王秀康, 李占斌*, 邢英英
(1 西安理工大學(xué)水電學(xué)院,西安 710048;2 中國科學(xué)院水利部水土保持研究所, 黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室,陜西楊凌 712100;3 西北農(nóng)林科技大學(xué), 旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室,陜西楊凌 712100)
覆膜和施肥對玉米產(chǎn)量和土壤溫度、硝態(tài)氮分布的影響
王秀康1,2, 李占斌1,2*, 邢英英3
(1 西安理工大學(xué)水電學(xué)院,西安 710048;2 中國科學(xué)院水利部水土保持研究所, 黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室,陜西楊凌 712100;3 西北農(nóng)林科技大學(xué), 旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室,陜西楊凌 712100)
玉米; 覆膜; 土壤溫度; 硝態(tài)氮含量; 產(chǎn)量
農(nóng)業(yè)技術(shù)的成功在于同步滿足了人口增長所需的糧食,主要依賴于雜交技術(shù)、施肥技術(shù)、灌溉技術(shù)和先進的田間管理技術(shù)[1]。其中,覆膜栽培技術(shù)是一種有效的田間管理技術(shù),不僅提高水分利用效率,還增加作物產(chǎn)量[2]。覆膜的優(yōu)點在上世紀中期就被報道[3-4],覆膜的最大優(yōu)點是縮短作物的生育期,在條件成熟的情況下,覆膜可使作物的產(chǎn)量翻番[5]。Cook等[6]在進一步的研究中,認為覆膜提高作物產(chǎn)量的原因是提高了土壤含水量和增加了土壤溫度,還有保護表層土壤的剝離,較好的土壤溫度和土壤濕度能提高出芽率[7],在覆膜處理下,單株產(chǎn)量也隨之提高。陳小莉等[8]研究表明,覆膜具有調(diào)節(jié)土壤環(huán)境,增加土壤溫度,減少蒸發(fā)量,阻止雜草生長,減緩?fù)寥腊褰Y(jié)和土壤侵蝕等作用,這些作用都有利于作物根系的生長和發(fā)育,從而促進了作物對土壤養(yǎng)分和土壤水分的吸收,增加了作物產(chǎn)量。覆膜技術(shù)已在黃土塬區(qū)開展了一些田間研究,在覆膜處理下,作物產(chǎn)量提高有兩個原因:一方面,覆膜對土壤水分的蒸發(fā)起到攔截作用,增加了作物的騰發(fā)作用;另一方面,作物的騰發(fā)作用增強,在吸收更多的太陽能時,土壤水分在植株內(nèi)運行,提高了土壤水分的利用效率[9]。
Zhang等認為,覆膜對產(chǎn)量的增加不僅是提高土壤水分利用效率和增加土壤溫度,還改變土壤結(jié)構(gòu)和肥力[10]。土壤硝態(tài)氮含量是衡量土壤肥力水平的重要指標,在半干旱地區(qū),施肥可以增加作物產(chǎn)量和增強作物抗旱能力[11],過量施肥將使作物減產(chǎn),還會破壞自然環(huán)境,造成經(jīng)濟浪費[12]。施肥量單因素不能確定作物的增產(chǎn)效果[13],施肥對產(chǎn)量的影響還取決于降雨量,作物殘渣量,以及田間管理技術(shù)[14]。施肥量對產(chǎn)量的影響,要歸因于作物對土壤養(yǎng)分的吸收量,施肥是土壤肥力的主要來源,因此,非常有必要研究施肥與土壤硝態(tài)氮含量的縱向分布規(guī)律。覆膜對土壤溫度的影響,也是作物產(chǎn)量的主要影響因素,綜合覆膜和施肥對土壤溫度和硝態(tài)氮分布的影響研究,對選擇合理的田間管理方法提供幫助,為糧食安全和農(nóng)業(yè)可持續(xù)發(fā)展提供基礎(chǔ)資料。
圖1 玉米生育期氣溫和降雨分布圖Fig.1 The distribution of air temperature and rainfall were recorded in maize growing season
1.1 試驗基本情況
