雷 晶, 郝艷淑, 王 典, 吳秀文, 姜存?zhèn)}
(華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,農(nóng)業(yè)部長(zhǎng)江中下游耕地保育重點(diǎn)實(shí)驗(yàn)室,武漢 430070)
鈉鉀替代對(duì)不同基因型棉花鉀利用效率的影響
雷 晶, 郝艷淑, 王 典, 吳秀文, 姜存?zhèn)}*
(華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,農(nóng)業(yè)部長(zhǎng)江中下游耕地保育重點(diǎn)實(shí)驗(yàn)室,武漢 430070)
棉花; 基因型; 鈉鉀替代; 鉀利用效率
鉀對(duì)植物的生長(zhǎng)發(fā)育有重要的生理功能:促進(jìn)光合作用及其產(chǎn)物的運(yùn)輸,促進(jìn)蛋白質(zhì)的合成,參與細(xì)胞滲透調(diào)節(jié)作用,調(diào)控氣孔運(yùn)動(dòng),激活酶的活性,促進(jìn)有機(jī)酸代謝,增強(qiáng)植物的抗逆性[1]。而鉀資源的短缺是我國(guó)乃至世界農(nóng)業(yè)生產(chǎn)領(lǐng)域必須面臨和解決的問題。土壤中鉀資源潛力巨大,但生物有效性低,作物不能很好的吸收利用[2]。為緩解我國(guó)鉀資源短缺的問題,劉國(guó)棟和劉更另提出了使用鉀的替代物[3]。鈉作為鉀最大優(yōu)勢(shì)的替補(bǔ)陽離子,在缺鉀情況下,加鈉可以維持液泡的正常膨壓,減少了缺鉀造成滲透勢(shì)變化的不利影響[4]。Cooper等[5]和Lancaster等[6]試驗(yàn)結(jié)果表明, 缺鉀條件下施鈉,能顯著增加棉花莖葉和棉鈴的干重,從而提高棉花產(chǎn)量。張彥才等[7]的研究結(jié)果表明,在土壤速效鉀偏低的情況下,鈉可以替代部分鉀的作用,從而促進(jìn)棉花的生長(zhǎng),提高棉花產(chǎn)量。因此,了解K+與Na+之間的替代作用和對(duì)植物的生理效應(yīng),對(duì)緩解鉀肥資源短缺、提高鉀效率有著重要的意義。當(dāng)前,有關(guān)鈉對(duì)于不同基因型棉花鉀素替代作用的差異,以及鈉是否有助于提高鉀素的利用效率還需要進(jìn)一步探討。本研究主要通過營(yíng)養(yǎng)液培養(yǎng)試驗(yàn),研究鈉鉀替代作用對(duì)不同基因型棉花鉀效率的影響,旨在為生產(chǎn)中科學(xué)利用鉀肥提供依據(jù)。
1.1 試驗(yàn)材料和設(shè)計(jì)
1.2 取樣及測(cè)定方法
培養(yǎng)30 d后將幼苗分根、莖、葉、柄取樣,經(jīng)105℃殺青30 min,70℃下烘干稱重。樣品粉碎后用馬弗爐在500℃下進(jìn)行干灰化,然后用0.1 mol/L的HCl浸提,火焰分光光度計(jì)測(cè)定鉀和鈉含量[12]。株高、根長(zhǎng)采用直尺測(cè)量法;葉片數(shù)以完全展開的真葉數(shù)為準(zhǔn)。
1.3 數(shù)據(jù)分析
相對(duì)生長(zhǎng)速率(RGR)=(lnL2-lnL1)/(T2-T1)
式中: L2、 L1分別代表第二次和第一次測(cè)量時(shí)的根長(zhǎng)和株高(間隔2周); T2、T1分別代表測(cè)量時(shí)間; ln為自然對(duì)數(shù)[13];
根冠比=根生物量/地上部生物量;
鉀積累量=鉀含量×干重[11];
鉀利用效率=全株干重/全株鉀積累量[11]。
用Microsoft Excel和Origin工具作圖、 表分析,用SAS 9.1.3數(shù)據(jù)處理系統(tǒng)進(jìn)行統(tǒng)計(jì)分析。
