劉敬然, 趙文青, 周治國*, 董合林, 趙新華, 孟亞利
(1南京農業(yè)大學農學院,農業(yè)部南方作物生理生態(tài)重點開放實驗室,江蘇南京 210095;2中國農業(yè)科學院棉花研究所,棉花生物學國家重點實驗室,河南安陽 455000)
施氮量與播種期對棉花產(chǎn)量和品質及棉鈴對位葉光合產(chǎn)物的影響
劉敬然1, 2, 趙文青1, 周治國1*, 董合林2, 趙新華2, 孟亞利1
(1南京農業(yè)大學農學院,農業(yè)部南方作物生理生態(tài)重點開放實驗室,江蘇南京 210095;2中國農業(yè)科學院棉花研究所,棉花生物學國家重點實驗室,河南安陽 455000)
棉花(GossypiumhirsutumL.); 棉鈴對位葉; 播種期; 施氮量; 光合產(chǎn)物; 產(chǎn)量和品質
溫度是影響棉鈴發(fā)育與纖維品質形成的主要生態(tài)因子,花鈴期低溫對棉花產(chǎn)量與纖維品質的影響尤為明顯[5-6]。研究表明,晚播低溫條件下,棉鈴對位葉中凈光合速率和磷酸蔗糖合成酶活性較低,蔗糖轉化率下降,導致鈴重降低[7],進而引起棉花產(chǎn)量和品質下降。
【實驗操作及現(xiàn)象】取少量固體酒精于蒸發(fā)皿中,用火柴點燃,在火焰上方罩一個冷而干燥的燒杯,觀察到燒杯內壁有水珠出現(xiàn);將燒杯迅速地倒轉過來,并注入適量澄清的石灰水,發(fā)現(xiàn)澄清石灰水變渾濁。
施氮是調控棉花產(chǎn)量形成的重要栽培措施之一[8]。研究表明,施氮量過高或過低均會造成葉片CO2同化能力降低,光合產(chǎn)物的積累與運輸受阻,影響纖維比強度的形成[9-10]。適量追加氮肥可改善棉花葉片的光合性能[11];氮不足可導致棉花衰老進程的加劇[12]和抵抗外界脅迫能力的降低,顯著減少光合產(chǎn)物在葉片的分配,進而導致棉花產(chǎn)量和品質下降[13]。
溫度和氮素作為影響棉花生長的重要因子,其協(xié)同互作會影響棉花的產(chǎn)量和品質。趙文青等研究發(fā)現(xiàn),在低溫下增加施氮量可減小因低溫而造成的纖維長度和比強度降低的幅度[14-15],但很少研究兩個因子的互作效應對棉鈴對位葉光合產(chǎn)物形成與分配的影響。本文基于大田分期播種試驗,研究施氮量對不同播種期棉鈴對位葉光合產(chǎn)物形成與運轉的影響,揭示施氮量調控不同播種期棉鈴對位葉光合產(chǎn)物形成與運轉的生理機制,以期為棉花的合理氮肥運籌提供理論依據(jù)。
1.1 試驗設計
試驗于2005年和2007年在中國農業(yè)科學院棉花研究所(河南安陽,114°13′E,36°04′N,黃河流域黃淮棉區(qū))進行,供試品種為科棉1號(Kemian 1,低溫敏感性品種)和美棉33B(NuCOTN 33B,低溫適度敏感性品種)。供試土壤為沙壤土,兩年供試土壤(0—20 cm)分別含有機質19.7、14.7 g/kg,全氮0.94、0.94 g/kg,速效氮57.8、39.3 mg/kg,速效磷23.6、25.6 mg/kg,速效鉀71.2、76.3 mg/kg。
儒學在東晉有所復興,是相對魏晉南北朝尤其漢末、三國這段分裂動蕩而又儒學極為衰微的時代而言的,其遠未超過兩漢這一經(jīng)學的極盛時代。儒學在東晉的復興是局部而又微弱的,即所謂儒學有所復興而不強盛。這種局部而微弱的復興,蘊育著其深層的自我否定因素與很大的外部挑戰(zhàn)。這一兩面性,突出表現(xiàn)在東晉的皇帝教育與官學教育上。
試驗設播種期和施氮量兩個處理因子。采用分期播種以形成棉鈴發(fā)育期溫度差異的方法,播種期設置為適宜播種期(4月25日)和晚播(5月25日),采用直播。4月25日和5月25日播種的棉花,其棉鈴發(fā)育期的日均最低溫以及大于15℃總積溫差異較大(表1),達到了設計要求。
②執(zhí)行性立法一般是指為了執(zhí)行上位法而進行的行政立法活動,其特點是不創(chuàng)設新的法律規(guī)則,只對上位法的具體執(zhí)行問題作出更明確更具操作性的規(guī)定。
表1 花鈴期不同播種期棉鈴發(fā)育期的氣象條件Table 1 Weather factors at the boll development period with different planting dates
注(Note): 所用氣象資料由安陽氣象局提供Weather data in Anyang were provided by Anyang meteorological information center. MDTmin—Daily minimum temperature; >15℃ TAT—Total accumulated temperature; TAT = (max. temp. + min. temp.)/2 -15℃.
