李有兵, 把余玲, 2, 李 碩, 田霄鴻*
(1 西北農(nóng)林科技大學資源環(huán)境學院,農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室,陜西楊凌 712100;2 陜西省土地工程建設集團,陜西西安 710075)
作物殘體與其生物炭配施對土壤有機碳及其自身礦化率的提升
李有兵1, 把余玲1, 2, 李 碩1, 田霄鴻1*
(1 西北農(nóng)林科技大學資源環(huán)境學院,農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室,陜西楊凌 712100;2 陜西省土地工程建設集團,陜西西安 710075)
作物殘體; 生物炭; 各組分有機碳; 有機碳礦化
生物炭(Biochar)是農(nóng)林廢棄物等生物質(zhì)在缺氧條件下熱裂解形成的穩(wěn)定的富碳產(chǎn)物。近年來,隨著糧食安全、環(huán)境安全和固碳減排需求的不斷發(fā)展,生物炭的內(nèi)涵逐漸與土壤管理、農(nóng)業(yè)可持續(xù)發(fā)展和碳截留等相聯(lián)系[12-13]。生物炭作為一種惰性有機資源,還田后能通過改善土壤物理、化學及生物學性狀來改良和培肥土壤[14],但由于其穩(wěn)定性較強,分解緩慢,因此單獨施用生物炭短期內(nèi)對土壤養(yǎng)分的補充作用較小,提升土壤肥力的效果不明顯;秸稈等作物殘體還田能改善土壤理化性質(zhì),提高土壤肥力,但殘體還田后也會引起農(nóng)田溫室氣體排放的增加等一系列負面效應[15]。因此,我們猜想,作物殘體與其秸稈生物炭配施還田在保證和提高土壤肥力的基礎上,能夠減少溫室氣體的排放,對于維持土壤的可持續(xù)發(fā)展和改善全球氣候環(huán)境也具有重要意義。目前關(guān)于生物炭和作物秸稈分別施入農(nóng)田的研究很多,但作物殘體與其生物炭配施對土壤各組分有機碳及其自身有機碳礦化影響的研究很少。本試驗采用室內(nèi)恒溫培養(yǎng)方法,研究了小麥、玉米殘體(根茬、秸稈)及其秸稈生物炭單獨施用或配合施用對土壤TOC、DOC、MBC、POC、CPOC和FPOC含量及其自身有機碳礦化的影響,探明作物殘體與其生物炭配施還田在增加土壤碳截留和提高土壤肥力方面的作用,以期為農(nóng)田有機物資源合理利用提供依據(jù)。
1.1 試驗材料
1.2 試驗設計及培養(yǎng)過程
室內(nèi)培養(yǎng)試驗包括有機物料單施(WR、WS、WB、MR、MS、MB),小麥、玉米殘體分別與其秸稈生物炭按1 ∶1的重量比配施(WR+WB、WS+WB、MR+MB、MS+MB),以及對照(CK, 未添加有機物料的土壤)共11個處理,各處理有機物料的加入量相等,每個處理重復3次。
稱取100 g(烘干計)供試土樣于1 L培養(yǎng)盆中,用蒸餾水調(diào)節(jié)土壤含水量至田間持水量的60%,20℃下預培養(yǎng)7 d,待微生物活化后,根據(jù)處理按每千克土樣8 g有機物料的用量分別加入有機物料,同時將CO(NH2)2按106 mg/kg(240 kg/hm2)的用量,以溶液形式加入相應培養(yǎng)盆中補充氮源(調(diào)節(jié)土壤含水量至田間持水量的70%)。另外設有只加土壤的處理為對照處理,充分混勻后,在(25±1)℃恒溫條件下密封培養(yǎng)83 d,培養(yǎng)過程中水分采用稱重法補充維持至初始重量。
表1 供試有機物料的碳氮含量Table 1 The basic chemical compositions of organic amendments
注(Note): WR—Wheat root; WS—Wheat straw; WB—Wheat biochar; MR—Maize root; MS—Maize straw; MB—Maize biochar.
