• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      示蹤法測(cè)定九龍江河口沉積中硫酸鹽還原速率

      2015-06-24 14:10:08尹希杰孫治雷徐勇航李云海邵長(zhǎng)偉
      海洋學(xué)報(bào) 2015年4期
      關(guān)鍵詞:河口硫酸鹽站位

      尹希杰,孫治雷,徐勇航,李云海,邵長(zhǎng)偉

      (1. 國家海洋局 第三海洋研究所 海洋與海岸地質(zhì)環(huán)境開放實(shí)驗(yàn)室,福建 廈門361005;2.青島海洋地質(zhì)研究所 國土資源部海洋油氣資源和環(huán)境地質(zhì)重點(diǎn)實(shí)驗(yàn)室,山東 青島266071;3. 山東省物化探勘查院,山東 濟(jì)南250013)

      尹希杰1,孫治雷2,徐勇航1,李云海1,邵長(zhǎng)偉3

      (1. 國家海洋局 第三海洋研究所 海洋與海岸地質(zhì)環(huán)境開放實(shí)驗(yàn)室,福建 廈門361005;2.青島海洋地質(zhì)研究所 國土資源部海洋油氣資源和環(huán)境地質(zhì)重點(diǎn)實(shí)驗(yàn)室,山東 青島266071;3. 山東省物化探勘查院,山東 濟(jì)南250013)

      1 引言

      河口海岸地區(qū)作為海陸的交匯地帶,有大量陸源有機(jī)物輸入,也具有高的初級(jí)生產(chǎn)力和沉積速率,因此其沉積物中有機(jī)質(zhì)含量較高。這些有機(jī)質(zhì)可以為不同的生物地球化學(xué)過程提供能量和電子供體,硫酸鹽還原過程就是其中之一[3,6—7,11]。據(jù)估計(jì),河口海岸沉積物中約有一半的有機(jī)質(zhì)是通過硫酸鹽還原反應(yīng)的方式被礦化[6—7]。因此硫酸鹽還原是河口海岸帶沉積物中生物地球化學(xué)循環(huán)的主要組成部分,也是沉積物中硫元素生物地球化學(xué)循環(huán)的基礎(chǔ)[10,12]。

      2 研究方法

      2.1 樣品采集

      圖1 采樣站位分布Fig.1 The locations of sampling sites in the Jiulong River Estuary

      表1 兩個(gè)站位沉積環(huán)境參數(shù)

      Tab.1 Characteristics of sampling localities

      站位經(jīng)緯度柱樣長(zhǎng)/cm沉積物組成水深/m鹽度底層水溫度/℃溶解氧/mg·L-1A24°25′50 22″N,117°51′34 05″E50黏土、粉砂約2約4 0923 55 6B24°25′22 57″N,117°58′51 57″E88黏土、粉砂約4約23 322 86 9

      2.2 孔隙水采集

      2.3 沉積物中硫酸鹽還原速率(SRR)的測(cè)定

      還原態(tài)無機(jī)硫的分離:沉積物中被還原的無機(jī)硫采用冷鉻還原-被動(dòng)吸收法進(jìn)行分離[4,7]。將離心后的沉積物樣品與20 mL N,N-二甲基甲酰胺(DMF)混合后,轉(zhuǎn)移到反應(yīng)瓶中,將浸潤(rùn)醋酸鋅溶液的玻璃纖維膜懸掛在反應(yīng)瓶上部,用高純氮?dú)獯当M反應(yīng)瓶中的氧氣,10 min之后加入20 mL 6 mol/dm3的 HCl和16 mL 1 mol/dm3的CrCl2溶液,總還原無機(jī)硫(TRIS,包括揮發(fā)性硫、黃鐵礦和元素S)以H2S的形式釋放出來,被吸附到玻璃纖維膜上。

      取離心后的清液5 mL和吸附還原硫的玻璃纖維膜,分別加入5 mL閃爍液(Triton X-100),用液相閃爍計(jì)數(shù)儀(LS-6500)測(cè)定其活度值。沉積物中各層位硫酸鹽還原速率(SRR)用下面公式計(jì)算[4—5,19]:

      24/t×1.06,

      (1)

      孔隙水甲烷濃度測(cè)定:在20 mL頂空瓶中預(yù)先加入3 mL 1 mol/dm3氫氧化鈉溶液,用來抑制沉積物產(chǎn)甲烷菌的活動(dòng),然后放入3 mL沉積物,丁基橡膠塞密封,壓蓋旋緊,搖勻后低溫保存。用氣密針抽取2 mL頂空的氣體,將針筒拔出后緩慢推出1 mL的氣體樣品,之后迅速將剩余1 mL氣體注入色譜進(jìn)樣閥中,并按下start鍵開始測(cè)定。色譜條件:檢測(cè)器,F(xiàn)ID,溫度300℃,進(jìn)樣口溫度120℃,柱溫箱60℃,色譜柱為Porpark Q填充柱(2 m×3 mm,80/100目);載氣,99.999%氮?dú)?,流?0 mL/min。每個(gè)樣品重復(fù)測(cè)2次,測(cè)定誤差±3.0%。沉積物中甲烷濃度根據(jù)孔隙度換算為單位體積孔隙水中含甲烷摩爾數(shù)(μmol/dm3)。

      2.5 沉積物孔隙度、總有機(jī)碳(TOC)和氧化還原電位測(cè)定

      沉積物孔隙度測(cè)定:將3 mL原始沉積物樣品放置于稱量瓶?jī)?nèi)稱重,于105℃放置24 h,恒重后稱量,計(jì)算樣品前后質(zhì)量差??紫抖纫詥挝惑w積沉積物所含孔隙水的體積表示。

      沉積物TOC測(cè)定:取一定量經(jīng)冷凍干燥后的沉積物樣品,加入過量4 mol/dm3HCl,反應(yīng)24 h。用去離子水洗酸3次,將樣品置于烘箱內(nèi)60℃烘干,恒重后稱量樣品質(zhì)量。稱取一定量磨勻的樣品,用元素分析儀(Vario EL III,德國制造)測(cè)定有機(jī)碳含量。每個(gè)樣品平行測(cè)定2次,測(cè)量誤差為±0.2%(n=5),TOC含量以有機(jī)碳占樣品總干重百分?jǐn)?shù)表示。

      沉積物氧化還原電位測(cè)定:在分樣過程中用EXTECH RE300氧化還原電位計(jì)探頭直接插入沉積物中測(cè)其氧化電位值。

      3 結(jié)果

      3.1 沉積物中硫酸鹽還原速率分布

      A站位位于河口中段紅樹林潮灘附近,硫酸鹽還原速率從表層隨深度增加先增大后減小(見圖2),其值由表層的54 nmol/(cm3·d)逐漸增大到19 cm深度的2 345 nmol/(cm3·d);隨后硫酸鹽還原速率逐漸降低,55 cm深度降為121 nmol/(cm3·d)。B站位于河口下端海相區(qū),其沉積物中硫酸鹽還原速率的最大值比A站位明顯偏低,在垂直剖面上的分布也有顯著的差異(見圖2)。B站位硫酸鹽還原速率在10 cm和78 cm深度附近出現(xiàn)兩個(gè)峰值,其值分別為843 nmol/(cm3·d)和987 nmol/(cm3·d)。對(duì)兩個(gè)站位測(cè)得的各層位沉積物中硫酸鹽還原速率進(jìn)行積分,估算得A和B站位沉積物中硫酸鹽還原通量(以硫計(jì))分別為527.9 mmol/(m2·d)和 357.1 mmol/(m2·d)。

      圖2 A站位(?)和B站位(○)沉積物中硫酸鹽還原速率垂直分布Fig.2 Vertical profiles of sulfate reduction rates in sediments at A(?) and B(○) cores

