• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of transgenic Bt cotton on rhizospheric soil microbial communities

    2015-06-09 09:21:17劉根林
    江蘇林業(yè)科技 2015年4期
    關鍵詞:根際品系碳源

    劉根林

    (江蘇省林業(yè)科學研究院,江蘇 南京 211153)

    Effects of transgenic Bt cotton on rhizospheric soil microbial communities

    After cultivation of 2 transgenicBtcotton lines(99BC-4,99BC-8)and their non-Btrecipient Simian3(SM3)in rhizoboxes,the rhizospheric soils during blooming period were sampled.Biolog characterization revealed that during the whole laboratory incubation for 168 h,AWCDsof the rhizospheric soil microbial communities exhibited differential sigmoidals of C substrate utilization with incubation time,and the soils showed lowerAWCDsin GP2 plate than in GN2 plate and EcoPlate,meaning that the G+bacteria in the soils possessed a weaker C source metabolic ability.Functional diversity analysis indicated that the rhizospheric soils of 99BC-8 and SM3 had a larger richness and diversity of,and centered more dominant species in the microbial communities,reflecting a high metabolic potential and functional diversity.Principal Component Analysis(PCA)identified that the first 2 PCs accounted respectively for 35.59%,19.37%in GN2 plate,and 30.57%,18.89%in GP2 plate of total variation.It can be deduced that Bt endotoxin likely stimulated the growth of some specific microbes by using the preferential C sources,which likely dominated the soil microbial responses,though inconsistent in 2 transgenicBtlines.

    TransgenicBtcotton;Biolog;Soil;Microbial community;PCA

    1 Introduction

    TransgenicBtcottons,into which theCrygene encoding insecticidal Cry1Ac Bt toxic protein was introduced,have been grown worldwide for their resistance to cotton bollworm(e.g.Helicoverpa armig-era)[1-2].However,along with the increasing potential for widespread commercial use and the potential benefits of transgenic crops,more and more concerns have been triggered about their potentially ecological and environmental risks[3-7].Although risk assessments have been extensively conducted,whether or notthe risk imposed on soil environment has occurred still remains controversial[3-6].Here the effects of transgenicBtcotton on rhizospheric soil microbial communities are reported after cultivation in China.

    2 Materials and Methods

    2.1 Rhizobox design and soil sampling and processing

    Trial site,cotton variety,rhizobox used for cultivation and soil sampling&processing were referred as[8].Each sample was immediately put in a sterile plastic bag and transported to the laboratory in a cooled box,then sieved(2 mm)and homogenized in a rotary cylinder,and finally,stored at 4℃before used for Biolog characterization.

    2.2 Biolog characterization

    Biolog method was used by direct incubation of soil suspensions in GP2,GN2 MicroPlates and Eco-Plate(Biolog Inc.,Hayward,Calif.),containing respectively 95,95 and 31 different C sources in individual wells to determine changes in the utilization rate of individual substrates.Each fresh sample(10 g)was suspended in 100 mL saline solution(0.9%NaCl),reciprocally shaken at room temperature for 30 min at 120 rpm.After centrifugation at 1 000 g for 10 min,the pellet was suspended in 100 mL above-mentioned saline solution.Each suspension(5 mL)was used to make a 10-fold dilution series up to 10-3,from which 150 μL of supernatant was inoculated into each well of GP2,GN2 plates and EcoPlate.One well without C source in each plate was used as control well.The plates were incubated in the dark at 25℃in a sealed polyethylene bag and read at 590 nm at start and then every 12 h for 7 d using ELISA plate reader.

    2.3 Statistical analysis

    All the experiments were performed at least 3 repetitive independent treatments.An analysis of variance was carried out by using the SPSS13 software. The values are expressed as means±SD.The significant differences among the means were calculated by using LSD-test.Statistical significance threshold was set to less than 0.05 forpvalue.

    The Average Well Color Development(AWCD) method proposed by Garland and Mills[9]was used for analysis of the Biolog data.AWCDat a particular time was calculated using the following equation.

    whereCiis OD for thei-th well with C source andRis that for the control well without C source.nmeans the number of C sources contained in each plate,i.e.,95,95 and 31 respectively.The number of positive wells in each plate is described asS(richness).The functional diversity indices of microbial communities were referred from[10-12].The indices concerned were calculated from the data at 72 h of incubation when even the slowly-growing microbes could utilize the C sources in the wells and since for the more slowly utilized C sources,longer incubation times would be required to examine the full extent of C source us.Shannon diversity index was calculated using the following equation.