2.1 不同鉀水平下鈉對(duì)不同鉀效率基因型棉花農(nóng)藝性狀的影響
由表1可知,缺鉀的條件下,施鈉增加了103和122的根長(zhǎng)和根長(zhǎng)相對(duì)生長(zhǎng)速率,其中103的根長(zhǎng)和根長(zhǎng)相對(duì)生長(zhǎng)速率分別增加了11%和600%,122的分別增加了5%和55%,并且103和122的株高有所增加,但是株高的相對(duì)生長(zhǎng)速率減少了。此外,顯著增加了122的葉片數(shù),而對(duì)103沒有顯著影響。適鉀條件下施鈉,103和122的根長(zhǎng)有所增加,分別增加了16%和1%,但是根長(zhǎng)的相對(duì)生長(zhǎng)速率減少了。施鈉顯著增加了103株高和株高相對(duì)生長(zhǎng)速率,122的則顯著減少。因此,無論是否施鉀、 施鈉都能增加兩個(gè)基因型的根長(zhǎng),且103增加的幅度大于122的。缺鉀時(shí)施鈉,兩個(gè)基因型的根長(zhǎng)相對(duì)生長(zhǎng)速率顯著增加;而適鉀時(shí)施鈉,則顯著降低。方差分析結(jié)果表明(表1),基因型間、鉀處理間和鈉處理間差異均是極顯著的;鉀鈉交互作用對(duì)根長(zhǎng)和株高的相對(duì)增長(zhǎng)速率有極顯著的影響。
表1 鈉對(duì)不同鉀效率基因型棉花農(nóng)藝性狀的影響Table 1 Effect of sodium on agronomic traits of different cotton genotypes
注(Note): G—基因型Genotype; 數(shù)據(jù)后不同字母表示處理間差異達(dá)到5%顯著水平Different letters mean significant at the 5% level. **,*分別表示顯著性概率達(dá)到1%和5%(n=24) Indicate significant at the 1% and 5% levels(n=24).
2.2 不同鉀水平下鈉對(duì)不同鉀效率基因型棉花各部位干重的影響
由表2可以看出,缺鉀條件的施鈉,103的根、莖、柄、總干重和根冠比都略有增加,但是沒達(dá)到顯著性水平,而122的地上部和總干重以及根冠比顯著性增加了,分別增加了58%、65%和26%,其主要是由于葉干重顯著增加45%。適鉀的條件下,施鈉能顯著增加103和122的各部位干重和總干重。其中,103的根、地上部和總的干重分別增加了42%、 25%和29%,122的分別增加了35%、25%和28%。103和122的根冠比也分別顯著增加了16%和9%。因而,適鉀的條件下施鈉能顯著增加兩個(gè)基因型各部位及總干重,且103的根冠比增加的幅度大于122的,主要是由于103的根干重的增加幅度大于122的。方差分析結(jié)果顯示(表2),除了基因型對(duì)根冠比的影響不顯著外,基因型、鉀處理和鈉處理對(duì)各部位干重、總干重和根冠比的影響均是極顯著的;鉀鈉交互作用極顯著的影響影響了各部位的干重和總的干重。
表2 鈉對(duì)不同基因型棉花各部位干重的影響(g)Table 2 Effect of sodium on dry weights of different cotton genotypes
注(Note): G—基因型Genotype; 數(shù)值后不同字母表示處理間差異達(dá)到5%顯著水平 Values followed by different letters mean significant at the 5% level. **,*分別表示顯著性概率達(dá)到1%和5%(n=24) Indicate significant at the 1% and 5% levels(n=24).