“你們不能這樣。我在老家就知道《小二黑結婚》《王貴與李香香》,我們現(xiàn)在是新中國的新女性,更要反對包辦婚姻。我不能嫁給楊連長,我堅決不同意。這個小伙子不行,就另找別人,反正我不嫁給又老又丑的楊連長。誰說也不行!”田志芳幾乎是瘋了一樣地喊叫著。
隨花后天數(shù)的增加,棉鈴對位葉中氮濃度呈降低趨勢;隨施氮增加和播種期推遲,棉鈴對位葉氮濃度增加(圖1),其關系可用冪函數(shù)方程YN=α×DAA-β擬合,式中:YN為棉鈴對位葉氮濃度(%),DAA為花后天數(shù)(d),α、β為參數(shù)。各處理擬合度均達極顯著水平(表2)。隨施氮量的增加和播種期推遲,葉氮濃度下降速率(β)降低。品種間比較,美棉33B棉鈴對位葉的氮濃度稍高于科棉1號。
采用Origin 8.1對試驗數(shù)據(jù)進行處理及作圖,SPSS 17.0統(tǒng)計分析軟件進行方差分析,LSD法檢驗顯著性。
1.2.1 蔗糖和淀粉含量 取烘干棉鈴對位葉0.1 g放入10 mL離心管,加80%酒精5 mL后80℃提取30 min,然后在于4000 r/min離心5 min,將上清液傾入25 mL容量瓶。重復提取2次,收集上清液于容量瓶,合并離心液于25 mL容量瓶中,用蒸餾水定容后轉至-80℃冰箱保存,用以測定碳水化合物(蔗糖和淀粉)含量[17]。蔗糖轉化量用Tn =(Cn-4-Cn+3)/7公式計算[18]。其中,n表示開花后的天數(shù),Tn表示第n天的單葉蔗糖轉化量,Cn-4表示第n-4 d的單葉蔗糖積累量,Cn+3表示第n+3 d的單葉蔗糖積累量。
1.2.2 棉鈴對位葉氮濃度 粉碎已烘干的棉鈴對位葉,過0.38 mm篩,用凱氏定氮法測定葉片全氮含量[19],并計算其氮濃度(%)。
機械油泵采用余擺線型油泵,內置于混合動力傳動橋內。由發(fā)動機驅動,壓力潤滑各部齒輪。另外傳動橋還通過減速齒輪旋轉,飛濺潤滑齒輪,減小機械油泵運轉負載。
1.2.3 棉纖維品質性狀 棉纖維品質指標在中國農業(yè)科學院棉花研究所農業(yè)部棉花纖維檢測中心用HVI 900儀器測定,并用HVICC校準。
1.2.4 棉子品質性狀 采用SoxtecTM Avanti 2050索式自動浸提系統(tǒng)(SoxtecTM Avanti 2050)測定棉子脂肪含量[20];采用凱氏定氮法測定棉子全氮含量[19],棉子蛋白質含量= 6.25×全氮含量。
(2)回填土采用3∶7灰土,分層鋪攤,每層鋪攤后隨之耙平,鋪土厚度為200~250 mm;采用壓路機壓實,壓實系數(shù)應≥0.96。
1.2 測定項目與方法
進入20世紀以來,從文化上占優(yōu)勢的“西學東漸”,發(fā)展到越來越自覺的“東學西漸”,正在成為一種趨勢。正如樂戴云先生所言,近年來西方文化顯示了對他種文化、特別是中國文化的強烈興趣。她還特別提到一位法國學者曾經(jīng)寫過一篇題為“為什么我們西方人研究哲學不能繞過中國?”的文章,該學者認為“穿越中國也是為了更好地閱讀希臘”[23]。這說明了有5000年文明史的中國,其優(yōu)秀的傳統(tǒng)文化確實有相當多有待發(fā)掘的領域,這不僅包括這位法國學者所提到的哲學領域,而且包括與此相關的中西科學發(fā)展模式的探索。中外學者需要攜起手來,共同探討。
2.1 施氮量與播種期對棉鈴對位葉氮濃度的影響
圖1 棉鈴對位葉氮濃度對氮素的響應Fig.1 Effect of N rates on nitrogen concentration in the subtending leaves of cotton boll[注(Note): 空心符號表示4月25日各處理Hollow symbol indicate in 25-Apr, ○— N0 kg/hm2; △—N 240 kg/hm2; ☆—N 480 kg/hm2. 實心符號表示5月25日各處理Solid symbol indicate in 25-May, ●—N 0 kg/hm2; ▲—N 240 kg/hm2; ★—N 480 kg/hm2.]表2 施氮量與播種期對棉鈴對位葉氮濃度變化特征的影響Table 2 Effect of N rates on changing characteristics of nitrogen concentration in the subtending leaves of cotton with different planting dates
