cyclic adenosine5p-diphosphate ribose)也可以使細(xì)胞內(nèi)鈣離子濃度升高。因此,鈣離子、IP3和c ADPR[66]都可能是ABA介導(dǎo)氣孔關(guān)閉的第二信使,ABA可能通過多種途徑使胞內(nèi)鈣離子濃度增加[67]。鈣離子濃度升高會(huì)抑制細(xì)胞質(zhì)膜鉀離子內(nèi)流通道,同時(shí)激活氯離子外流通道,導(dǎo)致保衛(wèi)細(xì)胞滲透勢(shì)下降,氣孔關(guān)閉。
2.3.2 脫落酸與過氧化氫和一氧化氮信號(hào) 1996年,Mc Ainsh等[68]發(fā)現(xiàn)外源H2O2可使細(xì)胞質(zhì)鈣離子濃度升高并且導(dǎo)致氣孔關(guān)閉。苗晨雨等[69]的試驗(yàn)也得出了相同的結(jié)論。H2O2調(diào)控氣孔關(guān)閉的作用可以被鈣離子螯合劑EGTA所抑制,證明鈣離子在H2O2的下游參與信號(hào)轉(zhuǎn)導(dǎo)。至于ABA是如何誘導(dǎo)H2O2產(chǎn)生的,相關(guān)研究不多。在蠶豆中NADPH氧化酶是調(diào)節(jié)保衛(wèi)細(xì)胞H2O2產(chǎn)生的關(guān)鍵酶。Mustilli等[70]研究表明,擬南芥OST1蛋白激酶突變抑制了ABA誘導(dǎo)的氣孔關(guān)閉。在擬南芥ost1突變體中,ABA不能誘導(dǎo)ROS的產(chǎn)生,而用H2O2處理該突變體保衛(wèi)細(xì)胞卻能誘導(dǎo)氣孔關(guān)閉。因此,OST1激酶可能與ABA誘導(dǎo)ROS的產(chǎn)生有關(guān)。分裂原蛋白激酶(mitogen-aetivated protein kinase,MAPK)也可能起到了一定作用。MAPK抑制劑PD098059可以抑制或逆轉(zhuǎn)ABA或H2O2誘導(dǎo)蠶豆氣孔關(guān)閉的效應(yīng);用PD098059預(yù)處理蠶豆葉片后,ABA就不能促進(jìn)H2O2產(chǎn)生。這些都表明MAPK可能參與了ABA調(diào)控產(chǎn)生H2O2的過程。
NO也可以在ABA誘導(dǎo)下產(chǎn)生,在一些植物(如蠶豆)中NO是誘導(dǎo)氣孔關(guān)閉所必需的[71]。在擬南芥中NO的產(chǎn)生依賴于H2O2水平的升高[72];在蠶豆和鴨跖草(Commelina communis)中,H2O2能夠誘導(dǎo)保衛(wèi)細(xì)胞NO的產(chǎn)生,這種作用可被NO清除劑carboxy PTIO(c-PTIO)和NOS抑制劑L-NAME所阻斷[73]。暗示H2O2可能通過NOS途徑誘導(dǎo)NO的產(chǎn)生。NO激活質(zhì)膜外向K+通道促進(jìn)K+外流,同時(shí)抑制內(nèi)向K+通道阻止K+內(nèi)流,兩種途徑共同作用抑制氣孔開放[74]。
2.4 ABA調(diào)控的脅迫相關(guān)基因表達(dá)
目前,已知150余種植物基因可受外源ABA的誘導(dǎo)。Campbell等[75]從小麥中已克隆出2種cDNA,即Ta Hsp 101B和Ta Hsp 101C,它們能編碼由高溫、脫水和ABA誘導(dǎo)的熱休克蛋白。p5cR是逆境脅迫下植物合成脯氨酸的主要酶,Yoshiba等[76]報(bào)道ABA能誘導(dǎo)p 5cs基因的表達(dá),促進(jìn)脯氨酸的合成,緩解水分脅迫。Seki[77]在擬南芥鑒定了245個(gè)ABA誘導(dǎo)基因,299個(gè)干旱誘導(dǎo)基因,在245個(gè)ABA誘導(dǎo)基因中,有155個(gè)基因(占ABA誘導(dǎo)基因的63%)能被干旱誘導(dǎo)。這些結(jié)果說明,在干旱脅迫過程中,ABA參與了大量的基因調(diào)控。