    And Shannon evenness index was calculated as

    SE=H’/lnSwhile McIntosh evenness index calculated as

    Principal Components Analysis(PCA)of normalized data to elucidate the pattern of variation of soil microbial community profile was also performed using the SPSS 13 software.The plot of the PC scores for samples was used to display differences in metabolic diversity patterns.Relationships among samples were obtained by plotting scores of their first 2 PCs in 2 dimen-sions,that is,samples with similarAWCDdata sets were located close to one another while dissimilar data sets far apart.

    3 Results

    3.1 AWCD variation of soil microbial communities

    AWCDsin GP2,GN2 plates and EcoPlate reflect sole-C-source metabolic competence and the activities of Gram-negative(G-),Gram-positive(G+)bacteria in and overall activity of soil microbial community. As shown in Fig.1,during the whole incubation for 168 h,AWCDsfor 99BC-4,99BC-8 and SM3 had a steady rise in all 3 plates with incubation time,but exhibited differential sigmoidals of C substrate use,and the soils showed lowerAWCDsin GP2 plate than in GN2 plate and EcoPlate,revealing that the G+bacteria in the soils possessed a weaker C source metabolic ability.The twoBtcotton lines performed inconsistently for theAWCDssince in all 3 plates,AWCDsfor 99BC-4 were always significantly lower than those for 99BC-8 and SM3,suggesting that the metabolic activity of either G+or G-bacteria in 99BC-4 rhizospheric soil were significantly decreased compared with those in its non-Btrecipient,and furthermore,significant differences also emerged betweenAWCDsfor 99BC-8 and SM3 in the partial process of incubation,i.e.,at the point of 24thh from start in GN2 plate;from 24thh to 84thh in GP2 plate;and from 36thh to 72ndh in Eco-Plate.By comparing Fig.1-a with Fig.1-b,within the incubation from 48thh to 84thh,no significant differences in GN2 plate betweenAWCDsfor 99BC-8 and SM3 but significantly higherAWCDsfor SM3 than for 99BC-8 in GP2 plate,indicating that there appeared lower ratio of G+to G-bacteria for 99BC-8 than for SM3.It is well in accordance with the observation forBtand non-Btmaize[13].Based on these results,it is speculated that the species and composition of the root exudates(Bt endotoxin included[8])can play some selective role,to a certain degree,for both G+/G-bacteria and other microbes,and their periodic growth as well in the rhizospheric soil microbial community,which is among the most important biological characteristics for the rhizosphere.In addition,a higher Bt endotoxin content for 99BC-8(though the significance of difference not related)[8],maybe leads to more microbes occurring,it seems then not difficult to understand higherAWCDsfor 99BC-8 compared with those for 99BC-4.

    Fig.1 AWCD kinetics for 99BC-4,99BC-8 and SM3 on Biolog-GN2(a),-GP2(b)and-Eco(c)Plates.*indicatessignificantdifferences(p<0.05)between AWCDs for 99BC-8/SM3 and 99BC-4.**indicates significant differences between any two of three(p<0.05).

    3.2 Functional diversity index variation of soil microbial communities

    Functional diversity index between any two of three variations for 99BC-4,99BC-8 and SM3 are presented in Table 1.It is clearly indicated that in GP2,GN2 plates and EcoPlate,S,H’andUfor99BC-4 had always remarkably lower values than those for 99BC-8 and SM3,which inferred that the catabolic diversity for 99BC-4 was reduced compared with that for SM3 whilst for 99BC-8,it was not the same case. 1/DandMEwere able,to a certain degree,to distinguish the difference among the utilization of C sources by different rhizospheric microbial communities.1/Ddiffered in GP2 plate in the same way asH’,and had significant difference between 99BC-8 and 99BC-4 in GN2 plate,but no significant difference in EcoPlate. ForME,no significant difference was found in GP2 plate,significant differences observed the same way as for 1/Din GN2 plate,and significant differences the same way as forUin EcoPlate.In both GP2 and GN2 plates,SEfor 3 microbial communities reflected the opposite differences toH’,but either no significant difference in EcoPlate.In GP2,GN2 plates and Eco-Plate,Gfor 99BC-4 was significantly reduced compared with those for 99BC-8 and SM3,and besides,in GP2 plate,Gfor 99BC-8 also significantly reduced in comparison with that for SM3.