      3.2 孔隙水中硫酸鹽和甲烷濃度分布

      3.3 沉積物氧化還原電位和總有機(jī)碳含量

      硫酸鹽還原過程是在硫酸鹽還原菌為媒介的作用下進(jìn)行的,而硫酸鹽還原菌屬于嚴(yán)格的厭氧細(xì)菌,因此沉積物中氧化還原電位變化對(duì)硫酸鹽還原菌活性有重要的影響,從而間接影響沉積物中硫酸鹽還原速率。圖4顯示,A站位表層沉積物(0~3 cm深度)的氧化還原電位為-87 mV,隨深度增加快速降低,在10 cm深度減小到-289 mV,之后隨深度增加沒有明顯的變化趨勢(shì)。B站位表層沉積物的氧化還原電位值為-12 mV,隨深度增加急劇減小,在28 cm深度附近減小到-245 mV,之后隨深度增加緩慢減小,至沉積物底部減小至-296 mV。兩個(gè)站位沉積物的氧化還原電位表明沉積物為厭氧的還原環(huán)境。圖4顯示A站位TOC含量的變化范圍1.51%~1.98%,平均值為1.75%;B站位TOC含量的變化范圍1.19%~1.61%,平均值為1.36%。

      4 討論

      4.1 九龍江河口硫酸鹽還原帶空間分布及環(huán)境控制因素

      圖3 A站位(?)和B站位(○)孔隙水中甲烷和濃度垂直分布Fig.3 Vertical profiles of sulfate and methane concentration in pore water at A(?)and B(○) cores

      圖4 A站位(?)和B站位(○)沉積物中TOC和氧化還原電位垂直分布Fig.4 Vertical profiles of TOC and Eh in sediments of A (?)and B(○) cores

      4.1 九龍江河口硫酸鹽還原速率及環(huán)境控制因素

      (2)

      (3)

      因此在A站位從沉積物表層至20 cm深度存在高的硫酸鹽還原速率,20 cm深度以下,隨著孔隙水中硫酸鹽濃度快速的減小,硫酸鹽還原速率隨著深度的增加也呈現(xiàn)減小的趨勢(shì)。

      表2 世界不同地區(qū)沉積物硫酸鹽還原速率最大值

      B站位沉積物的上部(約20 mm)和下部(約78 mm)分別存在較高的硫酸鹽還原速率,但其峰值均低于A站位的最大值。這兩個(gè)高的硫酸鹽還原速率是由不同的硫酸鹽還原路徑所導(dǎo)致[33—35],上部硫酸鹽還原作用主要由氧化降解沉積物活性有機(jī)質(zhì)而產(chǎn)生;隨著深度增加,硫酸鹽濃度逐漸降低,沉積物中剩余的部分難降解的有機(jī)質(zhì)經(jīng)發(fā)酵產(chǎn)生甲烷[36],B站位在60 cm深度以下孔隙水中甲烷濃度表現(xiàn)出隨著深度而逐漸增加的趨勢(shì),生成的甲烷在向上層擴(kuò)散的過程中,在78cm深度附近發(fā)生硫酸鹽還原與甲烷厭氧氧化的耦合作用,化學(xué)計(jì)量式可以表示如下[35—36]:

      (4)

      在該層位硫酸鹽還原和甲烷厭氧氧化同時(shí)進(jìn)行,導(dǎo)致硫酸鹽還原速率的第二個(gè)極大值[987 nmol/(cm3·d)]的出現(xiàn)。對(duì)B站位沉積物中活性古菌的群落組成進(jìn)行研究,發(fā)現(xiàn)該層位以甲烷厭氧氧化菌 ANME-2a 為主,進(jìn)一步驗(yàn)證了該層位甲烷厭氧氧化和硫酸鹽還原耦合的存在[37]。沉積物中的有機(jī)質(zhì)都是經(jīng)由水體沉降礦化之后而逐漸被埋藏,B站位水深明顯大于A站位,水體中活性有機(jī)質(zhì)被埋藏之前在水柱沉降過程中被大量氧化而消耗[38],最后進(jìn)入沉積物厭氧帶中的有機(jī)質(zhì)主要以難降解長(zhǎng)鏈化合物為主[39],因此B站位沉積物中有機(jī)質(zhì)埋藏的通量和有機(jī)質(zhì)活性都比A站位降低[24],因此沉積物中沒有足夠活性有機(jī)質(zhì)為硫酸鹽還原提供的電子供體,硫酸鹽還原菌的活性受到抑制,導(dǎo)致該站位沉積物上部硫酸鹽還原速率相對(duì)A站位偏低,對(duì)一些海洋和湖沉積物研究結(jié)果也表明硫酸鹽還原速率主要受到新沉降的有機(jī)質(zhì)通量及活性所控制[10—12,28,33,40—41]。其次A站位表層沉積物溫度(23.5℃)高于B站位(22.8℃),已有的研究顯示在溫度低于36℃時(shí),沉積物中硫酸鹽還原速率與溫度存在正相關(guān)性[12,16,28,42]。因此A站位和B站位沉積物中硫酸鹽還原反應(yīng)速率的差異,反映了該地區(qū)沉積物中硫酸鹽還原的速率受到有機(jī)質(zhì)埋藏的通量和活性以及沉積物溫度的綜合影響。