品種Cultivar播種期Plantingdate施氮量Nrate(kg/hm2)2005方程EquationR22007方程EquationR2科棉1號Kemian125-Apr0YN=6.19×DAA-0.270.995**YN=6.05×DAA-0.280.996**240YN=6.84×DAA-0.260.990**YN=6.42×DAA-0.260.992**480YN=7.03×DAA-0.240.997**YN=6.55×DAA-0.240.996**25-May0YN=7.13×DAA-0.220.989**YN=7.03×DAA-0.250.991**240YN=7.77×DAA-0.220.990**YN=7.58×DAA-0.250.984**480YN=8.06×DAA-0.210.978**YN=7.85×DAA-0.230.987**美棉33BNuCOTN33B25-Apr0YN=6.94×DAA-0.290.990**YN=6.68×DAA-0.290.980**240YN=7.26×DAA-0.270.975**YN=6.86×DAA-0.270.980**480YN=7.49×DAA-0.250.959**YN=7.25×DAA-0.260.977**25-May0YN=7.49×DAA-0.220.984**YN=7.17×DAA-0.240.995**240YN=7.65×DAA-0.200.983**YN=7.31×DAA-0.220.984**480YN=7.90×DAA-0.190.957**YN=7.72×DAA-0.210.965**
2.2 施氮量與播種期對棉鈴對位葉光合產(chǎn)物含量的影響及與葉氮濃度的關系
2.2.1 光合產(chǎn)物含量 從圖2可以看出,棉鈴對位葉中蔗糖含量隨花后天數(shù)的增加而降低,前期降低幅度大于后期。隨施氮量的增加,蔗糖含量呈先增加后降低的趨勢;與適宜播種期相比,推遲播種期(5月25日,2005、 2007年棉鈴發(fā)育期的日均最低溫MDTmin約為15℃)蔗糖含量有增加趨勢,且棉鈴對位葉蔗糖含量由下降趨勢變?yōu)閱畏遄兓?。與N240相比,N480處理的棉鈴對位葉蔗糖含量在晚播低溫條件下差異較N0處理小。說明晚播低溫條件下,增加施氮量可促進棉鈴對位葉中蔗糖的運輸。年際間和品種間的變化趨勢一致。
圖2 施氮量與播種期對棉鈴對位葉中蔗糖含量的影響Fig.2 Effect of N rates on sucrose content in the subtending leaves of cotton boll during boll development with different planting dates
圖3 施氮量與播種期對棉鈴對位葉中淀粉含量的影響Fig.3 Effect of N rates on starch content in the subtending leaves of cotton boll during boll development with different planting dates
2.2.2 光合產(chǎn)物含量與葉氮濃度的相關性分析 蔗糖和淀粉是表征葉片“源”活性的重要指標??紤]到兩品種的變化趨勢相同,將品種作為重復分析棉鈴對位葉碳水化合物含量、蔗糖轉化量與葉氮濃度之間的關系。
根據(jù)薛曉萍等[16]認為施氮N 240 kg/hm2是棉花高產(chǎn)的適宜施氮量,本試驗設置3個施氮量水平,即低氮,N 0 kg/hm2(N0);適氮,N 240 kg/hm2(N240);高氮,N 480 kg/hm2(N480)。試驗小區(qū)面積為15 m × 4 m,行株距100 cm × 25 cm,每處理3次重復,隨機區(qū)組排列。氮肥為尿素,按基施50%、花鈴肥50%比例施入,基肥于移栽前施用,花鈴肥在始花期(7月15日)追施,追肥采用穴施法。田間其他管理均按高產(chǎn)栽培要求進行。
2.4 施氮量對晚播棉纖維主要品質性狀的影響
1.3 數(shù)據(jù)處理
表3 棉鈴對位葉蔗糖含量、蔗糖轉化量和淀粉含量與葉氮濃度的相關性分析Table 3 Correlation coefficients (r) between sucrose content, transport capacity of sucrose (Tn), starch content and N concentration in the subtending leaves of cotton boll at various days after anthesis
注(Note): Tn—Transport capacity of sucrose . *, **分別表示在0.05和0.01水平上顯著Indicate significant differences at the 0.05 and 0.01 probability levels, respectively(n=12,r0.05=0.576,r0.01=0.707).