1.3 測定項目與方法
土壤和有機物料中全碳和全氮的測定采用常規(guī)方法[17],有機物料水溶性碳采用蒸餾水浸提(w/v=1/10)TOC分析儀測定,CO2釋放量分別在培養(yǎng)的第2、4、6、9、13、17、21、27、34、41、51、66、83 d采用NaOH吸收滴定法測定。采用氯仿薰蒸浸提法測定土壤微生物量碳,根據(jù)劉夢云等[18]的研究方法測定土壤顆粒有機碳。
1.4 數(shù)據(jù)分析
土壤粗細顆粒有機碳的敏感性指數(shù)采用下式計算[19]:
敏感性指數(shù)=(各處理土壤碳組分含量-對照處理土壤碳組分含量)/對照處理土壤碳組分含量
試驗數(shù)據(jù)采用Microsoft Excel 2007、DPS 7.05統(tǒng)計軟件進行方差分析和多重比較。
2.1 不同添加物處理有機碳礦化速率及累積礦化率
圖1 不同添加物處理有機碳礦化速率及累積礦化率Fig.1 Organic C mineralization rate and cumulative mineralization rate under different amendments treatments[注(Note): WR—小麥根茬 Wheat root;WS—小麥秸稈 Wheat straw;WB—小麥生物炭 Wheat biochar;MR—玉米根茬 Maize root; MS—玉米秸稈 Maize straw;MB—玉米生物炭 Maize biochar.]
2.2 不同添加物處理土壤各組分有機碳含量
表2表明,對于土壤總有機碳,與培養(yǎng)前土壤相比,培養(yǎng)期間各處理土壤TOC含量均有不同程度的增加,具體表現(xiàn)為單施生物炭>殘體與生物炭配施>單施殘體>對照,且單施生物炭處理土壤TOC含量顯著高于其他處理,與對照處理相比,添加小麥和玉米生物炭,TOC含量分別顯著增加了34.4%和36.5%。土壤可溶性有機碳含量在添加小麥根茬和玉米生物炭處理最高,在對照處理最低,殘體與其生物炭配施介于二者之間,與對照處理相比,不同添加物處理均顯著增加了土壤DOC含量,對于小麥添加物,DOC含量依次為根茬>秸稈>生物炭,玉米添加物則與之相反。對于土壤微生物量碳含量,不同有機物料添加處理間基本趨勢為殘體與生物炭配施>單施殘體>單施生物炭,作物不同部位添加物間均表現(xiàn)為秸稈>根茬,不同種類作物添加物間均表現(xiàn)為玉米>小麥。對于土壤顆粒有機碳含量,添加生物炭的處理土壤POC含量普遍較高,但各處理間差異較小,對于小麥和玉米添加物,POC含量均表現(xiàn)為生物炭>根茬>秸稈,且差異達到顯著性水平。可見,添加生物炭能夠明顯增加土壤TOC和POC含量,生物炭與殘體配施能夠增加土壤MBC含量,在增加土壤TOC和MBC含量方面,添加玉米秸稈效果優(yōu)于小麥秸稈。
表2 不同添加物處理土壤各組分有機碳含量Table 2 The contents of SOC components under different amendment treatments
注(Note): TOC—Total organic carbon; DOC—dissolved organic carbon; MBC—microbial biomass carbon; POC—particulate organic carbon; WR—小麥根茬 Wheat root; WS—小麥秸稈 Wheat straw; WB—小麥生物炭 Wheat biochar; MR—玉米根茬 Maize root; MS—玉米秸稈 Maize straw; MB—玉米生物炭 Maize biochar. 同列數(shù)據(jù)后不同字母表示處理間差異顯著(P<0.05)Values followed by different letters in the same column are significantly different among treatments(P<0.05).