      4.3 九龍江河口硫酸鹽還原對(duì)有機(jī)質(zhì)礦化通量的估算

      國內(nèi)外對(duì)河口海岸沉積物有機(jī)質(zhì)礦化路徑進(jìn)行了大量的研究[47—49],其中對(duì)硫酸鹽還原研究最為廣泛和深入,其原因是硫酸鹽還原一直被認(rèn)為是河口海岸地區(qū)有機(jī)質(zhì)厭氧礦化最主要的方式[3,6—7,10,39]。大量研究發(fā)現(xiàn)河口海岸地區(qū)通過硫酸鹽還原礦化的有機(jī)質(zhì)量占到有機(jī)質(zhì)礦化總量的(62±17)%[3,6,50]。如在缺氧的黑海、智利陸架和納米比亞近海上升流區(qū),沉積物乃至深部水柱中的有機(jī)質(zhì)幾乎都是由硫酸鹽還原的方式礦化[51—53]。本研究分別對(duì)A和B兩個(gè)站位各層位硫酸鹽還原速率進(jìn)行積分計(jì)算,得到兩個(gè)站位硫酸鹽還原通量(以硫計(jì))分別為 527.9 mmol/(m2·d)和 357.1 mmol/(m2·d)。沉積物中硫酸鹽還原主要通過有機(jī)質(zhì)礦化和甲烷厭氧氧化兩種方式進(jìn)行,反應(yīng)關(guān)系式如下:

      (2)

      (4)

      CH3COOH→CH4+CO2.

      (5)

      表3 世界不同地區(qū)沉積物中硫酸鹽還原通量

      續(xù)表3

      5 結(jié)論

      (1)九龍江河口沉積物中硫酸鹽還原帶深度,隨著上覆水鹽度的增加而逐漸增大,表明該地區(qū)硫酸鹽還原深度分布主要受到上覆水體硫酸鹽濃度控制。近岸紅樹林地區(qū)沉積物中硫酸鹽還原速率最大值明顯高于河口下端海相區(qū),表明硫酸鹽還原速率主要受到沉積物中有機(jī)質(zhì)濃度和活性以及溫度等環(huán)境因素的影響。

      (2)通過對(duì)兩個(gè)站位硫酸鹽還原帶中不同層位硫酸鹽還原速率積分計(jì)算,表明九龍江河口沉積物中存在較高的硫酸鹽還原通量,硫酸鹽還原作用在九龍江河口沉積物有機(jī)質(zhì)礦化中具有重要的作用。

      [1] Vairavamurthy M A,Orr W L,Manowitz B. Geochemical transformation of sedimentary sulfur: an introduction[M]// Vairavamurthy M A,Schoonen M A A. Geochemical Tranformation of Sedimentary Sulfur. Washington,DC: ACS Symposium,1995: 1-17.

      [2] Bottrell S H,Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J]. Earth-Science Reviews,2006,75(1/4): 59-83.

      [3] J?rgensen B B. The sulfur cycle of coastal marine sediment (Limfjorden,Denmark)[J]. Limnology and Oceanography,1977,22(5): 814-832.

      [4] Kallmeyer J,F(xiàn)erdelman T G,Weber A,et al. A cold chromium distillation procedure for radio labeled sulfide applied to sulfate reduction measurements[J]. Limnology and Oceanography Methods,2004,2: 171-180.