2.3 施氮量與播種期對棉花產(chǎn)量及產(chǎn)量構成因素的影響
播種期推遲使棉花單株鈴數(shù)、鈴重和皮棉產(chǎn)量均明顯下降,N0和N480處理對不同播種期棉花產(chǎn)量及產(chǎn)量構成因素的影響不同(表4)。N0處理對不同播種期棉花單株鈴數(shù)、鈴重和皮棉產(chǎn)量的影響均為負效應,而N480處理對不同播種期棉花產(chǎn)量及產(chǎn)量構成因素的效應不一致: 4月25日播種條件下,N480處理對棉花單株鈴數(shù)、鈴重和皮棉產(chǎn)量的影響為負效應;晚播低溫條件下,N480處理對棉花產(chǎn)量構成三因素的影響均表現(xiàn)為正效應,且鈴重和皮棉產(chǎn)量達到顯著水平(P<0.05)。年際間和品種間的變化趨勢一致。此外,N480處理對棉花鈴重和皮棉產(chǎn)量的調節(jié)效應最大。品種間比較發(fā)現(xiàn),晚播低溫條件下,與低溫弱敏感性品種科棉1號相比,N480處理對低溫適度敏感性品種美棉33B產(chǎn)量、鈴重的調控幅度較大,對衣分調控幅度較小。
品種、播種期和施氮量對棉纖維長度和比強度的影響均達極顯著水平(表5、 表6),播種期對麥克隆值的影響達到顯著水平,纖維比強度和麥克隆值受播種期與施氮量的互作效應的影響最大。進一步分析棉纖維長度、比強度和麥克隆值的變化發(fā)現(xiàn)(表5),隨播種期的推遲,纖維長度、比強度和麥克隆值均呈降低趨勢。
大量研究表明,父母的信念是兒童信念發(fā)展的錨定起點(Ozorak, 1989; Boyatzis et al., 2006)。不同信仰的父母有著不同的觀念和行為方式,這些不同借助親子談話等方式,影響著兒童各種觀念的形成(Boyatzis et al., 2006)。 例如, Rosengren(2004)等人發(fā)現(xiàn), 父母(天主教徒)被問及如何回答3~6歲的兒童的死亡問題時,大部分父母是用宗教相關的字眼來回應的,例如,天堂、靈魂、上帝等。有宗教信仰的父母的信念更加與眾不同,對兒童信念的影響也顯得尤為突出。
結合實際,對微機繼電保護裝置做日常維護方案的設定,針對設備本身特性,明確設備運行人員不僅需要掌握設備操作方式和操作細節(jié),更要對其具體工作流程有客觀認知,全面提升自身綜合專業(yè)技術,以此保障設備運行的可靠性。檢修過程中,要做好詳細記錄檢查的結果明確故障發(fā)生原因,做好應對方案,保障微機繼電保護裝置整體運行效率。
4月25日播種條件下,施氮量對纖維長度和麥克隆值的影響較小,而N240處理下纖維比強度顯著高于N0和N480處理(P<0.05)。晚播棉花纖維品質各指標在N240、N480處理下顯著高于N0處理(表5)。與4月25日播種棉花相比,晚播條件下N0、N240、N480處理的棉纖維比強度分別降低了30.1%、25.0%和22.5%;棉纖維長度分別降低了9.9%、8.4%和8.2%。因此,增加施氮量可對晚播低溫進行補償,有利于高強纖維的形成。品種間比較發(fā)現(xiàn),施氮量對低溫弱敏感性品種科棉1號棉纖維長度和比強度的影響程度較低溫適度敏感性品種美棉33B大。年際間的變化趨勢一致。
表4 施氮量與播種期對棉花產(chǎn)量及產(chǎn)量構成因素的影響和效應值分析Table 4 Effect of N rates on cotton yield, and yield components in cotton plant with different planting dates and their effect indices (EI)
注(Note): 效應因子EI=[(N0或N480)-N240]×100/N240,當EI>0時為負效應,EI<0時為正效應,且EI絕對值越大,其影響程度越大EI=[(N0或N480)-N240]×100/N240. It is a positive effect if EI > 0 and vice versa, and following increasing the absolute value of EI, effect of PGR on cotton increases. “nd”表示未計算N0或N480處理對棉花衣分的效應因子 Means no data in EI of cotton lint percentage. 同列數(shù)值后不同字母表示不同施氮量間在0.05水平上差異顯著 Values followed by different letters in the same column are significantly different among N rates at the 0.05 probability level.