目前,有關(guān)苜蓿耐旱性的研究主要集中在耐旱指標(biāo)及耐旱品種的篩選[78],滲透調(diào)節(jié)物質(zhì)和抗氧化酶等生理生化響應(yīng)[79-81],干旱對(duì)固氮活性的影響[8],以及利用各種手段包括轉(zhuǎn)基因來提高苜??购敌裕?2-83]等方面。而關(guān)于ABA與苜蓿耐旱機(jī)制方面的研究還很少。現(xiàn)將已有的研究結(jié)果從如下4個(gè)方面進(jìn)行總結(jié)。
3.1 干旱脅迫下苜蓿體內(nèi)脫落酸含量變化
任敏和何金環(huán)[84]、韓瑞宏等[85]和Ivanova等[86]對(duì)水分脅迫下紫花苜蓿體內(nèi)ABA的代謝變化進(jìn)行了研究,和其他植物一樣,受到干旱脅迫時(shí)紫花苜蓿體內(nèi)ABA水平也升高。Ivanova等[86]用PEG處理了具有不同耐旱性紫花苜蓿的離體葉片,并測(cè)量了不同處理時(shí)間下葉片內(nèi)ABA濃度,結(jié)果表明耐旱品種能夠在較長(zhǎng)的時(shí)間內(nèi)維持高水平的ABA,而干旱敏感的品種只出現(xiàn)短暫的升高。李源等[87]考察了3份膠質(zhì)苜蓿(Medicago glutinosa)在干旱脅迫下ABA的含量變化,結(jié)果和紫花苜蓿中的情況一樣,上升幅度和變化趨勢(shì)均存在品種特異性。
3.2 脫落酸與紫花苜蓿主根貯藏蛋白(VSP)
VSP(vegetative storage protein)是苜蓿和白三葉(Trifolium repens)等多年生牧草中用于氮貯存的一類蛋白質(zhì),苜蓿主根內(nèi)主要存在分子量為57,32,19和15 k Da的4類蛋白[88]。在秋季或早冬,苜蓿主根內(nèi)的VSP合成增加,將氮素貯存起來,第二年返青時(shí),這些貯藏蛋白可用于地上部的再生,同時(shí)主根內(nèi)的VSP含量下降。水分脅迫可以誘導(dǎo)苜蓿主根內(nèi)VSP含量升高[89],而根部貯藏物質(zhì)含量的增加有利于脅迫過后植株的再生生長(zhǎng)。用不同濃度(1,5,10,20μmol/L)的ABA處理也可誘導(dǎo)VSP含量的升高,其中32 k Da VSP對(duì)ABA的響應(yīng)程度最高,在ABA處理的6 d內(nèi),32 k Da VSP的基因表達(dá)水平連續(xù)升高,同時(shí)主根內(nèi)可溶性蛋白的含量沒有任何顯著變化[90]。以上這些證據(jù)表明,ABA在水分脅迫下苜蓿體內(nèi)干物質(zhì)的分配方面可能有特殊作用。
3.3 脫落酸與蒺藜苜蓿(Medicago truncatula)的水分脅迫響應(yīng)
通過對(duì)轉(zhuǎn)錄組的分析來了解生物體內(nèi)基因表達(dá)的信息是近年來人們研究的熱點(diǎn)。蒺藜苜蓿作為新的豆科模式植物,其在遭遇水分脅迫時(shí)的基因表達(dá)特征對(duì)豆科植物尤其是紫花苜蓿耐旱性的研究意義重大。Zhang等[91]對(duì)水分脅迫下的蒺藜苜蓿進(jìn)行了轉(zhuǎn)錄組的分析:在水分脅迫早期,根部和地上部控制ABA生物合成的2個(gè)ZEP基因被誘導(dǎo)表達(dá);脅迫后第3,4天,根部被誘導(dǎo)表達(dá)的ZEP基因數(shù)量增加到5個(gè),之后表達(dá)量下降;同時(shí),第3天后有3個(gè)NCED基因也被誘導(dǎo)表達(dá)量開始上升直至第10天。這一結(jié)果暗示了ABA是水分脅迫下調(diào)控苜蓿生理響應(yīng)的信號(hào)分子。隨后研究結(jié)果則進(jìn)一步證實(shí)了這一點(diǎn),Planchet等[92]對(duì)剛萌發(fā)的蒺藜苜蓿幼苗進(jìn)行了PEG處理和ABA處理,通過與對(duì)照對(duì)比來研究植株氮代謝對(duì)水分脅迫和ABA的響應(yīng)。研究結(jié)果顯示,PEG模擬的水分脅迫可以誘導(dǎo)脯氨酸和天冬氨酸的積累,而ABA處理可以達(dá)到相同的效果。