      [5] Fossing H,J?rgensen B B. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method[J]. Biogeochemistry,1989,8(3): 205-222.

      [6] J?rgensen B B,F(xiàn)enchel T. The sulfur cycle of a marine sediment model system[J]. Marine Biology,1974,24(3): 189-201.

      [7] Sweeney R E,Kaplan I R. Diagenetic sulfate reduction in marine sediments[J]. Marine Chemistry,1980,9(3): 165-174.

      [8] Berner R A. Sulfate reduction and the rate of deposition of marine sediments[J]. Earth and Planetary Science Letters,1978,37(3): 492-498.

      [9] Bowles M W,Samarkin V A,Bowles K M,et al. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation[J]. Geochimica et Cosmochimica Acta,2011,75(2): 500-519.

      [10] Lee T,Hyun J H,Mok J S,et al. Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung Basin,East/Japan Sea[J]. Geo-Marine Letters,2008,28(3): 153-159.

      [11] Meister P,Liu B,F(xiàn)erdelman T G,et al. Control of sulphate and methane distributions in marine sediments by organic matter reactivity[J]. Geochimica et Cosmochimica Acta,2013,104: 183-193.

      [12] Al-Raei A M,Bosselmann K,B?ttcher M E,et al. Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter[J]. Ocean Dynamics,2009,59(2): 351-370.

      [13] Gribsholt B,Kristensen E. Benthic metabolism and sulfur cycling along an inundation gradient in a tidalSpartinaanglicasalt marsh[J]. Limnology and Oceanography,2003,48(6): 2151-2162.

      [14] Thang N M,Brüchert V,F(xiàn)ormolo M,et al. The impact of sediment and carbon fluxes on the biogeochemistry of methane and sulfur in Littoral Baltic Sea Sediments (Himmerfj?rden,Sweden)[J]. Estuaries and Coasts,2013,36(1): 98-115.

      [15] 孫炳寅,經(jīng)美德. 廢黃河口鹽沼土硫酸鹽還原速率的研究[J]. 應(yīng)用生態(tài)學(xué)報(bào),1990,1(3): 248-253.

      Sun Bingyin, Jing Meide. A study on sulfate reduction in salt marsh near the estuary of obsolete Huanghe River[J]. Chinese Journal of Applied Ecology, 1990, 1(3):248-253.

      [16] Wu Z J,Zhou H Y,Peng X T,et al. Rates of bacterial sulfate reduction and their response to experimental temperature changes in coastal sediments of Qi’ao Island,Zhujiang River Estuary in China[J]. Acta Oceanologica Sinica,2014,33(8): 10-17.

      [17] 程思海,陸紅鋒. 海洋沉積物孔隙水的制備方法[J]. 巖礦測(cè)試,2005,24(2): 102-104.

      Cheng Sihai, LU Hongfeng. Techniques for marine sediment pore-water sampling[J]. Rock and Mineral Analysis, 2005, 24(2):102-104.

      [18] 吳自軍,周懷陽,彭曉彤,等. 甲烷厭氧氧化作用: 來自珠江口淇澳島海岸帶沉積物間隙水的地球化學(xué)證據(jù)[J]. 科學(xué)通報(bào),2006,51(17): 2052-2059.

      Wu Zijun,Zhou Huaiyang,Peng Xiaotong,et al.Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi’ao Island(Pearl River Estuary), southern China[J]. Chinese Science Bulletin, 2006, 51(17): 2052-2059.

      [19] Schulz H D,Zabel M. Marine Geochemistry[M]. Berlin: Springer,2006: 198-199.

      [20] 張勝,張翠云,張?jiān)?,? 地質(zhì)微生物地球化學(xué)作用的意義與展望[J]. 地質(zhì)通報(bào),2005,24(10/11): 1027-1031.

      Zhang Sheng, Zhang Cuiyun, Zhang Yun, et al. Geomicrobial geochemical processes: Significance and prospects[J]. Regional Geology of China, 2005, 24(10/11):1027-1031.