2.5 施氮量與播種期對棉子主要品質性狀的影響
播種期、品種與施氮量的互作對棉子主要品質性狀的影響均達顯著或極顯著水平(表6、 表7)。子指受品種與播種期及播種期與施氮量的互作效應影響較大,棉子蛋白質含量和脂肪含量受品種與施氮量的互作效應的影響最大,且年際間變化趨勢一致。隨播種期的推遲,施氮量對兩個品種棉子各品質性狀的影響不顯著。
表5 施氮量與播種期對棉纖維主要品質性狀的影響Table 5 Effect of N rates on fibre quality characteristics in cotton plant with different planting dates
注(Note): 同列數(shù)據(jù)后不同字母表示不同施氮量間在0.05水平上差異顯著(P<0.05) Values followed by different letters in the same column are significantly different among different N rates at the 0.05 probability level.
表6 不同處理下棉花主要纖維和棉子品質性狀的方差分析Table 6 Variance analysis of quality characteristics of fibre and seed
注(Note): *, **—分別表示在0.05和0.01水平上差異顯著Indicate significant differences at the 0.05 and 0.01 probability levels, respectively; NS—表示不顯著NS denotes no significant difference (P>0.05).
表7 施氮量與播種期對棉子主要品質性狀的影響Table 7 Effect of N rates on seed quality characteristics in cotton plant with different planting dates
注(Note): 同列數(shù)值后不同字母表示不同施氮量間在0.05水平上差異顯著Values followed by different letters in the same column are significantly different among different N rates at the 0.05 probability level (P<0.05).
本試驗條件下,播種期(溫度)和施氮量對棉鈴對位葉光合產(chǎn)物含量、棉花產(chǎn)量和品質的影響存在互作效應,其中主導因素是播種期(溫度),施氮量對其有補償效應。隨播種期推遲,施氮量N 240 kg/hm2時棉花單鈴重、產(chǎn)量及纖維品質降低,主要原因是晚播低溫使棉鈴對位葉中光合產(chǎn)物(蔗糖和淀粉)含量增加,抑制了光合產(chǎn)物向棉鈴及纖維的運輸。晚播低溫條件下,適量追施氮肥可調節(jié)棉鈴對位葉中的氮濃度并提高光合產(chǎn)物再利用能力,從而相對促進棉花單鈴的形成,降低棉纖維比強度的下降幅度,優(yōu)化麥克隆值。
[1] Constable G, Rawson H. Carbon production and utilization in cotton: Inferences from a carbon budget[J]. Functional Plant Biology, 1980, 7(5): 539-553.
[2] Ashley D A.14C-labeled photosynthate translocation and ultilization in cotton plant[J]. Crop Science, 1972, 12(1): 69-74.
[3] Wullschleger S D, Oosterhuis D M. Photosynthetic carbon production and use by developing cotton leaves and bolls[J]. Crop Science, 1990, 30(6): 1259-1264.