2.3 不同添加物處理土壤粗細顆粒有機碳含量及其敏感性指數(shù)
作物殘體還田能夠提高土壤有機質(zhì)含量,補充土壤養(yǎng)分,改善土壤理化性質(zhì),但殘體單獨施入土壤后,由于其腐解速率較快,不利于土壤有機碳的長期固持,影響土壤的可持續(xù)發(fā)展。本研究中,單施殘體在培養(yǎng)的前21 d為有機碳礦化快速期,其有機碳礦化速率及累積礦化率均最高,與添加根茬相比,添加秸稈其有機碳累積礦化率較高。這是因為與秸稈相比,根茬木質(zhì)化程度高,較難腐解,尤其是小麥根茬,因此其有機碳累積礦化率較低。Puget等對豆科綠肥中根碳和地上部碳短期動態(tài)變化進行研究,發(fā)現(xiàn)在生長季末期,近一半源于根的碳仍留在土壤中,然而僅有13%源于地上部的碳留存在土壤中[20]。本研究中,添加作物根茬對土壤總有機碳及顆粒有機碳的增加作用均大于添加秸稈,表明添加根茬更有利于增加土壤碳庫儲量,提升土壤肥力。
生物炭是一種穩(wěn)定的有機物質(zhì),生命周期可達數(shù)百至數(shù)千年[21],生物炭的高度穩(wěn)定性使其在增加土壤碳截留和碳庫儲量方面具有重要意義。本研究中,單施生物炭其有機碳累積礦化率最低。這是因為與秸稈相比,生物炭具有芳香族的多碳結(jié)構(gòu),易礦化的有機碳含量較低,較穩(wěn)定,難以被微生物腐解利用,因此其有機碳累積礦化率最低[22]。有研究表明,與不添加生物炭的土壤相比,添加生物炭能降低土壤CO2的釋放[23]。在本研究中,添加生物炭增加了土壤CO2的釋放量,這是因為一方面添加有機物料能為微生物活動繁殖提供能量來源,促進微生物活動繁殖,加快礦化作用;另一方面添加生物炭能夠改變土壤的pH值,加快土壤的呼吸速率[24],也一定程度上增加了土壤CO2的釋放量;Bruun等認為也可能是因為生物炭加入土壤后引起的激發(fā)效應導致土壤CO2釋放量的增加[25]。添加有機物料的各處理均不同程度提高了土壤TOC含量,且添加生物炭對土壤TOC含量的提升作用顯著高于添加作物殘體,這是因為一方面各有機物料加入到土壤中,不同程度地增加了土壤碳投入,因而增加了土壤TOC含量;另一方面生物炭本身以芳香環(huán)形式存在的碳含量很高,粉碎加入土壤中能顯著提高土壤TOC含量,因此對于土壤中碳的長期固持很有潛力,而秸稈粉碎后加入土壤中只有分解到一定程度才能成為土壤有機質(zhì)的組分,故添加生物炭所引起的土壤TOC含量的增加顯著高于添加秸稈[26]。土壤顆粒有機碳作為土壤活性有機碳庫的重要組成部分,對土壤團聚體形成和碳素循環(huán)與轉(zhuǎn)化具有重要意義。近年來有關(guān)土壤有機碳的研究表明,顆粒有機碳既可作為有機碳長期變化的累積性指標[27],又能很好地反映土壤質(zhì)量的變化[28],顆粒有機碳的形成對提高土壤碳庫儲量和減緩CO2釋放也具有重要意義[29]。與添加作物殘體相比,添加生物炭對土壤顆粒有機碳的增加作用更為顯著,是因為生物炭具有與土壤顆粒形成土壤團聚體和有機無機復合體的活性功能,生物炭一方面有利于土壤團聚體的形成和穩(wěn)定,使其結(jié)構(gòu)得到改善;另一方面受益于團聚體的物理保護作用,從而有利于碳長期固持形成顆粒有機碳,因此能夠增加土壤顆粒有機碳的含量。與作物殘體相比,生物炭更有利于土壤細顆粒有機碳含量的增加,可能是因為生物炭施入土壤后,其自身極細小的生物炭顆粒夾雜或吸附在土壤表面,從而引起土壤細顆粒有機碳含量的增加[30]。
培養(yǎng)4 d后殘留的有機碳比表3 不同添加物處理土壤粗細顆粒有機碳含量及其敏感性指數(shù)Table 3 The contents and sensitivity indices of CPOC and FPOC under different amendment treatments
注(Note): CPOC—Coarse particulate organic carbon; FPOC—Fine particulate organic carbon; WR—小麥根茬 Wheat root; WS—小麥秸稈 Wheat straw; WB—小麥生物炭 Wheat biochar; MR—玉米根茬 Maize root; MS—玉米秸稈 Maize straw; MB—玉米生物炭 Maize biochar. 同列數(shù)據(jù)后不同字母表示處理間差異顯著(P<0.05)Values followed by different letters in the same column are significantly different among treatments(P<0.05).