      [21] Froelich P N,Klinkhammer G P,BenderM L,et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J]. Geochimica et Cosmochimica Acta,1979,43(7): 1075-1090.

      [22] Canfield D E. Organic matter oxidation in marine sediments[C]∥Wollast R,Mackenzie F T,Chou L,et al. Interactions of C,N,P and S Biogeochemical Cycles and Global Change. Berlin Heidelberg: Springer-Verlag,1993: 333-363.

      [23] Burdige D J. Geochemistry of Marine Sediments[M]. USA: Princeton University Press,2006.

      [24] 尹希杰,陳堅(jiān),郭瑩瑩,等. 九龍江河口沉積物中硫酸鹽還原與甲烷厭氧氧化:同位素地球化學(xué)證據(jù)[J]. 海洋學(xué)報(bào),2011,33(4): 121-128.

      Yin Xijie, Chen Jian, Guo Yingying, et al. Sulfate reduction and methane anaerobic oxidation: isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary[J]. Haiyang Xuebao, 2011,33(4),121-128.

      [25] Wijsman J W M,Middelburg J J,Herman P M J,et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J]. Marine Chemistry,2001,74(4): 261-278.

      [26] 尹希杰,周懷陽,楊群慧,等. 珠江口淇澳島海岸帶沉積物中硫酸鹽還原和不同形態(tài)硫的分布[J]. 海洋學(xué)報(bào),2010,32(3): 31-39.

      Yin Xijie, Zhou Huaiyang, Yang Qunhui, et al. Sulfate reduction and reduced sulfur speciation in the coastal sediments of Qi’ao Island in the Zhujiang Estuary in China[J]. Haiyang Xuebao, 2010, 32(3):31-39.

      [27] Marvin-DiPasquale M C,Boynton W R,Capone D G. Benthic sulfate reduction along the Chesapeake Bay central channel. Ⅱ. Temporal controls[J]. Marine Ecology Progress Series,2003,260: 55-70.

      [28] Beck M,Dellwig O,Liebezeit G,et al. Spatial and seasonal variations of sulphate,dissolved organic carbon,and nutrients in deep pore waters of intertidal flat sediments[J]. Estuarine,Coast Shelf Science,2008,79(2): 307-316.

      [29] Manous J J,Gantzer C J,Stefan H G. Spatial Variation of Sediment Sulfate Reduction Rates in a Saline Lake [J]. Journal of Environmental Engineering,2007,133(12): 1106-1116.

      [30] Edenborn H M,Silverberg N,Mucci A,et al. Sulfate reduction in deep coastal marine sediments[J]. Marine Chemistry,1987,21(4): 329-345.

      [31] Coleman M L,Raiswell R. Source of carbonate and origin of zonation in pyritiferous carbonate concretions: evaluation of a dynamic model[J]. American Journal of Science,1995,295(3): 282-308.

      [32] Pallud C,Cappellen P V. Kinetics of microbial sulfate reduction in estuarine sediments[J]. Geochimica et Cosmochimica Acta,2006,70(5): 1148-1162.

      [33] Schubert C S,F(xiàn)erdelman T G,Strotmann B. Organic matter composition and sulfate reduction rates in sediments off Chile[J]. Organic Geochemistry,2000,31(5): 351-361.

      [34] Canfield D E. Sulfate reduction in deep sea sediments[J]. American Journal of Science,1991,291(2): 177-188.

      [35] Devol A H,Ahmend S I. Are high rates of sulphate reduction associated with anaerobic oxidation of methane? [J]. Nature,1981,291(5814): 407-408.

      [36] Pohlman J W,Ruppel C,Hutchinson D R,et al. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico[J]. Marine and Petroleum Geology,2008,25(9): 942-951.

      [37] Li Q Q,Wang F P,Chen Z W,et al. Stratified active archaeal communities in the sediments of Jiulong river estuary China[J]. Frontiers in Microbiology,2012,3: 311.

      [38] Wenzhofer F,Glud R N. Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade[J]. Deep-Sea Research,2002,49(7): 1255-1279.