    Table 1 Diversity and evenness indices for 99BC-4,99BC-8 and SM3

    3.3 Principal components analysis of metabolic function of soil microbial communities

    PCA of each data set for 99BC-4,99BC-8 and SM3 resulted in a PC score plot in which soil groups were separately located(Fig.2,3).In each of the following 2 PC score plots(that in EcoPlate not shown),it was observed that on one hand,the soils were significantly divided into 2 groups along the positive direction of PC1 axis.PC1 scores differed significantly between 99BC-8,SM3 soil groups and 99BC-4 soil,and 99BC-4 soil had always a higher score for PC1 and showed a greater response to C sources in GP2,GN2 MicroPlates that correlated positively to PC1,compared with lower PC1 scores for the other soils.On the other hand,the soils were also significantly divided into 2 groups along the positive direction of PC2 axis.99BC-8 soil located at the positive side,was greatly distinguished from 99BC-4,SM3 soil groups at the negative side,and showed a greater response to C sources in both MicroPlates that correlated positively to PC2, compared to lower PC2 scores for the other soils.The first 2PCsaccountedrespectivelyfor35.59%,19.37%in GN2 plate,and 30.57%,18.89%in GP2 plate of total variation.Variation explained by 2 pairs of the first and second PC axes reached 54.96%,49.46%respectively,indicating a better discrimination power of the microbial communities and metabolically functional diversity from different lines.

    In other words,the PCA patterns shown in theAWCDdata sets were strongly related to the use of individual C sources in GN2,GP2 plates.In GN2 plate,separation of the soil samples into 2 groups along PC1 was significantly affected by carbohydrates,carboxylic acids and amino acids.Substrates affecting the PC2 were carbohydrates and carboxylic acids.Some C sources,such as β-Methyl-D-glucoside(-0.971),Maltose(-0.915),Sucrose(0.939),D-Gluconic acid(0.969),L-Alanyl-glycine(-0.970),L-Threonine(0.932),Phenyethyl-amine(-0.953),Bromosuccinic acid(0.944)and α-D-Glucose-1-phosphate(-0.937)had greater influence than the other substrates on the axis PC1.Thus,these C sources were primarily responsible for the separation along the PC1 axis.Similarly,Gentloblose(-0.813),Xylitol(0.861),β-Hydroxybutyric acid(0.957),L-Proline(-0.778),L-Alanine(-0.775)and α-Cyclodextrin(0.846)had the greatest influence on the PC2 axis and,thus,were important variables in the separation along the PC2 axis.In addition,in GP2 plate,separation along PC1 was significantly affected by carbohydrates and carboxylic acids.Substrates affecting the PC2 were carbohydrates.The G+bacteria for 99BC-4 were more likely to use such C sources as L-Alanyl-glycine(0.938),Xylitol(0.851),α-Methyl-D-glucoside(0.828),β-Hydroxybutyric acid(0.824)and Mannan(0.763)while the G+bacteria for 99BC-8,SM3 more likely to utilize some C sources such as p-Hydroxy-phenylacetic acid(-0.980),D-Galactose(-0.932),D-Mannose(-0.912)and D-Glucose-6-phosphate(-0.764).Similarly,the G+bacteria for 99BC-8 were more likely to metabolize such C sources as Turanose(0.885)and L-Pyroglutamic acid(0.883)whilst the G+bacteria for 99BC-4,SM3 more to catalyze the following C sources as Palatinose(-0.898)and α-Ketoglutaric acid(-0.784).It could be then,drawn that the C sources like β-Hydroxybutyric acid and Xylitol were more likely utilized by both the G+bacteria for 99BC-4 and the G-bacteria for 99BC-8.

    Fig.2 Principal components analysis of carbon utilization for 99BC-4,99BC-8 and SM3 in GN2 plate

    4 Discussion

    Fig.3 Principal components analysis of carbon utilization for 99BC-4,99BC-8 and SM3 in GP2 plate

    Btcottons can produce crystal toxic protein for protecting themselves against the insectsHelicoverpa ar-migera,even suppressing these bollworm in multiple crops in area withBtcotton[2],which seems to justify the large-scale release of these transgenic cotton varieties.Nevertheless,the ecological and environmental risks of them,such as the impacts on non-target organisms,are widely concerned with[7].

    Since Bt protein can be released into soil from different crop sectors[14-16],and wastes from the animals living onBtcotton vegetative parts[17],the potential risks ofBtcotton on the soil microbial communities should be paid more attention.