同時(shí),水分脅迫下氮代謝的調(diào)節(jié)也有不依賴ABA的途徑,如水分脅迫可以誘導(dǎo)谷氨酸鹽代謝酶和天冬氨酸合成酶基因的上調(diào),施用ABA則不能實(shí)現(xiàn)。Planchet等[93]進(jìn)一步研究發(fā)現(xiàn)水分脅迫下ABA誘導(dǎo)苜蓿體內(nèi)一氧化氮的積累,并證明一氧化氮和脯氨酸的積累是通過兩個(gè)相對(duì)獨(dú)立的途徑實(shí)現(xiàn)的,而一氧化氮又是誘導(dǎo)氣孔關(guān)閉的信號(hào)分子。可見,ABA能夠通過誘導(dǎo)氣孔關(guān)閉和調(diào)節(jié)苜蓿體內(nèi)滲透調(diào)節(jié)物質(zhì)的積累來提高苜蓿的耐旱性。
3.4 脫落酸和干旱誘導(dǎo)的紫花苜蓿基因表達(dá)
在20世紀(jì),關(guān)于脫落酸和干旱誘導(dǎo)的紫花苜?;虮磉_(dá)研究已經(jīng)取得了一些成果。pSM2075是Luo等[94]于1991年報(bào)道的受ABA和干旱等脅迫誘導(dǎo)的蛋白,該蛋白是富甘氨酸蛋白,全長(zhǎng)為159個(gè)氨基酸,包含7個(gè)“GGGYNHGGGGYN”重復(fù)。1992年,Luo等[95]又報(bào)道了一個(gè)受ABA誘導(dǎo)表達(dá)的基因家族——p UM 90,其中p UM 90-1可在干旱脅迫和ABA誘導(dǎo)下表達(dá)。1998年,Kovács等[96]發(fā)現(xiàn)了一個(gè)cDNA克隆,被命名為Ann Ms2。該基因編碼333個(gè)氨基酸,與哺乳動(dòng)物和植物中膜聯(lián)蛋白有32%~37%的相似度,在干旱脅迫和ABA誘導(dǎo)下表達(dá),表達(dá)部位為紫花苜蓿的根和花。免疫熒光試驗(yàn)顯示,Ann Ms2在細(xì)胞質(zhì)、細(xì)胞內(nèi)膜以及細(xì)胞核中均有表達(dá),考慮到細(xì)胞核的主要功能就是合成核糖體,因此Kovács等[96]推測(cè)Ann Ms2與干旱脅迫下蛋白質(zhì)的合成有關(guān)??梢钥隙ǖ恼f,ABA和干旱脅迫誘導(dǎo)的紫花苜?;虿粫?huì)只有以上介紹的兩個(gè),相信隨著研究的繼續(xù)深入,會(huì)有更多相關(guān)誘導(dǎo)基因被發(fā)現(xiàn)。
ABA作為脅迫激素,在植物體中所起的作用非常重要,且功能極其廣泛,一直是研究的熱點(diǎn)。國(guó)內(nèi)外有關(guān)苜蓿耐旱性的研究很多,而且苜蓿在水分脅迫下的某些生理生化反應(yīng)與其他植物相似。然而,令人遺憾的是人們并未將這些響應(yīng)與ABA的功能聯(lián)系起來。另外,苜蓿作為豆科牧草可以一年刈割多次,而且具有固氮功能。水分脅迫下苜蓿的這些特性與ABA又有怎樣的關(guān)系,人們知之甚少,亟待研究。關(guān)于豆科新模式植物蒺藜苜蓿與ABA的關(guān)系也有了些許研究。蒺藜苜蓿和紫花苜蓿同屬,因此有關(guān)蒺藜苜蓿的研究對(duì)認(rèn)識(shí)紫花苜蓿來說具有一定的意義,為以后紫花苜蓿耐旱性研究奠定了一定的基礎(chǔ)。在其他作物上,雖然研究眾多,ABA信號(hào)轉(zhuǎn)導(dǎo)的一些關(guān)鍵機(jī)制也得以揭示,但是仍有一些關(guān)鍵的調(diào)控機(jī)制也還未研究清楚,如植物細(xì)胞是如何感受水分脅迫,又是如何誘導(dǎo)ABA合成的,這些過程人們都還不清楚,仍需要更加全面和深入的研究。
References:
[1] Liu Z L,Cheng D.Plant drought-resistant physiology research progress and breeding.Chinese Agricultural Science Bulletin,2011,27(24):249-252.