殘體與生物炭配施其有機碳累積礦化率介于殘體和生物炭單施之間,不僅能為當季作物提供養(yǎng)分來源,生物炭的高度穩(wěn)定性還使其對土壤養(yǎng)分的補充作用能夠維持較長時間,有利于增加土壤碳庫儲量,從而改善土壤質(zhì)量,維持土壤的可持續(xù)發(fā)展。土壤微生物量碳是衡量土壤微生物活性的重要指標,不同添加物處理間土壤微生物量碳含量均表現(xiàn)為殘體與生物炭配施>單施殘體>單施生物炭,生物炭單獨添加到土壤中,易礦化的有機碳增加較少,為微生物提供的能源物質(zhì)較少,微生物活動較弱,因此微生物量碳含量較低,殘體與生物炭配施加入土壤中,一方面,生物炭的分子結(jié)構(gòu)表現(xiàn)出化學和微生物學的高度穩(wěn)定性,這樣的結(jié)構(gòu)可以為土壤微生物提供良好的避難所[31];另一方面,作物殘體降解產(chǎn)生的碳、氮組分為微生物提供物質(zhì)和能量來源,促進微生物活動和繁殖,因此能夠增加土壤微生物量碳含量[32]。作物殘體與其生物炭配施更有利于土壤粗顆粒有機碳含量的增加,可能是因為配施處理為微生物活動繁殖提供能源和棲息場所,促進微生物的活動,加速土壤的團聚化作用形成粗顆粒有機碳。
添加不同有機物料對土壤各組分有機碳含量及其自身有機碳礦化的影響存在一定差異。單獨添加作物殘體其有機碳累積礦化率最大,對土壤養(yǎng)分的補充作用較為明顯,但會釋放過多的CO2;單獨添加生物炭顯著增加了土壤總有機碳,其有機碳累積礦化率僅為3%左右,短期內(nèi)對土壤養(yǎng)分的補充作用較小;作物殘體與其生物炭配施顯著增加了土壤微生物量碳和粗顆粒有機碳含量,且其有機碳累積礦化率介于生物炭和殘體單施之間,在保證作物養(yǎng)分供應的同時能增加土壤碳庫儲量,可以有效克服秸稈和生物炭單獨還田的弊端,對土壤肥力的綜合提升效果更好。
[1] 陳紅霞, 杜章留, 郭偉, 張慶忠. 施用生物炭對華北平原農(nóng)田土壤容重、陽離子交換量和顆粒有機質(zhì)含量的影響[J]. 應用生態(tài)學報, 2011, 22(11): 2930-2934. Chen H X, Du Z L, Guo W, Zhang Q Z. Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain[J]. Chinese Journal of Applied Ecology, 2011, 22(11): 2930-2934.
[2] Yang X Y, Ren W D, Sun B H, Zhang S L. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China[J]. Geoderma, 2012, 177: 49-56.
[3] 龔偉, 顏曉元, 王景燕, 等. 長期施肥對小麥玉米作物系統(tǒng)土壤腐殖質(zhì)組分碳和氮的影響[J]. 植物營養(yǎng)與肥料學報, 2009, 15(6): 1245-1252. Gong W, Yan X Y, Wang J Yetal. Effects of long-term fertilization on soil humus carbon and nitrogen fractions in a wheat-maize cropping system[J]. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1245-1252.