    There exist some interactions between crop root exudates and rhizospheric soil microbial communities. Some rhizospheric microbes can affect root exudates through changing the content level of the allelopathic compounds,and vice versa,the allelopathic compounds can also affect non-target soil rhizospheric microbial communities.Although microbial biomass indicated microbial community size,Biolog was a method of analyzing the potential metabolic diversity of soil microbial community.Biolog has been widely used in assessing microbial metabolic diversity in agricultural soils.Over the years,increased understanding of the Biolog assay has demonstrated the reproducibility of Biolog profiles and supported the theory that shifts in Biolog metabolic diversity patterns are related to shifts in community composition.

    TheAWCDreflects the sole-C-source utilization ability of the soil microbial community and soil microbial activity[9].H’is a measure of actual richness and evenness of the microbial community,Uis characterized of the diversity of C source utilization competence of mi-crobial community,Sis a reflection of the total number of C substrates utilized generally and defined as the number of different groups of microbes found occurring,whilstSEreflects the comparability of substrate utilization between all utilized substrates,and the expected distribution of microbial groups within the community[18-19].1/Dis an indicator of dominant types of microbes whereasGemphasizes the differences of the microbial community between in utilizing single C substrate.According to our results,it can be deduced that the rhizospheric soil samples of 99BC-8 and SM3 showed a larger richness and diversity of,and centered more dominant species in the microbial communities,with a lower comparability of metabolized substrates,thus reflecting a high metabolic potential and functional diversity in soil microbial communities,though there emerged differences between them,involving a greater quantity of microbes without activity within 99BC-8 rhizospheric soil sample.But more likely it is the releasing of Bt endotoxin into rhizospheric soil from transgenicBtcotton that selectively or in varying degrees,affected both G+/G-bacteria and other microbes,and their growth at different stages in the rhizospheric soil.In other words,the presence of Bt endotoxin likely stimulated the growth of some specific microbes by using their preferential C sources,which seemed to dominate the microbial responses in the soil although inconsistent responses in the two transgenicBtlines.For instance,β-Hydroxybutyric acid and Xylitol were more likely utilized by the G+bacteria for 99BC-4 and the G-bacteria for 99BC-8.As for the microbial communities and metabolically functional diversity,the soil samples were discriminated from one another rationally.

    Correlations between soil microbial functional diversity and organic C have been reported[20].The importance of organic C in influencing the variation of soil microbial functional diversity was also concerned[21]. Another report held that there was a significantly positive correlation between the total soil microbial number,AWCD,Cmic,andH’[22].However,rather than supporting these assumptions,from this study,the positive correlation is not involved withCmic.Of course,further investigations(for example,using different soil types and microbial diversity analysis techniques)of the relationship would be necessary to substantiate this conclusion.

    Moreover,the data obtained showed that there was,to some extent,a positive correlation between Fe content[8],S,AWCD,andH’,Ualthough redundancy analysis(RDA)was not used to visualize the relationships between microbial parameters and soil chemical properties.

    Biolog technique has widely been used in part for its simplicity,availability of automated measuring apparatus,and yield of a great deal of information about an important functional attribute of microbial communities.Frankly speaking,however,the fundamental basis of using such an approach for ecological studies has been questioned on account of its dependence on inefficient extraction,the physiological status of inoculated cells,the subsequent growth of cells,the relevance and concentrations of the C substrates used[23],and still,the complicated data analysis[24],the degree to which the results reflect function rather than structure[25].Nevertheless,such methods have been shown in some cases to be as sensitive as or more sensitive than measuring microbial biomass and respiration[26],and they have been used to detect the effects of important environmental changes on sensitive ecosystems[27],even if the effects have likely come from the changes in the physio-biochemical properties of transgenicBtcottons for genetic amendments,rather than from the direct action of the expression product,Bt protein[28].

    5 Conclusions

    The widely planting of transgenic crops has made a research hit of the risks potentially imposed to soil microbes and agro-ecosystem.Combined with the earlier study[8],it is concluded that in the rhizospheric soils which had been planted by transgenicBtcotton lines(99BC-4,99BC-8),Cry1Ac Bt toxic protein changed soil nutrient conditions such as increasing N,Ca,Zn,Co and Cu but decreasing K and Mg contents.Bt endotoxin triggered more non-target soil microbes appearing in the rhizosphere,significantly raising Cmic,to degrade more rapidly such a cotton-re-leased allelopathic compound,but inhibited severely the growth of the microbes at work in 99BC-8 rhizospheric soil.Bt endotoxin affected selectively microbial composition,alteredtheutilizationpatternsofC sources,promoted the microbial functional diversity,and consequently,evolved into a better discrimination among the transgenicBtlines and their non-Btrecipient from one another.