試驗所在地屬黃土旱塬區(qū),土壤為粘壤質(zhì)黑壚土,母質(zhì)為中壤質(zhì)馬蘭黃土[15],土層深厚,土質(zhì)疏松,肥力中等,田間持水量為22.4%,凋萎土壤含水率為9%。2010年測定試驗大田表層(0—80 cm)含35%粘粒、62%粉粒和3%砂粒。土壤容重1.28 g/cm3、有機質(zhì)含量為10.5 g/kg、全氮含量0.8 g/kg、有效磷4.58 mg/kg、 pH 8.4、 CaCO3含量10.5%。
1.2 試驗設(shè)計
試驗共設(shè)置六個處理,分別為:1)對照組,不施肥不覆膜(CK);2)不施肥,覆膜(ZM);3)施基肥(純N 80 kg/hm2、P2O580 kg/hm2),不追肥,不覆膜(BN); 4)施基肥(純N 80 kg/hm2、P2O580 kg/hm2),
不追肥,覆膜(BM); 5)施基肥(純N 80 kg/hm2、P2O580 kg/hm2),施追肥(純N 80 kg/hm2),不覆膜(BTN); 6)施基肥(純N 80 kg/hm2、P2O580 kg/hm2),施追肥(純N 80 kg/hm2),覆膜(BTM)。
大田試驗小區(qū)隨機排列,每個處理設(shè)置3次重復(fù),每個試驗小區(qū)面積32 m2(4 m×8 m),在每年試驗前對試驗田進行翻耕和平整,對試驗小區(qū)進行劃分和打埂,施肥后進行人工翻耕,大田玉米播種行距為60 cm,株距為30 cm,試驗布置草圖如圖2,起壟后鋪塑料薄膜(塑料薄膜生產(chǎn)廠家為陜西永固塑業(yè)有限公司)。
圖2 試驗布置草圖Fig.2 Sketch of the experimental arrangement system
供試玉米品種為“蠡玉18”(ZeamaysL.liyu18),2010年4月22日播種,9月17日收獲;2011年4月26日播種,9月21日收獲;2012年4月22日播種,9月18日收獲。連續(xù)三年試驗追肥時間均在6月底進行,追肥采用環(huán)施法。
1.3 測定項目與方法
3)產(chǎn)量:在大田試驗收獲期,采用小區(qū)測產(chǎn)計算的方法,成熟期每個小區(qū)隨機選取10 株,重復(fù)3 次,籽粒全部收獲,風(fēng)干后稱重,測定籽粒產(chǎn)量。
4)玉米耗水量和水分利用效率
作物耗水量ET計算公式為:
ET=P+U+I-F-R-ΔW
(1)
式中:ET為作物耗水量;P為降水量;U為地下水補給量;I為灌水量;F為徑流量;R為深層滲漏量;ΔW為試驗初期和末期土壤水分變化量。式中各分量單位均以mm計。根據(jù)試驗區(qū)實際情況,式(1)中地下水補給量、徑流量和深層滲漏量均忽略不計,試驗期間不灌水,故上式簡化為:
ET=P-ΔW
(2)
水分利用效率WUE(kg/m3) 計算為籽粒產(chǎn)量除以作物耗水量。
1.4 數(shù)據(jù)處理及統(tǒng)計分析
用MicrosoftExcel2010 進行數(shù)據(jù)計算;用SAS9.2和SPSS18.0 統(tǒng)計軟件進行方差分析(Duncan,0.05);用AutoCAD2010和SigmaPlot10.0 作圖。
2.1 土壤溫度
土壤溫度是影響玉米生長的重要指標,試驗以2010年的6月26日、 2011年的6月29日和2012年的6月22日為代表,覆膜和不覆膜處理不同深度處溫度變化情況如圖3所示。
圖3 覆膜和不覆膜處理不同深度土壤日均溫度變化Fig.3 Diurnal variation of soil temperature with mulch and no mulch in different soil depth
圖4 覆膜和不覆膜處理土壤溫度變化情況Fig.4 Variation of soil temperature with mulch and no mulch
圖5 2010年覆膜條件下不同施肥處理土壤溫度的變化情況Fig.5 Variation of soil temperature with mulching and different fertilizer treatments in 2010
施肥對土壤溫度的影響,以2010年覆膜處理為例進行分析(圖5),結(jié)果表明,施肥處理在6月中旬以前,施肥處理的土壤溫度略高于不施肥處理,6月中旬以后,施肥處理和不施肥處理的土壤溫度差異減小,施肥處理對土壤溫度的影響不明顯,從8月份開始,施肥處理的土壤溫度略小于不施肥處理,差異逐漸減小。土壤深度為0cm的溫度最高在7月中旬,最高值為29.6℃,下午14: 00的土壤溫度大于45℃,播種期間的土壤溫度在整個生育期最低。