[4] 董志強, 舒文華, 翟學軍, 等. 棉株不同器官中幾種內源激素的變化及相關關系[J]. 核農學報, 2005, 19(01): 62-67. Dong Z Q, Shu W H, Zhai X Jetal. The change and relationship of several endogenesis hormone in different organs of cotton plant[J]. Acta Agriculturae Nucleatae Sinica, 2005, 19(1): 62-67.
[5] Davidonis G H, Johnson A S, Landivar J Aetal. Cotton fiber quality is related to boll location and planting date[J]. Agronomy Journal, 2004, 96(1): 42-47.
[6] Dong H, Li W, Tang Wetal. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China[J]. Field Crops Research, 2006, 98(2-3): 106-115.
[7] Liu J R, Ma Y N, Lü F Jetal. Changes of sucrose metabolism in leaf subtending to cotton boll under cool temperature due to late planting[J]. Field Crops Research, 2013, 144(C): 200-211.
[8] Salvagiotti F, Miralles D J. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat[J]. European Journal of Agronomy, 2008, 28(3): 282-290.
[9] Reddy K R, Koti S, Davidonis G Hetal. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality[J]. Agronomy Journal, 2004, 96(4): 1148-1157.
[10] 孫紅春, 馮麗肖, 謝志霞, 等. 不同氮素水平對棉花不同部位—鈴葉系統(tǒng)生理特性及鈴重空間分布的影響[J]. 中國農業(yè)科學, 2007, 40(8): 1638-1645. Sun H C, Feng L X, Xie Z Xetal. Physiological characteristics of boll-leaf system and boll weight space distributing of cotton under different nitrogen levels[J]. Scientia Agricultura Sinica, 2007, 40(8): 1638-1645.
[11] 勾玲, 閆潔, 韓春麗, 等. 氮肥對新疆棉花產(chǎn)量形成期葉片光合特性的調節(jié)效應[J]. 植物營養(yǎng)與肥料學報, 2004, 10(5): 488-493. Gou L, Yan J, Han C Letal. Effects of nitrogen rates on photosynthetic chaxracteristics and yield of high-yielding cotton in Xinjiang[J]. Plant Nutrition and Fertilizer Science, 2004, 10(05): 488-493.
[12] Fernaandez C J, McInnes K J, Cothren J T. Water status and leaf area production in water-and nitrogen-stressed cotton[J]. Crop Science, 1996, 36(5): 1224-1233.
[13] 馬宗斌, 嚴根土, 劉桂珍, 等. 施氮量對黃河灘區(qū)棉花葉片生理特性、干物質積累及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學報, 2013, 19(4): 849-857. Ma Z B, Yan G T, Liu G Xetal. Effects of nitrogen application rates on main physiological characteristics of leaves, dry matter accumulation and yield of cotton cultivated in the Yellow River bottomlands[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(04): 849-857.
[14] 趙文青, 孟亞利, 陳美麗, 等. 棉株果枝部位, 溫光復合因子及施氮量對纖維伸長的影響[J]. 作物學報, 2011, 37(6): 1077-1086. Zhao W Q, Meng Y L, Chen M Letal. Effects of fruiting branch position, temperature-light factors and nitrogen rates on cotton (GossypiumhirsutumL.) fiber elongation[J]. Acta Agronomica Sinica, 2011, 37(6): 1077-1086.
[15] 趙文青, 孟亞利, 陳兵林, 等. 棉株果枝部位, 溫光復合因子及施氮量對纖維比強度形成的影響[J]. 中國農業(yè)科學, 2011, 44(18): 3721-3732. Zhao W Q, Meng Y L, Chen B Letal. Effects of fruiting-branch position, temperature-light factors and nitrogen rates on cotton (GossypiumhirsutumL.) fiber strength formation[J]. Scientia Agricultura Sinica, 2011, 48(18): 3721-3732.
[16] 薛曉萍, 周治國, 張麗娟, 等. 棉花花后臨界氮濃度稀釋模型的建立及在施氮量調控中的應用[J]. 生態(tài)學報, 2006, 26(6): 1781-1791. Xue X P, Zhou Z G, Zhang L Jetal. Development and application of critical nitrogen concentration dilution model for cotton after flowering[J]. Acta Ecologica Sinica, 2006, 26(6): 1781-1791.