[2] Chen Y L,Cao M.The relationship among ABA,stomatal conductance and leaf growth under drought condition.Plant Physiology Communications,1999,35(5):398-403.
[3] de Souza T C,Magalhaes P C,de Castro E M,et al.The influence of ABA on water relation,photosynthesis parameters,and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance.Acta Physiologiae Plantarum,2013,35(2):515-527.
[4] Ye N,Jia L,Zhang J.ABA signal in rice under stress conditions.Rice,2012,5:1-9.
[5] Mahdieh M,Mostajeran A.Abscisic acid regulates root hydraulic conductance via aquaporin expression modulation in Nicotiana tabacum.Journal of Plant Physiology,2009,166(18):1993-2003.
[6] Ghassemian M,Lutes J,Chang H,et al.Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana.Phytochemistry,2008,69(17):2899-2911.
[7] Cao H,Zhang H L,Gai Q H,et al.Test and comprehensive assessment on the performance of 22 alfalfa varieties.Acta Prataculturae Sinica,2011,20(6):219-229.
[8] Schubert S,Serraj R,Plies-Balzer E,et al.Effect of drought stress on growth,sugar concentrations and amino acid accumulation in N2-fixing alfalfa(Medicago sativa).Journal of Plant Physiology,1995,146(4):541-546.
[9] Antolín M C,Muro I,Sánchez-Díaz M.Application of sewage sludge improves growth,photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions.Environmental and Experimental Botany,2010,68(1):75-82.
[10] Sgherri C L M,Salvateci P,Menconi M,et al.Interaction between drought and elevated CO2in the response of alfalfa plants to oxidative stress.Journal of Plant Physiology,2000,156(3):360-366.
[11] Sgherri C L M,Quartacci M F,Menconi M,et al.Interactions between drought and elevated CO2on alfalfa plants.Journal of Plant Physiology,1998,152(1):118-124.
[12] Han R H,Lu X S,Gao G J,et al.Analysis of the principal components and the subordinate function of alfalfa drought resistance.Acta Agrestia Sinica,2006,14(2):142-146.
[13] Blackman P G,Davies W J.Root-to-shoot communication in maize plants of the effects of soil drying.Journal of Experimental Botany,1985,36(1):39-48.
[14] Liang J,Zhang J,Wong M H.How do roots control xylem sap ABA concentration in response to soil drying.Plant Cell Physiology,1997,38(1):10-16.
[15] Jackson G E,Irvine J,Grace J,et al.Abscisic acid concentrations and fluxes in drought conifer samplings.Plant,Cell&Environment,1995,18(1):13-22.
[16] Davies W J,Zhang J.Root signals and the regulation of growth and development of plants in drying soil.Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:55-76.
[17] Sauter A,Davies W J,Hartung W.The long-distance abscisic acid signal in the droughted plant:the fate of the hormone on its way from root to shoot.Journal of Experimental Botany,2001,52(363):1991-1997.
[18] Endo A,Sawada Y,Takahashi H,et al.Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells.Plant Physiology,2008,147(4):1984-1993.
[19] Hu B,Xiao S N,LüY.Distribution of ABA and Ah NCED1 in peanut leaves of different drought resistant cultivars subjected to drought stress.Chinese Journal of Cell Biology,2012,34(10):992-997.
[20] De Diego N,Rodríguez J L,Dodd I C,et al.Immunolocalization of IAA and ABA in roots and needles of radiata pine(Pinus radiata)during drought and rewatering.Tree Physiology,2013,33(5):537-549.
[21] Ikegami K,Okamoto M,Seo M,et al.Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit.Journal of Plant Research,2009,122(2):235-243.
[22] Pastor A,Lopez-Carbonell M,Alegre L.Abscisic acid immunolocalization and ultrastructural changes in water-stressed lavender(Lavandula stoechas L.)plants.Physiologia Plantarum,1999,105(2):272-279.
[23] Van Rensburg L,Krüger H,Breytenbach J.Immunogold localization and quantification of cellular and subcellular abscisic acid,prior to and during drought stress.Biotechnic&Histochemistry,1996,71(1):38-43.
[24] Nambara E,Marion-Poll A.Abscisic acid biosynthesis and catabolism.Annual Review Plant Biology,2005,56:165-185.
[25] Audran C,Liotenberg S,Gonneau M,et al.Localisation and expression of zeaxanthin epoxidase m RNA in Arabidopsis in response to drought stress and during seed development.Australia Journal of Plant Physiology,2001,28(12):1161-1173.
[26] Marin E,Nussaume L,Quesada A,et al.Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia,a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana.Journal of Experi-mental Botany,1996,15(10):2331-2342.