2.2 土壤硝態(tài)氮含量
圖6 不施肥處理土壤硝態(tài)氮含量變化(mg/kg)Fig.6 Variation of soil nitrate-N content at no fertilizer treatment
圖7 施基肥處理土壤硝態(tài)氮含量變化(mg/kg)Fig.7 Variation of soil nitrate-N content at basal nitrogen fertilizer treatment
覆膜對土壤硝態(tài)氮含量的影響,本文以2010年施基肥和追肥處理為例進行分析(圖9)。結(jié)果表明,在播種后36天,覆膜處理下的土壤硝態(tài)氮含量較高的區(qū)域分布在表層0—20cm,土壤硝態(tài)氮含量隨著土層深度的增加逐漸減小(20—70cm),70—100cm的土壤硝態(tài)氮含量趨于穩(wěn)定。在播種后58天,表層土壤的硝態(tài)氮含量較播種后36天下降明顯,最高值為61.89mg/kg,30—60cm的土壤硝態(tài)氮含量增加明顯,60—100cm的土壤硝態(tài)氮含量略有增加。在播種后91天,覆膜處理下,較高的土壤硝態(tài)氮含量分布在0—10cm處,在追肥處理下的表層土壤硝態(tài)氮含量大于播種后36天土壤硝態(tài)氮含量,結(jié)果表明,覆膜處理能減緩?fù)寥乐邢鯌B(tài)氮向下層遷移,具體減緩遷移時間有待進一步研究。播種后138天,土壤硝態(tài)氮在50—70cm積累,由于降雨入滲,表層殘留的硝態(tài)氮淋溶到下層土壤,對環(huán)境產(chǎn)生一定的危害,覆膜處理下的土壤硝態(tài)氮變化呈曲折線趨勢,這與玉米根系生長范圍內(nèi)吸收土壤中硝態(tài)氮有關(guān),80—100cm范圍的土壤硝態(tài)氮含量變化不明顯。結(jié)果表明,在施肥初期,覆膜處理有減緩硝態(tài)氮向下層遷移速度的作用,覆膜處理對土壤硝態(tài)氮含量的影響范圍為0—80cm。
2.3 覆膜和施肥對水分利用效率和大田玉米產(chǎn)量的影響
在整個生育期,8月份的降雨相對其他時間較少,2010年和2011年的6月和9月的降雨總量占整個生育期降雨的大部分,而2012年7月份的降雨比6月和9月多,連續(xù)三年玉米生育期的降雨總量占全年降雨量的61.2%、 66.1%和73.2%。玉米耗水主要利用自然降雨,覆膜和不覆膜之間耗水量差異不大。覆膜和施肥對水分利用效率(WUE)和產(chǎn)量有顯著影響。
由百粒重、穗粒重與玉米產(chǎn)量的關(guān)系(圖10)可見,百粒重、穗粒重與玉米產(chǎn)量均呈顯著的線性正相關(guān)關(guān)系(P<0.05)。在施肥處理下,覆膜提高了百粒重;在不施肥處理下,覆膜與百粒重呈負相關(guān),施肥和覆膜處理對穗粒重的影響與百粒重相似。因此,覆膜提高產(chǎn)量的前提是進行合理的施肥處理。
在一定溫度范圍內(nèi),土壤溫度越高土壤水的移動越頻繁,土壤中的氣態(tài)水就越多,作物的生長發(fā)育越快。覆膜可以提高土壤溫度[17],對作物產(chǎn)量有直接的影響,在5 cm深度處,覆膜使土壤溫度提高接近6℃,在10 cm處可提高4℃。本試驗結(jié)果也表明,覆膜可以提高土壤溫度,在10 cm處可以提高土壤溫度2.3℃,在20 cm處提高土壤溫度2.1℃,在玉米生長后期可以提高土壤溫度1.2℃。12: 00時,10 cm的土壤深度,覆膜比不覆膜處理的土壤溫度高3.6℃, 20: 00時覆膜和不覆膜處理的土壤溫度差距較小。這與李興等[16,18]在黃土塬區(qū)進行玉米覆膜和灌水試驗結(jié)果一致,覆膜與不覆膜處理相比,在苗期和拔節(jié)期的增溫效果比較明顯,在10 cm和20 cm處的溫差表現(xiàn)最大,最大可增溫2.5℃,隨生育期的逐漸推進,覆膜的增溫效果逐漸下降。