      [39] Jahnke R A. The global ocean flux of particulate organic carbon: A real distribution and magnitude[J]. Global Biogeochemical Cycles,1996,10(1): 71-88.

      [40] Hadas O. Sulfate reduction in Lake Agmon,Israel[J]. Science of the Total Environment,2001,266(1/3): 203-209.

      [41] Julies E M,F(xiàn)uchs B M,Arnosti C,et al. Organic carbon degradation in anoxic Organic-Rich shelf sediments: Biogeochemical rates and microbial abundance[J]. Geomicrobiology Journal,2010,27(4): 303-314.

      [42] Sawicka1 J E,J?rgensen B B,Brüchert V. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments[J]. Biogeosciences,2012,9(8): 3425-3435.

      [43] Weber A,J?rgensen B B. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin,Gulf of California,Mexico[J]. Deep-Sea Research I,2002,49(5): 827-841.

      [44] Treude T,Niggemann J,Kallmeyer J,et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J]. Geochimica et Cosmochimica Acta,2005,69(11): 2767-2779.

      [45] Bertics V J,Ziebis W. Bioturbation and the role of microniches for sulfatereduction in coastal marine sediments[J]. Environmental Microbiology,2010,12(11): 3022-3034.

      [46] Laverman A M,Pallud C,Abell J. et al. Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments[J]. Geochimica et Cosmochimica Acta,2012,77: 474-488.

      [47] Hines M E,Knollmeyer S L,Tugel J B. Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh[J]. Limnology and Oceanography,1989,34(3): 578-590.

      [48] Maltby E,Immirzi C P. Carbon dynamics in peatlands and other wetlands soils: regional and global perspectives[J]. Chemosphere,1993,27(6): 999-1023.

      [49] Hyun J H,Smith A C,Kostka J E. Relative contributions of sulfate-and iron(III) reduction to organic matter minrtalization and process controls in contrasting habitats of the Georgia saltmarsh[J]. Applied Geochemistry,2007,22(12): 2637-2651.

      [50] Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[J]. Advances in Microbiology and Ecology,2000,16: 41-84.

      [51] Weber A,Riess W,Wenzhoefer F,et al. Sulfate reduction in Black Sea sediments:Insituand laboratory radiotracer measurements from the shelf to 2000 m depth[J]. Deep-Sea Research,2001,48(9): 2073-2096.

      [52] Bruchert V,Gorgensen B B,Neumann K,et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone[J]. Geochimica et Cosmochimica Acta,2003,67(23): 4505-4518.

      [53] Zopfi J,B?ttcherM,J?rgensen B B. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central Chile[J]. Geochimica et Cosmochimica Acta,2008,72(3): 827-843.

      [54] Devol A H,Anderson J J,Kuivila K,et al. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta,1984,48(5): 993-1004.

      [55] Iversen N,J?rgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J]. Limnology and Oceanography,1985,30(5): 944-955.

      [56] Alperin M J,Reeburgh W S,Whiticar M J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J]. Global Biogeochemical Cycles,1988,2(3): 279-288.

      [57] Thode-Andersen S,J?rgensen B B. Sulfate reduction and the formation of 35S-labeled FeS,F(xiàn)eS2,and So in coastal marine sediments[J]. Limnology and Oceanography,1989,34(5): 793-806.

      [58] J?rgensen B B,Bang M,Blackburn H T. Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition[J]. Marine Ecology Progress Series,1990,59: 39-54.

      [59] Oenema O. Sulfate reduction in fine-grained sediments in the Eastern Scheldt,southwest Netherlands[J]. Biogeochemistry,1990,9(1): 53-74.

      [60] Roden E E,Tuttle J H. Inorganic sulfur cycling in mid and lower Chesapeake Bay sediments[J]. Marine Ecology Progress Series,1993,93: 101-118.

      [61] Fossing H,F(xiàn)erdelman T G,Berg P. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia) [J]. Geochimica et Cosmochimica Acta,2000,64(5): 897-910.

      [62] J?rgensen B B,Weber A,Zopfi J. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments[J]. Deep-Sea Research,2001,48(9): 2097-2120.