[27] Audran C,Borel C,F(xiàn)rey A,et al.Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia.Plant Physiology,1998,118(3):1021-1028.
[28] Agrawal G K,Yamazaki M,Kobayashi M,et al.Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion.Tagging of a zeaxanthin epoxidase gene and a novel Os TATC gene.Plant Physiology,2001,125(3):1248-1257.
[29] Schwartz S H,Tan B C,Gage D A,et al.Specific oxidative cleavage of carotenoids by VP14 of maize.Science,1997,276:1872-1874.
[30] Thompson A J,Jackson A C,Symonds R C,et al.Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid.Plant Journal,2000,23(3):363-374.
[31] Burbidge A,Grieve T M,Jackson A,et al.Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14.Plant Journal,1999,17(4):427-431.
[32] Iuchi S,Kobayashi M,Taji T,et al.Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase,a key enzyme in abscisic acid biosynthesis in Arabidopsis.Plant Journal,2001,27(4):325-333.
[33] Gonz′alez-Guzm′an M,Apostolova N,Bell′es J M,et al.The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde.Plant Cell,2002,14(8):1833-1846.
[34] Groot S P C,Van Yperen I,Karssen C M.Strongly reduced levels of endogenous abscisic acid in developing seeds of the tomato mutant sitiens do not influence in vivo accumulation of dry matter and storage proteins.Plant Physiology,1991,81(1):73-78.
[35] Koiwai H,Nakaminami K,Seo M,et al.Tissue specific localization of an abscisic acid biosynthetic enzyme,AAO3,in Arabidopsis.Plant Physiology,2004,134(4):1697-1707.
[36] Seo M,Aoki H,Koiwai H,et al.Comparative studies on the Arabidopsis aldehyde oxidase(AAO)gene family revealed a major role of AAO3 in ABA biosynthesis in seeds.Plant Cell Physiology,2004,45(11):1694-1703.
[37] Seo M,Peeters A J M,Koiwai H,et al.The Arabidopsis aldehyde oxidase 3(AAO3)gene product catalyzes the final step in abscisic acid biosynthesis in leaves.Proceedings of the National Academy Sciences of United States of America,2000,97(23):12908-12913.
[38] Sagi M,Scazzocchio C,F(xiàn)luhr R.The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants.Plant Journal,2002,31(3):305-317.
[39] Bittner F,Oreb M,Mendel R R.ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana.Journal of Biological Chemistry,2001,276(44):40381-40384.
[40] Qin X,Zeevaart J A D.The 9-cisepoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean.Proceedings of the National Academy Sciences of United States of America,1999,96(26):15354-15361.
[41] Meier S,Tzfadia O,Vallabhaneni R,et al.A transcriptional analysis of carotenoid,chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana.BMC Systems Biology,2011,5(77):1-19.
[42] Ruiz-Sola M A,Vicent A,Aurelio G,et al.A Root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis.PLoS ONE,2014,9(3):e90765.
[43] Cheng W H,Endo A,Zhou L,et al.A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions.Plant Cell,2002,14:2723-2743.
[44] Xu Z J,Nakajima M,Suzuki Y,et al.Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings.Plant Physiology,2002,129:1285-1295.
[45] Zhu J K.Salt and drought stress signal transduction in plants.Annual Review of Plant Biology,2002,53:247-273.
[46] Krochko J E,Abrams G D,Loewen M K,et al.(+)-abscisic acid 8′-hydroxylase is a cytochrome P450 monooxygenase.Plant Physiology,1998,118(3):849-860.
[47] Yamaguchi-Shinozaki K,Shinozaki K.Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.Annual Review of Plant Biology,2006,57:781-803.
[48] Degenhardt B,Gimmler H,Hose E,et al.Effect of alkaline and saline substrates on ABA contents,-distribution and-transport in plant roots.Plant and Soil,2000,225:83-94.
[49] Chater C C C,Oliver J,Casson S,et al.Putting the brakes on:abscisic acid as a central environmental regulator of stomatal development.New Phytologist,2014,202(2):376-391.
[50] Yusuke M,Noguchi K,Kojima M,et al.Mesophyll conductance decreases in the wild type but not in an ABA-deficient mu-tant(aba1)of Nicotiana plumbaginifolia under drought conditions.Plant,Cell and Environment,2015,28(3):388-398.
[51] Shen Y Y,Wang X F,Wu F Q,et al.The Mg-chelatase H subunit is an abscisic acid receptor.Nature,2006,443(7113):823-826.