結(jié)果表明,覆膜在生育前期對土壤溫度的影響大于后期,這樣的結(jié)果可能有兩個原因: 一是在玉米生長前期,施肥提高了土壤中微生物的活性,微生物在活動過程中改變了土壤結(jié)構(gòu),促進土壤對太陽輻射的吸收和儲存;二是在玉米生長后期,施肥處理的玉米葉面積生長旺盛,攔截了太陽的直接輻射,使施肥處理的土壤吸收太陽輻射能量減少,在成熟期,這種差異逐漸減小,施肥和不施肥處理的土壤溫度差異不明顯。土壤溫度的升降是由于土壤吸收或放出的熱量不同,覆膜對流入和流出的熱量有調(diào)整作用,其中,晝間覆膜和不覆膜處理流入的熱量相同,覆膜處理流出的熱量比不覆膜處理小,導(dǎo)致覆膜處理的土壤溫度偏高,夜間覆膜和不覆膜處理流入的熱量較小,覆膜和不覆膜處理的土壤溫度無明顯差異。不同深度土壤溫度差異主要是熱擴散率不同所致,土壤深度與導(dǎo)熱率成反比,因此,土壤溫度隨深度增加逐漸降低。有研究表明[19],土壤微生物活性、反硝化及硝化速度都隨著土壤溫度的升高而增加,同時,土壤溫度與土壤微生物活性有關(guān),它與土壤溫度可能呈指數(shù)關(guān)系。本試驗在生育前期,施肥明顯提高了土壤溫度,在生育后期,施肥沒有提高土壤溫度,反而出現(xiàn)降低土壤溫度的趨勢,可能與玉米葉面積生長有關(guān),但總體來看,施肥可以提高土壤溫度,施肥和覆膜對土壤溫度的提高效果明顯,施肥促進了覆膜對土壤溫度改善的效果。
圖8 施基肥和追肥處理土壤硝態(tài)氮含量變化(mg/kg)Fig.8 Variation of soil nitrate-N content at basal and topdressing nitrogen fertilizer treatment
圖9 覆膜+基肥+追肥處理土壤硝態(tài)氮含量變化(mg/kg)Fig.9 Variation of soil nitrate-N content at mulching, basal and topdressing fertilizer treatment表1 不同施肥和覆膜處理對玉米產(chǎn)量和水分利用效率的影響Table 1 Effects of fertilization and mulching on maize grain yield and water use efficiency
年份Year處理Treatment覆膜Mulching水分利用效率(kg/m3)Wateruseefficiency產(chǎn)量(kg/hm2)Maizeyield增加(%)Increase覆膜影響(%)Mulcheffect2010CKNo1.14+0.08d3795.6±245.8d-10.23ZMYes1.05+0.07d3407.2±194.7d-10.23BNNo1.47+0.10c4880.8±288.5c28.5910.61BMYes1.70+0.10b5398.7±277.1b42.24BTNNo1.67+0.08b5587.3±232.7b47.2016.61BTMYes2.06+0.16a6515.4±451.7a71.662011CKNo1.07+0.09d3627.0±263.1d-8.17ZMYes1.01+0.08d3330.6±224.0d-8.17BNNo1.44+0.09c4858.6±275.2c33.959.48BMYes1.63+0.06b5319.2±169.4b46.66BTNNo1.64+0.06b5495.4±193.7b51.5120.94BTMYes2.09+0.12a6645.8±347.7a83.232012CKNo1.09+0.10d3711.4±301.3e-9.55ZMYes1.01+0.08d3356.7±232.1e-9.55BNNo1.34+0.08c4580.3±230.3d23.4115.36BMYes1.60+0.11b5284.0±339.8c42.37BTNNo1.69+0.12b5778.4±369.5b55.7012.24BTMYes2.03+0.09a6485.7±255.4a74.75
注(Note): 同列數(shù)據(jù)后不同字母表示不同處理間差異達到5%顯著性水平 Values followed by different letters in a column are significantly different at the 5% level.