      [63] Mazumdar A,Paropkari A L,Borole D V,et al. Pore-water sulfate concentration profiles of sediment cores from Krishna-Godavari and Goa basins,India[J]. Geochemical Journal,2007,41: 259-269.

      [64] Bowles M W,Samarkin V A,Bowles K M. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation[J]. Geochimica et Cosmochimica Acta,2011,75(2): 500-519.

      [65] Crill P M,Martens C S. Biogeochemical cycling in an organic-rich coastal marine basin. 6. Temporal and spatial variations in sulfate reduction rates[J]. Geochimica et Cosmochimica Acta,1987,51(5): 1175-1186.

      [66] Takii S,Tanaka H,Kohata K,et al. Seasonal changes in sulfate reduction in sediments in the Inner Part of Tokyo Bay[J]. Microbes and Environments,2002,17(1): 10-17.

      [67] Panutrakul S,Monteny F,Baeyens W,et al. Seasonal variations in sediment sulfur cycling in the Ballastplaat Mudflat,Belgium[J]. Estuaries,2001,24(2): 257-265.

      Measurement of sulfate reduction rate in coastal sediments of Jiulong River Estuary with a radiotracer technique

      Yin Xijie1,Sun Zhilei2,Xu Yonghang1,Li Yunhai1,Shao Changwei3

      (1.OpenLaboratoryofOcean&CoastEnvironmenttalGeology,ThirdInstituteofOceanographyStateOceanicAdministration,Xiamen361005,China; 2.KeyLaboratoryofMinistryofLandandResourcesforMarineOilGasResourcesandEnvironmentalGeology,QingdaoInstituteofMarineGeology,Qingdao266071,China; 3.ShandongGeophysicalandGeochemicalExplorationInstitute,Jinan250013,China)

      sulfate reduction rate; sulfate; anaerobic methane oxidation; Jiulong River Estuary

      10.3969/j.issn.0253-4193.2015.04.008

      2014-03-31;

      2014-09-23。

      國家青年基金(41006072,41276059);福建省青年基金項(xiàng)目(2010J05095)。

      尹希杰(1977—),男,山東省濰坊市人,副研究員,主要研究方向?yàn)楹Q笊锏厍蚧瘜W(xué)。E-mail:yinxijie2003@163.com

      P736.41

      A

      0253-4193(2015)04-0083-11

      Yin Xijie,Sun Zhilei,Xu Yonghang,et al. Measurement of sulfate reduction rate in coastal sediments of Jiulong River Estuary with a radiotracer technique[J]. Haiyang Xuebao,2015,37(2):83—93,doi:10.3969/j.issn.0253-4193.2015.04.008

      猜你喜歡
      河口硫酸鹽站位
      鐵/過硫酸鹽高級(jí)氧化體系強(qiáng)化方法的研究進(jìn)展
      云南化工(2021年5期)2021-12-21 07:41:16
      提高政治站位 對(duì)標(biāo)國內(nèi)一流
      建黨百年說“站位”
      水上消防(2021年3期)2021-08-21 03:12:00
      紫外光分解銀硫代硫酸鹽絡(luò)合物的研究
      四川冶金(2019年5期)2019-12-23 09:04:48
      提升站位講政治 創(chuàng)新?lián)?dāng)爭(zhēng)出彩
      ICP-OES法測(cè)定硫酸鹽類鉛鋅礦石中的鉛量
      硫酸鹽測(cè)定能力驗(yàn)證結(jié)果分析
      他們?yōu)槭裁催x擇河口
      河口,我們的家
      特殊的河口水
      博白县| 安西县| 安阳县| 宁阳县| 濮阳县| 黄山市| 伊川县| 和林格尔县| 增城市| 麻城市| 荣昌县| 凤冈县| 海宁市| 大足县| 罗定市| 新昌县| 东安县| 台北市| 闻喜县| 铁岭县| 大悟县| 五大连池市| 邵阳县| 马公市| 浑源县| 海兴县| 天台县| 台湾省| 玛多县| 佛山市| 休宁县| 台南县| 偃师市| 五指山市| 柳江县| 安仁县| 武强县| 夏津县| 锡林浩特市| 石柱| 封开县|