[4] Haei M, ?quist M G, Ilstedt Uetal. The influence of soil frost on the quality of dissolved organic carbon in a boreal forest soil: combining field and laboratory experiments[J]. Biogeochemistry, 2012, 107(1-3): 95-106.
[5] Xiao K, Zhou J, Liu Xetal. Leaching of dissolved organic carbon (DOC) as affected by plant residue composition and soil pH[M]. Zhejiang: Zhejiang University Press, 2013. 475-478.
[6] Cambardella C A, Elliott E T. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils[J]. Soil Science Society of America Journal, 1994, 58(1): 123-130.
[7] Yan D, Wang D, Yang L. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil[J]. Biology and Fertility of Soils, 2007, 44(1): 93-101.
[8] Janzen H H, Campbell C A, Brandt S Aetal. Light-fraction organic matter in soils from long-term crop rotations[J]. Soil Science Society of America Journal, 1992, 56(6): 1799-1806.
[9] Purakayastha T J, Rudrappa L, Singh Detal. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system[J]. Geoderma, 2008, 144(1): 370-378.
[10] 馬濤濤, 顏冬冬, 毛連綱, 等. 4種熏蒸劑處理對土壤可溶性有機氮和微生物量碳氮的影響[J]. 中國生態(tài)農(nóng)業(yè)學報, 2014, 22(2): 159-164. Ma T T, Yan D D, Mao L Getal. Effects of four fumigants on dissolved soil nitrogen transformation and microbial biomass[J]. Chinese Journal of Eco-Agriculture, 2014, 22(2): 159-164.
[11] 肖新, 朱偉, 肖靚, 等. 適宜的水氮處理提高稻基農(nóng)田土壤酶活性和土壤微生物量碳氮[J]. 農(nóng)業(yè)工程學報, 2013 29(21): 91-98. Xiao X, Zhu W, Xiao Letal. Suitable water and nitrogen treatment improves soil microbial biomass carbon and nitrogen and enzyme activities of paddy field[J]. Transactions of the CSAE, 2013, 29(21): 91-98.
[12] Antal M J, Gronli M. The art, science, and technology of charcoal production[J]. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619-1640.
[13] 陳溫福, 張偉明, 孟軍. 農(nóng)用生物炭研究進展與前景[J]. 中國農(nóng)業(yè)科學, 2013, 46(16): 3324-3333. Chen W F, Zhang W M, Meng J. Advances and prospects in research of biochar utilization in agriculture[J]. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333.
[14] Sohi S P, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil[J]. Advances in Agronomy, 2010, 105: 47-82.
[15] 蒙世協(xié), 劉春巖, 鄭循華, 等. 小麥秸稈還田量對晉南地區(qū)裸地土壤-大氣間甲烷、二氧化碳、氧化亞氮和一氧化氮交換的影響[J]. 氣候與環(huán)境研究, 2012, 17(4): 504-514. Meng S X, Liu C Y, Zheng X Hetal. Effects of the applied amount of wheat straw on methane, carbon dioxide, nitrous oxide, and nitric oxide fluxes of a bare soil in South Shanxi[J]. Climatic and Environmental Research, 2012, 17(4): 504-514.
[16] Streubel J D, Collins H P, Perez M Getal. Influence of contrasting biochar types on five soils at increasing rates of application[J]. Soil Biology and Biochemistry, 2011, 75(4): 1402-1413.
[17] 鮑士旦. 土壤農(nóng)化分析(第三版)[M]. 北京: 中國農(nóng)業(yè)出版社, 2005. 263-270. Bao S D. Analysis of soil and agricultural chemistry (3rd Ed.)[M]. Beijing: China Agricultural Press, 2005. 263-270.
[18] 劉夢云, 常慶瑞, 齊雁冰, 孫寧. 黃土臺塬不同土地利用土壤有機碳與顆粒有機碳[J]. 自然資源學報, 2010, 25(2): 218-226. Liu M Y, Chang Q R, Qi Y B, Sun N. Soil organic carbon and particulate organic carbon under different land use types on the Loess Plateau[J]. Journal of Natural Resources, 2010, 25(2): 218-226.