    To sum up,transgenicBtcottons pose effects on soil ecosystem,especially on rhizospheric soil nutrition and microbial communities.And the possibility of aftermath effects from transgenic crops cannot be excluded and environmental impact assessments must be examined on a case-by-case basis.We are,hereby,more inclined to hold that the research on the safety of transgenic crops is also a long-term and arduous task,which relies on systematic accumulative work for dozens of years.

    [1] Mendelson M,Kough J,Vaituzis Z,et al.Are Bt crops safe[J]?Nature Biotechnology,2003,21(9):1003-1009.

    [2] Wu K M,Lu Y H,Feng H Q,et al.Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton[J].Science,2008,321(5896):1676-1678.

    [3] Marvier M,McCreedy C,Regetz J,et al.A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates[J].Science,2007,316(5830):1475-1477.

    [4] Icoz I,Saxena D,Andrew D A,et al.Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis[J].Journal of Environmental Quality,2008,37(2):647-662.

    [5] Lilley A K,Mark J B,Cartwright C,et al.Life in earth:the impact of GM plants on soil ecology[J]?Trends in Biotechnology,2006,24(1):9-14.

    [6] Cartwright C D,Lilley A K.Mechanisms for investigating changes in soil ecology due to GMO releases[R].Defra report EPG 1/5/214:Department for Environment,Food and Rural Affairs,2004.

    [7] Wolfenbarger L L,Phifer R P.The ecological risks and benefits of genetically engineered plants[J].Science,2000,290(5499):2088-2093.

    [8] Liu G L.Different effects of transgenic Bt cotton on rhizospheric soil nutrition and soil enzyme activities[J].Jiangsu Forestry Science&Technology,2015,42(1):16-22.

    [9] Garland J L,Mills A L.Classification and characterization of heterotrophic bacterial communities on the basis of patterns of community-level sole-carbon-source utilization[J].Applied Environmental Microbiology,1991,57:2351-2359.

    [10]Zak J C,Willing M R,Moorhead D L,et al.Functional diversity of microbial communities:A quantitative approach[J].Soil Biology&Biochemistry,1994,26(9):1101-1108.

    [11]Hackett C A,Griffiths B S.Statistical analysis of the time-course of Biolog substrate utilization[J].Journal of Microbiological Method,1997,30(1):63-69.

    [12]Lupwayi N Z,Arsha M A,Rice W A,et al.Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management[J].Applied Soil Ecology,2001,16(3):251-161.

    [13]Xue K,Luo H F,Qi H Y,et al.Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA[J].Journal of Environmental Sciences -China,2005,17(1):130-134.

    [14]Saxena D,Flores S,Stotzky G.Transgenic plants:insecticidal toxin in root exudates from Bt corn[J].Nature,1999,402(6761):480.

    [15]Losey J E,Rayor L S,Carter M E.Transgenic pollen harms monarch larvae[J].Nature,1999,399(6733):214.

    [16]Zwahlen C,Hilbeck A,Gugerli P,et al.Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field[J].Molecular Ecology,2003a,12(3):765-775.

    [17]Wandeler H,Bahylova J,Nentwig W.Consumption of two Bt and six non-Bt corn varieties by the woodlouse Porcellio scaber[J]. Basic Applied Ecology,2002,3(4):357-365.

    [18]Fuller M E,Scow K M,Lau S,et al.Trichloroethylene(TCE)and toluene effects on the structure and function of the soil community[J].Soil Biology&Biochemistry,1997,29(1):75-89.

    [19]Derry A M,Staddon W J,Kevan P G,et al.Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon-source-utilization[J].Biodiversity and Conservation,1999,8(2):205-221.

    [20]Degens B P,Schipper L A,Sparling G P,et al.Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities[J].Soil Biology&Biochemistry,2000,32(2):189-196.

    [21]Huang Z Q,Xu Z H,Chen C R.Effect of mulching on labile soil organic matter pools,microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia[J].Applied Soil Ecology,40(2),2008:229-239.

    [22]Lin R Y,Rong H,Zhou J J,et al.Impact of allelopathic rice seedlings on rhizospheric microbial populations and their functional diversity[J].Acta Ecologica Sinica,2007,27(9):3644-3654.

    [23]Konopka A,Oliver L,Turco R F.The use of carbon substrate utilization patterns in environmental and ecological microbiology[J]. Microbial Ecology,1998,35(2):103-115.

    [24]Garland J L.Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization[J].Soil Biology&Biochemistry,1996,28(2):213-221.