2.3 不同鉀水平下鈉對(duì)不同鉀效率基因型棉花各部位鉀鈉含量的影響
由表3可知,缺鉀時(shí),施鈉顯著降低了103和122根和莖的鉀含量,其中103的分別降低了35%和43%,而122的降低了25%和45%,施鈉對(duì)兩個(gè)基因型葉柄中鉀含量沒有顯著影響,各個(gè)部位鈉含量都有大幅度顯著增加。適鉀時(shí),施鈉顯著降低了103和122根和葉的鉀含量,其中103的分別降低了14%和33%,122的則降低了19%和29%,各個(gè)部位鈉含量也都有大幅度顯著增加。因此,無論是否有鉀,施鈉后103和122兩個(gè)基因型根的鈉含量都顯著增加,而鉀含量都顯著減少。且兩個(gè)基因型鈉含量增加的幅度和鉀含量減小的幅度大致相同。方差分析表明(表3),除了基因型對(duì)葉中鉀含量和鈉處理對(duì)柄中鉀含量沒有顯著影響外,基因型鉀處理和鈉處理對(duì)各部位鉀鈉含量的影響均是極顯著的;鉀鈉交互作用對(duì)根、葉中的鉀含量和各部位的鈉含量有極顯著的影響。
2.4 不同鉀水平下鈉對(duì)不同鉀效率基因型棉花各部位鉀鈉積累量的影響
由表4可知,缺鉀的條件下施鈉,各部位和全株的鈉積累量都顯著增加,而對(duì)鉀積累量沒有顯著影響。適鉀的條件下施鈉,各部位和全株的鈉積累量都顯著增加,除了葉片和柄中鉀積累量稍微減少,其他各個(gè)部位的鉀積累量都有不同程度的增加,說明鈉能促進(jìn)對(duì)鉀的吸收。其中,103根中鉀積累量顯著增加了22%,而122的增加了10%,說明施鈉能明顯促進(jìn)根系對(duì)鉀的吸收,且對(duì)103的促進(jìn)效果優(yōu)于122。方差分析結(jié)果表明(表4),基因型對(duì)莖和葉中鉀鈉積累量,根和全株鈉積累量有極顯著的影響,鉀處理對(duì)各部位和全株的鉀鈉積累量均有極顯著影響,鈉處理顯著影響根、葉、柄中鉀積累量和各部位的鈉積累量;除了對(duì)莖和全株的鉀積累量沒有顯著影響外,鉀鈉交互作用對(duì)其他各部位鉀鈉積累量均有顯著的影響。
表3 鈉對(duì)不同基因型棉花各部位鉀鈉含量的影響(%)Table 3 Effect of sodium on K and Na contents of different cotton genotypes
注(Note): G—基因型Genotype; 數(shù)據(jù)后不同字母表示處理間差異達(dá)到5%顯著水平Values followed by different letters mean significant at the 5% level. **,*分別表示顯著性概率達(dá)到1%和5%(n=24) Indicate significant at the 1% and 5% levels(n=24).
表4 鈉對(duì)不同基因型棉花各部位鉀鈉積累量的影響(mg/plant)Table 4 Effect of sodium on K and Na accumulations of different cotton genotypes
注(Note): G—基因型Genotype; 數(shù)值后不同字母表示處理間差異達(dá)到5%顯著水平Values followd by different letters mean significant at the 5% level. **,* 分別表示顯著性概率達(dá)到1%和5%(n=24) Indicate significant at the 1% and 5% levels(n=24).
2.5 不同鉀水平下鈉對(duì)不同鉀效率基因型棉花鉀效率的影響
由圖1可以看出,缺鉀的條件下,施鈉顯著提高了103的鉀利用效率,為缺鈉條件下的1.37倍,而顯著減少了122的鉀利用效率。適鉀條件下,施鈉均有利于103和122的鉀利用效率的增加,其中,高效基因型103的鉀利用效率增加幅度為28%,而低效基因型122的增加幅度是19%。鉀鈉交互作用對(duì)鉀利用效率有顯著影響(FK×Na=6.52*),基因型、鉀和鈉間的交互作用也極顯著地影響鉀利用效率(FG×K×Na=41.50**)。
圖1 鈉對(duì)不同基因型棉花鉀利用效率的影響Fig.1 Effect of sodium on K use efficiency of different cotton genotypes
本試驗(yàn)結(jié)果表明,缺鉀的條件下施鈉,103和122兩個(gè)基因型的根和莖干重都沒有顯著增加,但是各部位鉀的含量顯著減少,鈉含量顯著增加,說明鈉能部分而不能完全替代鉀的功能。Zhang等[14]對(duì)棉花進(jìn)行的盆栽試驗(yàn)結(jié)果表明,缺鉀時(shí)施鈉對(duì)棉花的總干重沒有顯著影響,陳國(guó)安[15]的試驗(yàn)結(jié)果也表明,低鉀時(shí)加鈉,莖葉中總鉀量有所降低,而相應(yīng)的由于鈉的施用,鈉則增加,與本試驗(yàn)結(jié)果一致。適鉀的條件下,施鈉能顯著增加103和122各部位和總的干物重,同時(shí)各部位鉀的含量有所減少,鈉含量顯著增加,說明鈉可能部分替代鉀行使鉀非專性生理功能,使植物正常生長(zhǎng)的需鉀量減少[16]。