圖10 百粒重、穗粒重與玉米產(chǎn)量的關(guān)系Fig.10 Relationship between 100-grain weight, grain weight per spike and maize yield
土壤中硝態(tài)氮含量對作物的生長起到重要的作用。本試驗結(jié)果表明,播種后36天,施肥處理的土壤硝態(tài)氮含量主要集中在0—30 cm,施肥處理的土壤硝態(tài)氮含量是不施肥處理的1.65倍,最高值達115.1 mg/kg,這與巨曉棠等[20]施氮試驗結(jié)果相同,施氮顯著提高土壤剖面的硝態(tài)氮含量,當施氮量小于120 kg/hm2時,硝態(tài)氮主要在0—30 cm土層內(nèi)移動,當施氮量大于240 kg/hm2時,有相當數(shù)量的硝態(tài)氮在0—100 cm土層內(nèi)移動,在干旱年份,土壤硝態(tài)氮的移動范圍較小。本試驗在施基肥和追肥處理下,土壤硝態(tài)氮的分布以主根為中心,近似對稱分布,在根系生長正下方40 cm處存在孤島,這與姜琳琳等[21]的試驗結(jié)果一致。在根系生長過程中,根系周圍吸收后形成相應(yīng)的孤島,這樣就形成土壤水分和土壤養(yǎng)分的濃度差,當土壤水分含量差到一定值后,水勢高的根區(qū)土壤水分將會向水勢低的根系表面移動,在移動過程中,溶解在土壤水分中的養(yǎng)分也移動,根系吸收土壤水分和土壤養(yǎng)分的能力越強,土壤養(yǎng)分遷移量越大,反之亦然[22-23]。有研究表明,整個生育期覆膜處理的土壤硝態(tài)氮有表聚現(xiàn)象,在0—10 cm的濃度較高,明顯高于不覆膜處理[24]。本試驗結(jié)果表明,覆膜處理的土壤硝態(tài)氮聚集區(qū)為0—20 cm,隨著生育期的推進,表層土壤硝態(tài)氮逐漸向下層遷移,遷移速度明顯慢于不覆膜處理,有利于根系吸收更多的硝態(tài)氮,促進玉米的生長和產(chǎn)量的形成。作物生長主要依靠根系持續(xù)吸收土壤養(yǎng)分,土壤養(yǎng)分的運移對作物的生長至關(guān)重要,植物吸收土壤水分和土壤養(yǎng)分的強弱,主要取決于根系活力,當根系對根系表面的土壤養(yǎng)分吸收后,根區(qū)附近的土壤養(yǎng)分向根系表面遷移。黨廷輝等[25]認為,硝態(tài)氮淋失與降雨量成正比,降雨量不同,硝態(tài)氮淋溶量占施肥量的比例不同。李世清等[26]的田間試驗結(jié)果表明,當施氮量為187.5 kg/hm2時,淋失量為98.2 kg/hm2,淋失率為36.2%,施氮量越高,硝態(tài)氮的淋失量越大。因此,施肥量對土壤環(huán)境的影響還有待進一步研究。
[1] Godfray H C, Beddington J R, Crute I Retal. Food security: The challenge of feeding 9 billion people[J]. Science, 2010, 327 (5967): 812-818.
[2] Wang Y, Xie Z, Malhi S Setal. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China[J]. Agricultural Water Management, 2009, 96 (3): 374-382.
[3] Hopen H J. Effect of black and transparent polyethylene mulches on soil temperature, sweet corn growth and maturity in cool growing season[J]. American Society for Horticultural Science, 1964, 89 (3): 415-420.
[4] Lal R. Soil temperature, soil moisture and maize yield from mulched and unmulched tropical soils[J]. Plant and Soil, 1974, 40 (8): 129-143.