[52] Tsuzuki T,Takahashi K,Inoue S,et al.Mg-chelatase H subunit affects ABA signaling in stomatal guard cells,but is not an ABA receptor in Arabidopsis thaliana.Journal of Plant Research,2011,124(4):527-538.
[53] Müller A H,Hansson M.The barley magnesium chelatase 150-kd subunit is not an abscisic acid receptor.Plant Physiology,2009,150(1):157-166.
[54] Liu X,Yue Y,Li B,et al.A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid.Science,2007,315(5819):1712-1716.
[55] Pandey S,Nelson D C,Assmann S M.Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis.Cell,2009,136(1):136-148.
[56] Johnston C A,Temple B R,Chen J G,et al.Comment on“A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”.Science,2007,318(5852):914.
[57] Soon F F,Ng L M,Zhou X E,et al.Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases.Science,2012,335(6064):85-87.
[58] Fujii H,Chinnusamy V,Rodrigues A,et al.In vitro reconstitution of an abscisic acid signaling pathway.Nature,2009,462(7273):660-664.
[59] Yoshida R,Umezawa T,Mizoguchi T,et al.The regulatory domain of SRK2E/OST1/Sn RK2.6 interacts with ABI1 and integrates abscisic acid(ABA)and osmotic stress signals controlling stomatal closure in Arabidopsis.The Journal of Biological Chemistry,2006,281(8):5310-5318.
[60] Yang L,Ji W,Gao P,et al.Gs APK,an ABA-activated and calcium-independent Sn RK2-type kinase from G.soja,mediates the regulation of plant tolerance to salinity and ABA stress.PLoS ONE,2012,7(3):e33838.
[61] Biswa R A,Byeong W J,Zhang W,et al.Open Stomata 1(OST1)is limiting in abscisic acid responses of Arabidopsis guard cells.New Phytologist,2013,200(4):1049-1063.
[62] Dennis I,Patrick M,Jennifer B,et al.Open stomata 1(OST1)kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells.The Plant Journal,2013,74(3):372-382.
[63] Allen G J,Chu S P,Schumacher K,et al.Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant.Science,2000,289(5488):2338-2342.
[64] Hamilton D W,Hills A,Kohler B,et al.Ca2+channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid.Proceedings of the National Academy Sciences of United States of America,2000,97(9):4967-4972.
[65] Lee Y,Choi Y B,Sub C S,et al.Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba.Plant Physiology,1996,110:987-996.
[66] Leckie C P,Mc Ainsh M R,Allen G J,et al.Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose.Proceedings of the National Academy Sciences of United States of America,1998,95:15837-15842.
[67] Leung J,Giraudat J.Abscisic acid signals transduction.Annual Review Physiology and Plant Molecular Biology,1998,49:199-222.
[68] Mc Ainsh M R,Clayton H,Mansgield T A,et al.Changes in stomatal behavior and cytosolic free calcium in response to oxidative stress.Plant Physiology,1996,111:1031-1042.
[69] Miao Y C,Song C P,Dong F C,et al.ABA-induced hydrogen peroxide generation in guard cells of Vicia faba.Acta Phytophysiologica Sinica,2000,26(1):53-58.
[70] Mustilli A C,Merlot S,Vavasseur A,et al.Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production.Plant Cell,2002,14(12):3089-3099.
[71] Wendehenne D,Durner J,Klessig D F.Nitric oxide:a new player in plant signaling and defense responses.Current Opinion Plant Biology,2004,7:449-455.
[72] Bright J,Desikan R,Hancock J T,et al.ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2synthesis.Plant Journal,2006,45:113-122.
[73] Yan J P,Tsuichihara N,Etoh T,et al.Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening.Plant,Cell and Environment,2007,30:1320-1325.
[74] Zhang L,Zhao X,Wang Y J,et al.Crosstalk of NO with Ca2+in stomatal movement in Vicia faba guard cells.Acta Agronomica Sinica,2009,35(8):1491-1499.
[75] Campbell J L,Klueva N Y,Zheng H G,et al.Cloning of new members of heat shock protein HSP 101 gene family in wheat[Triticum aestivum(L.)Moench]inducible by heat,dehydration,and ABA.Biochimica et Biophysica Acta-gene Structure and Expression,2001,1517:270-277.
[76] Yoshiba Y,Kiyosue T,Katagiri T,et al.Correlation between the induction of a gene for 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress.Plant Journal,1995,7:751-760.
[77] Seki M.Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full length cDNA microarray.Functional&Integrative Genomics,2002,2(6):282-291.