劉國(guó)棟等[17]對(duì)不同基因型水稻鈉對(duì)鉀的部分替代作用的研究,也得到了相似的結(jié)論。彭春雪等的試驗(yàn)結(jié)果也表明,施鈉能提高甜菜幼苗體內(nèi)鈉含量,增加干重,對(duì)其生長(zhǎng)有促進(jìn)作用[18]。吳春紅等對(duì)小麥的研究結(jié)果表明適鉀時(shí)施鈉增加根系干重和根冠比[19],與本試驗(yàn)的結(jié)果相同。此外,適鉀的情況下施鈉,103根長(zhǎng)增加的幅度(16%)大于122(1%)的,根干重增加幅度(42%)大于122(35%)的,根中鉀積累量顯著增加了22%,大于122的10%,說明施鈉能明顯促進(jìn)根系的伸長(zhǎng)、根系對(duì)鉀的吸收,且對(duì)鉀高效基因型103的促進(jìn)效果優(yōu)于鉀低效基因型122。
施用鉀肥能夠降低鹽堿地棉花地上部的鈉含量,從而維持較高的K+/Na+來實(shí)現(xiàn)耐鹽性[20]。施用鉀肥可以促進(jìn)體內(nèi)鹽分的排泄,增強(qiáng)植物耐鹽脅迫的能力[21]。本研究也表明,適鈉條件下施鉀能顯著降低各部位的鈉含量,增加鉀含量,從而提高K+/Na+。說明鉀鈉間的替代作用對(duì)減輕鹽害和增強(qiáng)耐鹽性有著重要的意義。
鉀利用效率是指植物體內(nèi)單位鉀積累量所產(chǎn)生的干物質(zhì)[22],其大小在一定程度上反映植株鉀吸收利用能力的高低。本試驗(yàn)在缺鉀的條件下施鈉,103的鉀利用效率顯著提高。Ali等[23]的研究也表明,低鉀時(shí)施鈉能提高鉀利用效率。適鉀的條件下施鈉,鉀利用效率增加的幅度為103(28%)的大于122(19%)的,表明103對(duì)鉀的吸收利用能力更強(qiáng),因此可以認(rèn)為103的鈉鉀替代作用更強(qiáng),這也可能是103鉀高效的機(jī)制之一[9]。
無論是否施鉀,施鈉均能增加鉀高效基因型103和鉀低效基因型122棉花的根長(zhǎng),通過促進(jìn)根系的伸長(zhǎng)來提高棉花對(duì)鉀的吸收和生物量的積累。在缺鉀的條件下施鈉,高效基因型103的鉀利用效率顯著提高,為缺鈉條件的1.37倍。鉀鈉交互作用對(duì)鉀效率的影響達(dá)到顯著水平,基因型、鉀和鈉間的交互作用對(duì)鉀效率的影響也達(dá)到極顯著水平。適鉀的條件下施鈉,鉀利用效率增加的幅度為103(28%)的大于122(19%)的,因此,高效基因型103的鈉鉀替代作用更強(qiáng),這也可能是103鉀高效的機(jī)制之一。
[1] 陸景陵. 植物營(yíng)養(yǎng)學(xué)(第2版)[M]. 北京: 中國(guó)農(nóng)業(yè)大學(xué)出版社, 2003. 50-58. Lu J L.Plant nutrition (2nd Edition)[M]. Beijing: China Agricultural University Press, 2003. 50-58.
[2] 嚴(yán)小龍, 張福鎖. 植物營(yíng)養(yǎng)遺傳學(xué)[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 1997. 1-17. Yan X L, Zhang F S. Plant nutrition genetics[M]. Beijing: China Agriculture Press, 1997. 1-17.
[3] 劉國(guó)棟, 劉更另. 論緩解我國(guó)鉀源短缺問題的新對(duì)策[J]. 中國(guó)農(nóng)業(yè)科學(xué), 1995, 28 (1): 25-32. Liu G D, Liu G L. A new strategy alleviating shortage of potassium resource in China[J]. Scientia Agricultura Sinica, 1995, 28(1): 25-32.
[4] 姜理英, 楊肖娥, 石偉勇. 鉀鈉替代作用及對(duì)作物的生理效應(yīng)[J]. 土壤通報(bào), 2001, 32 (1): 28-31. Jiang L Y, Yang X E, Shi W Y. Potassium-sodium substitution and physiological effect of the substitution on crops[J]. Chinese Journal of Soil Science, 2001, 32(1): 28-31.
[5] Cooper H P, Garman W H. Effect of applications of sodium on the composition and yield of cotton at different levels of potash fertilization[CJ]. Soil Science Society of America Journal, 1943, 7: 331-338.