[5] Andrew R H, Schlough D A, Tenpas G H. Some relationships of a plastic mulch to sweet corn maturity[J]. Agronomy Journal, 1976, 68 (3): 422-425.
[6] Cook H F, Valdes G S B, Lee H C. Mulch effects on rainfall interception, soil physical characteristics and temperature underZeamaysL[J]. Soil and Tillage Research, 2006, 91 (1-2): 227-235.
[7] Zhou X, Xing D, Tang Yetal. PCR-Free detection of genetically modified organisms using magnetic capture technology and fluorescence cross-correlation spectroscopy[J]. PLoS One, 2009, 4 (11): e8074.
[8] 陳小莉, 李世清, 王瑞軍, 等. 半干旱區(qū)施氮和灌溉條件下覆膜對春玉米產(chǎn)量及氮素平衡的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2008, 14 (4): 652-658. Chen X L, Li S Q, Wang R Jetal. Effect of film mulching on yield and nitrogen balance of spring maize under different nitrogen and irrigation treatments in semi-arid region[J]. Plant Nutrition and Fertilizer Science, 2008, 14 (4): 652-658.
[9] 邱臨靜, 周春菊, 李生秀, 等. 不同栽培模式和施肥方法對旱地冬小麥氮素吸收運轉(zhuǎn)的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2007, 13 (3): 355-360. Qiu L J, Zhou C J, Li S Xetal. The effects of different cultivation models and fertilizer application methods on N absorption and translocation of dryland winter wheat[J]. Plant Nutrition and Fertilizer Science, 2007, 13 (3): 355-360.
[10] Zhang S, Li P, Yang Xetal. Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize[J]. Soil and Tillage Research, 2011, 112 (1): 92-97.
[11] Liu C A, Li F R, Zhou L Metal. Effects of water management with plastic film in a semi-arid agricultural system on available soil carbon fractions[J]. European Journal of Soil Biology, 2013, 57 (5): 9-12.
[12] Reeves D W. The role of soil organic matter in maintaining soil quality in continuous cropping systems[J]. Soil and Tillage Research, 1997, 43 (4): 131-167.
[13] Latiri-Souki K, Nortcliff S, Lawlor D W. Nitrogen fertilizer can increase dry matter, grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions[J]. European Journal of Agronomy, 1998, 9 (3): 21-34.
[14] Mueller N D, Gerber J S, Johnston Metal. Closing yield gaps through nutrient and water management[J]. Nature, 2012, 490 (7419): 254-257.
[15] 龔子同, 張甘霖, 陳志誠. 土壤發(fā)生與系統(tǒng)分類[M]. 北京: 科學(xué)出版社, 2007. Gong Z T, Zhang G L, Chen Z C. Pedogenesis and soil taxonomy[M]. Beijing: Science Press, 2007.
[16] 李興, 程滿金, 勾芒芒, 等. 黃土高原半干旱區(qū)覆膜玉米土壤溫度的變異特征[J]. 生態(tài)環(huán)境學(xué)報, 2010, 19 (1): 218-222. Li X, Chen M J, Gou M Metal. Variation of soil temperature about plastic film mulching maize in semi-arid areas, the Loess plateau[J]. Ecology and Environmental Sciences, 2010, 19 (1): 218-222.
[17] Ramakrishna A, Tam H M, Wani S P, Long T D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam[J]. Field Crops Research, 2006, 95 (2-3): 115-125.
[18] 申麗霞, 王璞, 張麗麗. 可降解地膜對土壤溫度、水分及玉米生長發(fā)育的影響[J]. 農(nóng)業(yè)工程學(xué)報, 2011, 27 (6): 25-30. Shen L X, Wang P, Zhang L L. Degradation property of degradable film and its effect on soil temperature and moisture and maize growth[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27 (6): 25-30.
[19] 鄭磊, 江長勝, 孫麗娟, 等. 地膜覆蓋對菜園紫色土壤環(huán)境因子及N2O 排放的影響[J]. 中國農(nóng)學(xué)通報, 2011, 27(30): 82-87. Zheng L, Jiang C S, Sun L Jetal. Effects of plastic film mulching on the environmental factors and nitrous oxide emissions in purple soil of vegetable fields[J]. Chinese Agricultural Science Bulletin, 2011, 27(30): 82-87.