[17] Lightfoot D, Orford S, Timmis J. Identification and characterisation of cotton boll wall-specific gene promoters for future transgenic cotton varieties[J]. Plant Molecular Biology Reporter, 2013, 31(1): 174-184.
[18] 劉霞, 姜春明, 鄭澤榮, 等. 藁城8901和山農1391淀粉合成酶活性和淀粉組分積累特征的比較[J]. 中國農業(yè)科學, 2005, 38(5): 897-903. Liu X, Jiang C M, Zheng Z Retal. Activities of the enzymes involved in starch synthesis and starch accumulation in grains of wheat cultivars GC8901 and SN1391[J]. Scientia Agricultura Sinica, 2005, 38(5): 897-903.
[19] Feil B M, Moser S B, Jampatong Setal. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization[J]. Crop Science, 2005, 45(2): 516-523.
[20] Luque de Castro M D, García-Ayuso L E. Soxhlet extraction of solid materials: an outdated technique with a promising innovative future[J]. Analytica Chimica Acta, 1998, 369(1-2): 1-10.
[21] Zheng M, Wang Y H, Liu Ketal. Protein expression changes during cotton fiber elongation in response to low temperature stress[J]. Journal of Plant Physiology, 2012, 169(4): 399-409.
[22] 束紅梅, 趙新華, 周治國, 等. 不同棉花品種纖維比強度形成的溫度敏感性差異機理研究[J]. 中國農業(yè)科學, 2009, 42(7): 2332-2341. Shu H M, Zhao X H, Zhou Z Getal. Physiological mechanisms of variation in temperature-sensitivity of cotton fiber strength formation between two cotton cultivars[J]. Scientia Agricultura Sinica, 2009, 42(7): 2332-2341.
[23] 劉敬然, 劉佳杰, 孟亞利, 等. 外源6-BA和ABA對不同播種期棉花產(chǎn)量和品質及其棉鈴對位葉光合產(chǎn)物的影響[J]. 作物學報, 2013, (6): 1078-1088. Liu J R, Liu J J, Meng Y Letal. Effect of 6-BA and ABA applications on yield, quality and photosynthate contents in the subtending leaf of cotton with different planting dates[J]. Acta Agronomica Sinica, 2013, 39(6): 1078-1088.
[24] Wang S H, Zhu Y, Jiang H Detal. Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates[J]. Field Crops Research, 2006, 96(2-3): 224-234.
[25] Chen D, Ye G, Yang Cetal. Effect after introducingBacillusthuringiensisgene on nitrogen metabolism in cotton[J]. Field Crops Research, 2004, 87(2-3): 235-244.
[26] Gao X B, Wang Y H, Zhou Z Getal. Response of cotton fiber quality to the carbohydrates in the leaf subtending the cotton boll[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(1): 152-160.
[27] Invers O, Kraemer G P, Pérez Metal. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrassPosidoniaoceanica[J]. Journal of Experimental Marine Biology and Ecology, 2004, 303(1): 97-114.
[28] Boussadia O, Steppe K, Zgallai Hetal. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’[J]. Scientia Horticulturae, 2010, 123(3): 336-342.
[29] Hendrix D L, Grange R I. Carbon partitioning and export from mature cotton leaves[J]. Plant Physiology, 1991, 95(1): 228-233.
[30] 李伶俐, 房衛(wèi)平, 謝德意, 等. 施氮量對雜交棉光合生理特性及產(chǎn)量、品質的影響[J]. 植物營養(yǎng)與肥料學報, 2010, 16(5): 1183-1189. Li L L, Fang W P, Xie D Yetal. Effects of nitrogen application rates on photosynthetic and physiological characteristics and yield and quality of hybrid cotton[J]. Plant Nutrition and Fertilizer Science, 2010, 16(05): 1183-1189.
[31] 高相彬, 王友華, 陳兵林, 等. 棉 (GossypiumhirsutumL.) 纖維發(fā)育相關酶和纖維比強度對棉鈴對位葉氮濃度變化的響應研究[J]. 植物營養(yǎng)與肥料學報, 2011, 17(5): 1227-1236. Gao X B, Wang Y H, Chen B Letal. Effects of nitrogen concentration in subtending leaves of boll on related enzymes and strength formation of cotton fiber[J]. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1227-1236.