[6] Lancaster J D, Andrews W B, Jones U S. Influence of sodium on yield and quality of cotton lint and seed[J]. Soil Science, 1953, 76(1): 29-40.
[7] 張彥才, 周曉芬, 李巧云, 等. 鈉替代部分鉀對(duì)棉花生長(zhǎng)和養(yǎng)分吸收的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2006, 12(1): 115-120. Zhang Y C, Zhou X F, Li Q Yetal. The effects of partial replacement of potassium by sodium on cotton growth and nutrition absorption[J]. Plant Nutrition and Fertilizer Science, 2006, 12(1): 115-120.
[8] 姜存?zhèn)}, 袁利升, 王運(yùn)華, 等. 不同棉花基因型苗期鉀效率差異的初步研究[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 2003, 22(6): 564-568. Jiang C C, Yuan L L, Wang Y Hetal. K-efficiency in different cotton genotypes at seeding stage[J]. Journal of Huazhong Agricultural University, 2003, 22(6): 564-568.
[9] 姜存?zhèn)}, 高祥照, 王運(yùn)華, 等. 不同棉花基因型苗期鉀效率差異及其機(jī)制的研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2005, 11(6): 781-786. Jiang C C, Gao X Z, Wang Y Hetal. Potassium efficiency of various cotton genotypes and its nutritional mechanisms[J]. Plant Nutrition and Fertilizer Science, 2005, 11(6): 781-786.
[10] Joham H E. The calcium and potassium nutrition of cotton as influenced by sodium[J]. Plant Physiology, 1955, 30(1): 4-10.
[11] 郝艷淑, 姜存?zhèn)}, 王曉麗, 等. 不同棉花基因型鉀效率特征及其根系形態(tài)的差異[J]. 作物學(xué)報(bào), 2011, 37(11): 2094-2098. Hao Y S, Jiang C C, Wang X Letal. Differences of potassium efficiency characteristics and root morphology between two cotton genotypes[J]. Acta Agronomica Sinica, 2011, 37(11): 2094-2098.
[12] 鮑士旦. 土壤農(nóng)化分析(第三版)[M]. 在中國(guó)農(nóng)業(yè)出版社, 2007. 270-271. Bao S D. Soil agro-chemistry analysis[M]. Beijing: China Agriculture Press, 2007. 270-271.
[13] 黃中文, 王偉, 徐新娟, 等. 大豆重組自交家系群體動(dòng)態(tài)株高及其相對(duì)生長(zhǎng)速率與產(chǎn)量的關(guān)系[J]. 作物學(xué)報(bào), 2011, 37(3): 559-562. Huang Z W, Wang W, Xu X Jetal. Relationship of dynamic plant height and its relative growth rate with yield using recombinant inbred lines of soybean[J]. Acta Agronomica Sinica, 2011, 37(3): 559-562.
[14] Zhang Y C, Li Q Y, Zhou X Fetal. Effects of partial replacement of potassium by sodium on cotton seedling development and yield[J]. Journal of Plant Nutrition, 2006, 29(10): 1845-1854.
[15] 陳國(guó)安. 鈉對(duì)棉花生長(zhǎng)和鉀的吸收與轉(zhuǎn)移的影響[J]. 土壤, 2001, 33(3): 138-141. Chen G A. The effect of sodium on the growth, the potassium absorption and transfer of cotton[J]. Soils, 2001, 33(3): 138-141.
[16] Schubert S, Lauchi A. Na+exclusion, H+release, and growth of two different maize cultivars under NaCl salinity[J]. Plant Physiology, 1986, 126: 145-154.
[17] 劉國(guó)棟, 劉更另. 水稻不同基因型中Ca、 Na對(duì)K的部分替代作用[J]. 作物學(xué)報(bào), 1996, 22(3): 313-319. Liu G D, Liu G L. The effects of partial replacement of potassium by sodium or calcium in Indica rice[J]. Acta Agronomica Sinica, 1996, 22(3): 313-319.
[18] 彭春雪, 耿貴, 於麗華, 等. 不同濃度鈉對(duì)甜菜生長(zhǎng)及生理特性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20(2): 459-465. Peng C X, Geng G, Yu L Hetal. Effects of different Na+concentrations on the growth and physiological traits of sugar beet[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 459-465.
[19] 吳春紅, 梁雪, 李斯深, 等. 小麥苗期鉀、鈉吸收相關(guān)性狀及其QTL 分析[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013, 19(5): 1025-1036. Wu C H, Liang X, Li S Setal. Potassium and sodium absorption related traits and QTL mapping at the seedling stage of wheat[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1025-1036.