[21] 姜琳琳, 韓立思, 韓曉日, 等. 氮素對玉米幼苗生長、根系形態(tài)及氮素吸收利用效率的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2011, 17 (1): 247-253. Jiang L L, Han L S, Han X Retal. Effect of nitrogen on growth, root morphological traits, nitrogen uptake and utilization efficiency of maize seedlings[J]. Plant Nutrition and Fertilizer Science, 2011, 17 (1): 247-253.
[22] 邢英英, 張富倉, 王秀康. 不同生育期水分虧缺灌溉和氮營養(yǎng)對玉米生長的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2010, 28 (6): 1-7. Xing Y Y, Zhang F C, Wang X K. Effects of water deficit irrigation at different growth stages and nitrogen nutrition on the growth of mazie[J]. Agricultural Research in the Arid Areas, 2010, 28 (6): 1-7.
[23] Wang X K, Li Z B, Xing Y Y. Effect of dripper discharge and irrigation frequency on growth and yield of maize in Loess Plateau of Northwest China[J]. Pakistan Journal of Botany. 2014, 46 (3): 1019-1025.
[24] 張仙梅, 黃寶高, 李玲玲, 等. 覆膜方式對旱作玉米硝態(tài)氮時空動態(tài)及氮素利用效率的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2011, 29 (5): 26-32. Zhang X M, Huang B G, Li L Letal. Effects of mulching patterns on spatio-temporal variation of soil nitrate and nitrogen utilization efficiency of maize on dry land[J]. Agricultural Research in the Arid Areas, 2011, 29 (5): 26-32.
[25] 黨廷輝, 郝明德, 郭勝利, 等. 黃土高原南部春玉米地膜栽培的水肥效應(yīng)與氮肥去向[J]. 應(yīng)用生態(tài)學(xué)報, 2003, 14 (11): 1901-1905. Dang T H, Hao M D, Guo S Letal. Effect of plastic-film mulch on water and nitrogen use by spring maize and fate of applied nitrogen in the southern Loess Plateau[J]. Chinese Journal of Applied Ecology, 2003, 14 (11): 1901-1905.
[26] 李世清, 李生秀. 半干旱地區(qū)農(nóng)田生態(tài)系統(tǒng)中硝態(tài)氮的淋失[J]. 應(yīng)用生態(tài)學(xué)報, 2000, 11 (2): 240-242. Li S Q, Li S X. Leaching loss of nitrate from semiarid area agroecosystem[J]. Chinese Journal of Applied Ecology, 2000, 11 (2): 240-242.
[27] 宋尚有, 王勇, 樊廷錄, 等. 氮素營養(yǎng)對黃土高原旱地玉米產(chǎn)量、品質(zhì)及水分利用效率的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2007, 13 (3): 387- 392. Song S Y, Wang Y, Fan T Letal. Effect of nitrogen fertilizer on grain yield, quality and water use efficiency of corn in dryland of Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2007, 13 (3): 387- 392.
[28] Wang F X, Wu X X, Shock C Cetal. Effects of drip irrigation regimes on potato tuber yield and quality under plastic mulch in arid Northwestern China[J]. Field Crops Research, 2011, 122: 78-84.
[29] 習(xí)金根, 湯海軍, 周建斌. 不同灌溉施氮方式夏玉米生長效應(yīng)[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2004, 22 (4): 68-74. Xi J G, Tang H J, Zhou J B. Effects of different irrigation and nitrogen fertilization on summer maize growth[J]. Agricultural Research in the Arid Areas, 2004, 22 (4): 68-74.
[30] 姜濤. 氮肥運籌對夏玉米產(chǎn)量、品質(zhì)及植株養(yǎng)分含量的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2013, 19 (3): 559-565. Jiang T. Effects of nitrogen application regime on yield, quality and plant nutrient contents of summer maize[J]. Plant Nutrition and Fertilizer Science, 2013, 19 (3): 559-565.
[31] Li X, Gong J, Gao Q, Li F. Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions[J]. Agricultural Water Management, 2001, 50 (3): 173-183.