[32] Reddy A R, Reddy K R, Padjung Retal. Nitrogen nutrition and photosynthesis in leaves of Pima cotton[J]. Journal of Plant Nutrition, 1996, 19(5): 755-770.
Effects of nitrogen rates and planting dates on yield, quality and photosynthate contents in the subtending leaves of cotton boll
LIU Jing-ran1,2, ZHAO Wen-qing1, ZHOU Zhi-guo1*, DONG He-lin2, ZHAO Xin-hua2, MENG Ya-li1
(1CollegeofAgriculture,NanjingAgriculturalUniversity/KeyLaboratoryofCropPhysiology&EcologyinSouthernChina,MinistryofAgriculture,Nanjing210095,China; 2InstituteofCottonResearchofChineseAcademyofAgriculturalSciences/StateKeyLaboratoryofCottonBiology,Anyang,Henan455000,China)
【Objectives】The aim for this study was to elucidate physiological mechanism on photosynthate synthesis and transport of subtending leaves of cotton boll (SLCB) under cool temperature for nitrogen fertilizer, and provide theoretical support for reasonable nitrogen application.【Methods】 To study effect of nitrogen rates on photosynthate contents and nitrogen concentrations in subtending leaves of cotton boll (SLCB) and their relationship to cotton yield and quality under different planting dates, a field experiment is conducted with two cotton cultivars, Kemian 1 and NuCOTN 33B, in the Yellow River Valley (Anyang), China. The cotton seeds were sowed on 25-Apr and 25-May in 2005 and 2007, which could result in different growth temperatures for the boll and its SLCB at the same fruiting branches, and three N levels, N 0, 240 and 480 kg/hm2, standing for low, medium and high nitrogen level (N0, N240and N480), were applied at the flowering-boll development stage. 【Results】 1) The sucrose contents in the SLCB have a single trend following increasing nitrogen rates, and the starch contents in the SLCB are increased in the 25-Apr planting date. With the delayed planting date, the differences of the sucrose and starch contents between N240and N480are non-significant, but their contents are significantly higher than those of N0. In the present research, the sucrose content of the SLCB at 24-45 days after anthesis (DAA) has a significantly positive correlation with nitrogen concentration, and the correlation coefficient is decreased with the increase of DAA. In addition, the transport capacity of sucrose (Tn) has a significantly negative correlation with the nitrogen concentration at 17-24 DAA, and has a positive correlation with the nitrogen concentration at 31-52 DAA (P<0.01). These results indicate that an optimal leaf nitrogen concentration is favorable for carbon accumulation and export. 2) In the 25-Apr planting date, boll number, the boll weight and lint yield are decreased in N0and N480, and non-significant differences are observed in the two treatments. However, in the late planting date of 25-May, the boll weight and lint yield in the treatment of N480is improved as well as fiber strength, and micronaire values is optimized, thus suggesting that nitrogen application has a compensatory effect on cool temperature due to late planting. 【Conclusions】 In this study, there is an interaction on cool temperature due to the late planting and nitrogen application for carbohydrate, cotton yield and quality. The planting date is the dominant factor, and nitrogen fertilizer has a compensatory effect on cool temperature. With the delayed planting date, the boll weight, lint yield and fiber quality under the treatment of N 240 kg/hm2are declined, which is mainly due that sufficient non-structural carbohydrates (such as sucrose, hexose and starch) are stored in the SLCB, and carbohydrate might not be exported efficiently to cotton boll. Through increasing the nitrogen application, the decreased degree of fiber strength is less and the micronaire value is optimized, mainly due to the regulated nitrogen concentration and the improved recycling capacity of carbohydrate.
cotton (GossypiumhirsutumL.); subtending leaves of cotton boll; planting date; nitrogen rate; photosynthate; yield and quality
2014-05-23 接受日期: 2014-07-19 網(wǎng)絡出版日期: 2015-06-04
農業(yè)部公益性行業(yè)科研專項計劃(201203096); 國家自然科學基金(31171487);江蘇省三新工程[SXGC(2013)334]項目資助。
劉敬然(1986—),女,河北石家莊人,博士,助理研究員,主要從事植物營養(yǎng)與分子生物學研究。 Tel: 0372-2562225, E-mail: liujingran_66@163.com。 * 通信作者 Tel: 025-84396813, E-mail: giscott@njau.edu.cn
S562.062.01
A
1008-505X(2015)04-0951-011