[20] 董合忠. 鹽堿地棉花栽培學(xué)[M]. 北京: 科學(xué)出版社, 2010. 84-86. Dong H Z. Cotton cultivation in saline soil[M]. Beijing: Science Press, 2010. 84-86.
[21] 代建龍, 董合忠, 段留生. 棉花鹽害的控制技術(shù)及其機(jī)理[J]. 棉花學(xué)報(bào), 2010, 22(5): 486-494. Dai J L, Dong H Z, Duan L S. Technology and mechanism in control of salt injury in cotton[J]. Cotton Science, 2010, 22(5): 484-494.
[22] Rengel Z, Damon P M. Crops and genotypes differ in efficiency of potassium uptake and use[J]. Physiologia Plantarum, 2008, 133(4): 624-636.
[23] Ali L, Rahmatullah M, Maqsood M Aetal. Potassium substitution by sodium in root medium influencing growth behavior and potassium efficiency in cotton genotypes[J]. Journal of Plant Nutrition, 2009, 32(10): 1657-1673.
Substitution effect of sodium and potassium on potassium use efficiency of different cotton genotypes
LEI Jing, HAO Yan-shu, WANG Dian, WU Xiu-wen, JIANG Cun-cang*
[CollegeofResourcesandEnvironmentalScience,HuazhongAgriculturalUniversity/KeyLaboratoryofArableLandConservation(MiddleandLowerReachesofYangtseRiver),MinistryofAgriculture,Wuhan430070,China]
【Objectives】Potassium (K) is one of the important nutritional elements, and is necessary for plant growth and development. While proportion of bioavailabe K in soil K pool is relatively low and it is difficult for crop to effectively use, and shortage of K resources is a problem that the world needs to solve. K deficiency can affect cotton growth but sodium(Na) can share some physiological functions with K, so studying synergistic and substitution effects of Na and K is an effective way to improve the crop K efficiency. In this research, a solution experiment was conducted to study the substitution effects of Na and K on K use efficiency of two typical K-efficiency cotton genotypes, and to provide scientific and rational use of potash in the production process.【Methods】 To study the agronomic traits(root length, stem length and leaf numbers), dry weights, K and Na contents, K and Na accumulation and distribution in plant organs respectively and to explore the substitution effects of Na and K on K use efficiency of two typical K-efficiency cotton genotypes, a hydroponics experiment was conducted with different K and Na treatments in Huazhong Agricultural University. 【Results】 In deficient K, Na can increase the root lengths of both genotypes, and the increase amplitude in cultivar 103 is higher than in cultivar 122. The dry weights of each part of 103 and 122 are increased by the Na application. The K contents in both the roots and stems of 103 and 122 are also reduced, but the difference in the K accumulation between the two cultivars is not significant. Na application significantly improves the whole plant K use efficiency of 103, which is about 1.37 times of that under the lack of sodium. In adequate K condition, Na could also increase the root lengths of both genotypes, and the dry weights of each part of both genotypes are significantly increased. Meanwhile, the K content in roots and leaves is significantly reduced, the K accumulation amounts in all the parts except for leaves and stalks are increased in different degrees. When K is adequate, Na is beneficial to the increase of K use efficiency in 103 and 122, and the increase in 103 is 28%, which is higher than that in 122 (19%). Meanwhile, significant and positive interaction between K and Na is showed on the relative growth rates of roots and stems, the dry weights of all the parts, the K and Na contents and the accumulations in roots and leaves and the whole plant K use efficiency. 【Conclusions】 The root lengths under the addition of Na in deficient or adequate K are significantly enhanced by promoting root elongation to raise the absorption of K and biomass accumulation. In deficient K, Na could significantly improve K use efficiency of 103, while with the addition of Na in adequate K, the increase amplitude of K use efficiency of 103 is higher than that of 122. These results show that 103 has better K and Na replacement and synergistic effect.
cotton; genotype; sodium and potassium replacement; K use efficiency
2014-05-22 接受日期: 2014-10-25
國(guó)家自然科學(xué)基金(40801112); 公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201203013)資助。
雷晶 (1989—), 女, 湖北武漢人, 碩士研究生, 主要從事植物養(yǎng)分資源高效機(jī)理研究。 E-mail: lj7202@126.com * 通信作者 E-mail: jcc2000@mail.hzau.edu.cn
S562.062
A
1008-505X(2015)04-0962-07