[78] Zhu X Q,Zhang X Y,Shi S L,et al.Comparison on the root drought resistance of four alfalfa cultivars under drought stress.Journal of Gansu Agricultural University,2012,47(1):103-107.
[79] Han R H,Gao G J,Zhang Y G.Research progress on Medicago adaptation under drought stress.Anhui Agricultural Science Bulletin,2009,15(18):27-29.
[80] Han D L,Wang Y R.Adaptability of Medicago sativa under water stress.Acta Prataculturae Sinica,2005,14(6):7-13.
[81] Xu X N,Yi J,Yu L Q,et al.Advances on drought resistance of alfalfa.Chinese Agricultural Science Bulletin,2009,25(21):180-184.
[82] Mckersie B D,Bowley S R,Harjanto E,et al.Water-deficit tolerance and field performance of transgenic alfalfa over expressing superoxide dismutase.Plant Physiology,1996,111(4):1117-1181.
[83] Mckersie B D,Chen Y,Beus M,et al.Super oxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago sativa L.).Plant Physiology,1993,103(4):1155-1163.
[84] Ren M,He J H.Changes of ABA metabolism in leaves and roots of alfalfa under natural drought stress.Journal of Anhui Agricultural Science,2010,38(4):1771-1772.
[85] Han R H,Zhang Y G,Tian H,et al.Study on changes of endogenous hormones in the leaves of alfalfa under drought stress.Acta Agriculturae Boreali-Sinica,2008,23(3):81-84.
[86] Ivanova A,Djilianov D,Van Onckelen H,et al.Abscisic acid changes in osmotic stressed leaves of alfalfa genotypes varying in drought tolerance.Journal of Plant Physiology,1997,150(1-2):224-227.
[87] Li Y,Wang Z,Liu G B,et al.Study on endogenesis hormones and anatomical structures of Medicago glutinosa under drought stress.Acta Agriculturae Boreali-sinica,2010,25(6):211-216.
[88] Avice J C,Ourry A,Lemaire G,et al.Root protein and vegetative storage proteins are key organic nutrients for alfalfa shoot regrowth.Crop Science,1997,37:1187-1193.
[89] Erice G,Irigoyen J J,Sánchez-Díaz M,et al.Effect of drought,elevated CO2and temperature on accumulation of N and vegetative storage proteins(VSP)in taproots of nodulated alfalfa before and after cutting.Plant Science,2007,172:903-912.
[90] Avice J C,Le Dily F,Goulas E,et al.Vegetative storage proteins in overwintering storage organs of forage legumes:roles and regulation.Canada Journal of Botany,2003,81:1198-1212.
[91] Zhang J Y,Maria H C C,Torres-Jerez I,et al.Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering.Plant,Cell and Environment,2014,37:2553-2576.
[92] Planchet E,Verdu I,Delahaie J,et al.Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula.Journal of Experimental Botany,2014,65(8):2161-2170.
[93] Planchet E,Rannou O,Ricoult C,et al.Nitrogen metabolism responses to water deficit act through both abscisic acid(ABA)-dependent and independent pathways in Medicago truncatula during post-germination.Journal of Experimental Botany,2011,62:605-615.
[94] Luo M,Lin L H,Hill R D,et al.Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein.Plant Molecular Biology,1991,17(6):1267-1269.
[95] Luo M,Liu J H,Mohapatra S,et al.Characterization of a gene family encoding abscisic acid and environmental stress-inducible proteins of alfalfa.Journal of Biological Chemistry,1992,267(22):15367-15374.
[96] Kovács I,Ayaydin F,Oberschall A,et al.Immunolocalization of a novel annexin-like protein encoded by a stress and abscisic acid responsive gene in alfalfa.The Plant Journal,1998,15(2):185-197.
[1] 劉志玲,程丹.植物抗旱生理研究進(jìn)展與育種.中國(guó)農(nóng)學(xué)通報(bào),2011,27(24):249-252.
[2] 陳玉玲,曹敏.干旱條件下ABA與氣孔導(dǎo)度和葉片生長(zhǎng)的關(guān)系.植物生理學(xué)通訊,1999,35(5):398-403.
[7] 曹宏,章會(huì)玲,蓋瓊輝,等.22個(gè)紫花苜蓿品種的引種試驗(yàn)和生產(chǎn)性能綜合評(píng)價(jià).草業(yè)學(xué)報(bào),2011,20(6):219-229.
[12] 韓瑞宏,盧欣石,高桂娟,等.紫花苜??购敌灾鞒煞旨半`屬函數(shù)分析.草地學(xué)報(bào),2006,14(2):142-146.