Effects of mulching and fertilization on maize yield,soil temperature and nitrate-N distribution
WANG Xiu-kang1,2, LI Zhan-bin1,2*, XING Ying-ying3
(1CollegeofWaterResourcesandHydroelectricPower,Xi’anUniversityofTechnology,Xi’an710048,China;2InstituteofSoilandWaterConservation,ChineseAcademyofSciencesandMinistryofWaterResources,StateKeyLaboratoryofSoilErosionandDrylandFarmingontheLoessPlateau,Yangling,Shaanxi712100,China;3NorthwestAgricultureandForestryUniversity/KeyLaboratoryofAgriculturalSoilandWaterEngineeringinAridandSemiaridAreasofMinistryofEducation,Yangling,Shaanxi712100,China)
【Objectives】The objective of this study was to investigate the effect of furrow mulching and nitrogen fertilization on soil temperature, soil nitrate-N content and grain yield for sustainable corn production in corrugation cultivation.【Methods】 The experiment was laid out in a randomized block design with six treatments: 1) a control plot with no basal fertilizer, no top dressing and no mulching, 2) plastic film mulching with no basal fertilizer and no top dressing, 3) basal N (80 kg/hm2) and P2O5(80 kg/hm2) with no top dressing and no mulching, 4) plastic film mulching and basal N (80 kg/hm2), P2O5(80 kg/hm2) with no top dressing, 5) basal N (80 kg/hm2), P2O5(80 kg/hm2) and top dressing N (80 kg/hm2) with no mulching, and 6) plastic film mulching with basal N (80 kg/hm2) and P2O5(80 kg/hm2), and top dressing N (80 kg/hm2).【Results】 1) The soil temperature of the 10-cm mulching treatment was significantly higher than the no-mulching treatment, and the average soil temperature of the mulching treatment increased 2.3℃ before July which may be beneficial for germination and growth, and approximately 1.2℃ after July in 0 to 20 cm. The soil temperature in fertilizer treatment was slightly higher than no fertilizer treatment before the middle of June and the soil temperature difference decreased after the middle of June, and the influence of the fertilizer treatment on the soil temperature was not significant. 2) The soil nitrate-N content with basal fertilizer was 1.65 times higher than that with no fertilizer at 36 days after sowing, and was mainly concentrated in the 0 to 30 cm. The distribution of soil nitrate-N was symmetrical along the taproot, and the soil nitrate-N content was in a small area of soil appeared at 40 cm. The soil nitrate-N content was reduced to 30.77 to 48.67 mg/kg in the topsoil after two months sowing. Mulching decreased fertilizer N down moving in a short term, mainly in the depth of 0-80 cm. 3)Water use efficiency (WUE) was positively correlated with the fertilizer application rate and the highest WUE was 2.09 kg/m3. With the same fertilizer treatments, Mulching improved the efficiency of water use. Under basal fertilizer treatment, the WUE in mulching was increased by 12.8% to 19.5% than no mulching. With basal and dressing fertilizer treatment, the WUE in mulching was increased by 20.3% to 27.4% than no mulching. 4) 100-grain weight, spike grain weight were positively related with production, and the grain yield increase was directly by 100-grain weight and grain weight increase, fertilization and mulching increased hundred grain weight and spike grain weight obviously. The results indicated that plastic film mulching could increase grain yield in nitrogen fertilization, 10.61%, 9.48% and 15.36% for the plastic film mulching with basal fertilizer and 16.61%, 20.94% and 12.24% for basal and topdressing, respectively.【Conclusions】 The corn grain yield increased from 23.42% to 83.23% with basal fertilizer, topdressing and plastic film mulching compare with CK. This study indicated that the best yield
the furrow mulching and basal, top dressing nitrogen fertilization 80 kg/hm2each.
maize; plastic film mulching; soil temperature; nitrate-N content; grain yield
2014-04-08 接受日期: 2014-10-10 網(wǎng)絡(luò)出版日期: 2015-03-25
國家自然科學(xué)基金項目(41330858);國家科技支撐計劃課題(2011BAD31B01)資助。
王秀康(1983—),男,陜西安康人,博士,主要從事土壤學(xué)研究。E-mail: wangxiukang@126.com * 通信作者 E-mail: zhanbinli@126.com
S147.32
A
1008-505X(2015)04-0884-14