[19] Banger K, Toor G S, Biswas Aetal. Soil organic carbon fractions after 16-years of applications of fertilizers and organic manure in a Typic Rhodalfs in semi-arid tropics[J]. Nutrient Cycling in Agroecosystems, 2010, 86(3), 391-399.
[20] Puget P, Drink L E. Short-term dynamics of root-and shoot-derived carbon from a leguminous green manure[J]. Soil Science Society of America Journal, 2001, 65: 771-779.
[21] Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7141): 143-144.
[22] 張千豐, 王光華. 生物炭理化性質(zhì)及對土壤改良效果的研究進展[J]. 土壤與作物, 2012 1(4): 219-226. Zhang Q F, Wang G H. Research progress of physiochemical properties of biochar and its effects as soil amendment[J]. Soil and Crop, 2012, 1(4): 219-226.
[23] 匡崇婷, 江春玉, 李忠佩, 胡鋒. 添加生物質(zhì)炭對紅壤水稻土有機碳礦化和微生物生物量的影響[J]. 土壤, 2012, 44(4): 570-575. Kuang C T, Jiang C Y, Li Z P, Hu F. Effects of biochar amendments on soil organic carbon mineralization and microbial biomass in red paddy soils[J]. Soil, 2012, 44(4): 570-575.
[24] 范分良, 黃平容, 唐勇軍, 等. 微生物群落對土壤微生物呼吸速率及其溫度敏感性的影響[J]. 環(huán)境科學, 2012, 33(3): 932-937. Fan F L, Huang P R, Tang Y Jetal. Altered microbial communities change soil respiration rates and their temperature sensitivity[J]. Environmental Science, 2012, 33(3): 932-937.
[25] Bruun E W, Ambus P, Egsgaard Hetal. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics[J]. Soil Biology and Biochemistry, 2012, 46: 73-79.
[26] 王娟, 張麗君, 姚槐應. 添加秸稈和黑炭對水稻土碳氮轉(zhuǎn)化及土壤微生物代謝圖譜的影響[J]. 中國水稻科學, 2013, 27(1): 97-104. Wang J, Zhang L J, Yao H Y. Effects of straw and black carbon addition on C-N transformation and microbial metabolism profile in paddy soil[J]. Chinese Journal of Rice Sci, 2013, 27(1): 97-104.
[27] 于建光, 李輝信, 陳小云, 胡鋒. 秸稈施用及蚯蚓活動對土壤活性有機碳的影響[J]. 應用生態(tài)學報, 2007, 18(4): 818-824. Yu J G, Li H X, Chen X Y, Hu F. Efects of straw application and earthworm inoculation on soil labile organic carbon[J]. Chinese Journal of Applied Ecology, 2007, 18(4): 818-824.
[28] Lou Y L, Wang J K, Liang W J. Impacts of 22-year organic and inorganic N managements on soil organic C fractions in a maize field, northeast China[J]. Catena, 2011, 87(3) 386-390.
[29] 李江濤, 張斌, 彭新華, 賴濤. 施肥對紅壤性水稻土顆粒有機物形成及團聚體穩(wěn)定性的影響[J]. 土壤學報, 2004, 41(6): 912-917. Li J T, Zhang B, Peng X H, Lai T. Effects of fertilization on particulate organic material formation and aggregates stability in paddy soil[J]. Acta Pedologica Sinica, 2004, 41(6): 912-917.
[30] 高海英, 何緒生, 陳心想, 等. 生物炭及炭基硝酸銨肥料對土壤化學性質(zhì)及作物產(chǎn)量的影響[J]. 農(nóng)業(yè)環(huán)境科學學報, 2012, 31(10): 1948-1955. Gao H Y, He X S, Chen X Xetal. Effects of biochar and biochar-based ammonium nitriate fertilizers on soil chemical properties and crop yield[J]. Journal of Agro-Environment Science, 2012, 31(10): 1948-1955.