[19] 胡博,肖素妮,呂滟.不同花生品種響應(yīng)干旱脅迫后葉片內(nèi)ABA與Ah NCED1的分布.中國(guó)細(xì)胞生物學(xué)學(xué)報(bào),2012,34(10):992-997.
[69] 苗雨晨,宋純鵬,董發(fā)才,等.ABA誘導(dǎo)蠶豆氣孔保衛(wèi)細(xì)胞H2O2的產(chǎn)生.植物生理學(xué)報(bào),2000,26(1):53-58.
[74] 張霖,趙翔,王亞靜,等.NO與Ca2+對(duì)蠶豆保衛(wèi)細(xì)胞氣孔運(yùn)動(dòng)的互作調(diào)控.作物學(xué)報(bào),2009,35(8):1491-1499.
[78] 朱新強(qiáng),張新穎,師尚禮,等.干旱脅迫下4個(gè)苜蓿品種根系抗旱性的比較.甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,47(1):103-107.
[79] 韓瑞宏,高桂娟,張亞光.干旱脅迫下苜蓿適應(yīng)性研究進(jìn)展.安徽農(nóng)學(xué)通報(bào),2009,15(18):27-29.
[80] 韓德梁,王彥榮.紫花苜蓿對(duì)干旱脅迫適應(yīng)性的研究進(jìn)展.草業(yè)學(xué)報(bào),2005,14(6):7-13.
[81] 徐向南,易津,于林清,等.紫花苜??购敌匝芯窟M(jìn)展.中國(guó)農(nóng)學(xué)通報(bào),2009,25(21):180-184.
[84] 任敏,何金環(huán).自然干旱脅迫下紫花苜蓿葉片和根部ABA的代謝變化.安徽農(nóng)業(yè)科學(xué),2010,38(4):1771-1772.
[85] 韓瑞宏,張亞光,田華,等.干旱脅迫下紫花苜蓿葉片幾種內(nèi)源激素的變化.華北農(nóng)學(xué)報(bào),2008,23(03):81-84.
[87] 李源,王贊,劉貴波,等.干旱脅迫下膠質(zhì)苜蓿內(nèi)源激素及解剖結(jié)構(gòu)的研究.華北農(nóng)學(xué)報(bào),2010,25(6):211-216.
Progress in understanding relationships between the physiological mechanisms of endogenous abscisic acid and drought resistance of alfalfa
LI Yue,WAN Li-Qiang*,LI Xiang-Lin*
Institute of Animal Science,Chinese Academy of Agricultural Science,Beijing 100193,China
The shortage of water resources and related ecological crises due to climate change make the drought resistance of crops an important research topic.As a plant stress hormone,abscisic acid(ABA)plays an important role in drought stress response.Abscisic acid is synthesized from the 2-C-methyl-D-erythritol-4-phosphate(MEP)pathway.Through binding with its receptor,ABA controls stomatal closure by a series of signal transductions and/or regulates stress-related gene expression through other pathways.Alfalfa(Medicago sativa)is a high-performing legume that is widely cultivated for forage.Under conditions of drought stress,ABA accumulates in alfalfa and is closely related to vegetative protein storage in the tap root,gene expression and a range of osmolyte responses.Research on the relationship between ABA and drought resistance in alfalfa is under development.This research will assist understanding drought resistance mechanisms in alfalfa and will have profound influences on the breeding of alfalfa cultivars.
abscisic acid;physiological mechanism;alfalfa;drought resistance
10.11686/cyxb2014489 http://cyxb.lzu.edu.cn
李躍,萬里強(qiáng),李向林.內(nèi)源脫落酸生理作用機(jī)制及其與苜蓿耐旱性關(guān)系研究進(jìn)展.草業(yè)學(xué)報(bào),2015,24(11):195-205.
LI Yue,WAN Li-Qiang,LI Xiang-Lin.Progress in understanding relationships between the physiological mechanisms of endogenous abscisic acid and drought resistance of alfalfa.Acta Prataculturae Sinica,2015,24(11):195-205.
2014-11-28;改回日期:2015-03-30
國(guó)家自然科學(xué)基金項(xiàng)目“水分脅迫下紫花苜蓿根源信號(hào)ABA應(yīng)旱機(jī)制及其調(diào)控模型研究”(31372370)和國(guó)家牧草產(chǎn)業(yè)技術(shù)體系(CARS-35-12)資助。
李躍(1986-),男,河北承德人,在讀博士。Email:liyue-s@163.com
*通訊作者Corresponding author.Email:wanliqiang@caas.cn,lxl@caas.cn