[31] Christopher J A, Jean D F, Neil A H. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil, 2010, 337: 1-18.
[32] Fernández J M, Nieto M, López-de-Sá E Getal. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers[J]. Science of the Total Environment, 2014, 482: 1-7.
Combined addition of crop residues and their biochar increase soil organic C content and mineralization rate
LI You-bing1, BA Yu-ling1,2, LI Shuo1, TIAN Xiao-hong1*
(1CollegeofNaturalResourcesandEnvironment,NorthwestA&FUniversity/KeyLaboratoryofPlantNutrientandtheAgri-environmentinNorthwestChina,MinistryofAgriculture,Yangling,Shaanxi712100,China;2ShaanxiLandConstructionGroup,Xi’an710075,China)
【Objectives】This study investigated effects of single or combined addition of crop residues and straw biochar on the contents of soil organic carbon components and their mineralization, and revealed their effects in terms of soil carbon sequestration and fertility improvement, therefore provided theoretical support for reasonable utilization of farmland organic resources.【Methods】 An incubation experiment was carried out for 83 days with totally 11 treatments, control soil (CK), single addition (WS, WR, WB, MS, MR and MB) and combined addition (WS+WB, WR+WB, MS+MB and MR+MB) of wheat or maize residues (root, straw) and straw biochar. The experiment measured soil CO2emission during cultivation, at the end of the experiment, soil total organic carbon (TOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), particulate organic carbon (POC) and coarse, fine particulate organic carbon (CPOC and FPOC) were also determined.【Results】 The contents of soil TOC, MBC, POC, CPOC and FPOC under the adding maize residue are higher than those of adding wheat residue, and the addition of shoots increases the contents of soil TOC, POC, CPOC and FPOC more obviously compared to the addition of roots. The organic carbon mineralization rates are rapid at the beginning of 4, 8, 21 d under treatments of single addition biochar, combination of crop residues and biochar and single addition crop residues respectively, then slow down and gradually stabilize. The single addition of crop residues has the maximum cumulative mineralization rate of organic carbon (up to from 30% to 46%). Compared with the control, the treatments of adding organic materials all significantly increase the content of soil TOC, and the single addition of biochar has the largest increase (by 34.4% and 36.5% under the single addition of wheat or maize straw biochar respectively), but the cumulative mineralization rate of organic carbon is only 3%. The soil FPOC content and sensitivity index of the single addition biochar treatments are higher than those of the others. The treatments with mixed wheat or maize residue and their biochar significantly increase the contents of soil MBC and CPOC by 102.2%, 109.3% and 199.2%, 80.2% respectively and the cumulative mineralization rate of organic carbon is between 12% to 19%. The treatments of combining addition crop residues and biochar also have the highest soil CPOC contents and sensitivity indices.【Conclusions】 The complementary role of soil nutrients is obvious in adding crop residues alone treatments, while the CO2released rates of the adding crop residues alone treatments are higher than those of the other treatments, and the single addition of biochar has the lowest cumulative mineralization rate, therefore, the supply of soil nutrients is limited. Over all, the combined addition of crop residues and their biochar can better overcome their drawbacks, especially for maize straw and its biochar mixture, which can both increase soil carbon reservoir and ensure the supply of soil nutrients, have significant effect on soil fertility enhancement.
crop residues; biochar; soil organic carbon components; organic C mineralization
2014-04-29 接受日期: 2014-07-07 網(wǎng)絡出版日期: 2015-04-14
國家科技支撐計劃項目(2012BAD14B11);國家自然科學基金項目(41371288, 31071863)資助。
李有兵(1989—),男,陜西米脂人,碩士研究生,主要從事廢棄物資源農(nóng)業(yè)循環(huán)利用方面的研究。E-mail:li_youbing@126.com * 通信作者 Tel:029-87082069,E-mail:txhong@hotmail.com
S141.4; S153.6+21
A
1008-505X(2015)04-0943-08