    [25]Garland J L.Analysis and interpretation of community-level physiological profiles in microbial ecology[J].FEMS Microbiological Ecology,1997,24(4):289-300.

    [26]Johnson D,Leake J R,Lee J A,et al.Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands[J].Environmental Pollution,1998,103(2/3):239-250.

    [27]Johnson D,Campbell C D,Lee J A,et al.Arctic microorganisms respond more to elevated UV-B radiation than CO2[J].Nature,2002,416(6876):82-83.

    [28]Donegan K K,Palm C J,Fieland V J,et al.Changes in levels,species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var.kurstaki endotoxin[J].Applied Soil Ecology,1995,2(2):111-124.

    LIU Gen-lin

    (Jiangsu Academy of Forestry,Nanjing 211153,China)

    轉基因Bt棉對根際土壤微生物群落的影響

    根際箱中種植2個轉基因Bt棉品系99BC-4,99BC-8及其非Bt受體泗棉3(SM3)后,于花期采集其根際土壤。BIOLOG檢測顯示,整個168 h的實驗室培養(yǎng)期間,根際土壤微生物群落的每孔顏色平均變化率(AWCD)隨著時間的推移呈現出差異性的S型曲線;AWCD值顯示,GP2板低于GN2板和ECO板,意味著供試土壤內革蘭氏陽性菌對碳源的利用能力較低。功能多樣性分析表明,99BC-8和SM3根際土壤微生物群落的豐富度高、多樣性強,集中了較多的主導微生物種,因而表現出高代謝能力和功能多樣性。PCA得出,GN2板前2個主成分分別占總變量的35.59%和19.37%,GP2板前2個主成分分別占30.57%和18.89%。推理認為,Bt毒蛋白可能刺激了某些微生物利用優(yōu)勢碳源以促其生長,主導著土壤微生物的反應,雖然在2個轉基因Bt棉品系根際土壤中其表現不一致。

    轉基因Bt棉;Biolog微生物鑒定系統(tǒng);土壤;微生物群落;主成分分析

    S154.36

    A

    1001-7380(2015)04-0028-07

    2015-04-12;

    2015-06-21

    劉根林(1963-),男,江蘇姜堰人,高級工程師,博士,主要從事農林土壤微生物群落的分子生物學研究。

    劉根林

    (江蘇省林業(yè)科學研究院,江蘇 南京 211153)

    10.3969/j.issn.1001-7380.2015.04.007

    猜你喜歡
    根際品系碳源
    貴州黑山羊新品系選育
    10個團豆新品系在綏陽縣的田間性狀及產量表現
    農技服務(2023年2期)2023-03-15 00:43:08
    緩釋碳源促進生物反硝化脫氮技術研究進展
    根際微生物對植物與土壤交互調控的研究進展
    不同碳源對銅溜槽用鋁碳質涂抹料性能的影響
    昆鋼科技(2021年6期)2021-03-09 06:10:20
    4個地被菊新品系對濕熱脅迫的耐受性研究
    園林科技(2020年2期)2020-01-18 03:28:18
    黃花蒿葉水提物對三七根際尖孢鐮刀菌生長的抑制作用
    促植物生長根際細菌HG28-5對黃瓜苗期生長及根際土壤微生態(tài)的影響
    中國蔬菜(2016年8期)2017-01-15 14:23:38
    四甘醇作碳源合成Li3V2(PO4)3正極材料及其電化學性能
    電源技術(2016年9期)2016-02-27 09:05:25
    湖北省白肋煙新品系比較研究
    作物研究(2014年6期)2014-03-01 03:39:03
    90打野战视频偷拍视频| 亚洲av成人精品一区久久| 3wmmmm亚洲av在线观看| 国产精品亚洲av一区麻豆| 精华霜和精华液先用哪个| 亚洲欧美日韩卡通动漫| 国内精品久久久久精免费| 亚州av有码| 99久久99久久久精品蜜桃| 欧美黑人巨大hd| 亚洲,欧美,日韩| 欧美日韩福利视频一区二区| a在线观看视频网站| www.www免费av| 国产国拍精品亚洲av在线观看| 1000部很黄的大片| 欧美高清成人免费视频www| 日本撒尿小便嘘嘘汇集6| 久久久久久久久大av| 亚洲最大成人中文| 亚洲成人久久爱视频| 亚洲av免费在线观看| 精品久久久久久久人妻蜜臀av| www.www免费av| 热99在线观看视频| av专区在线播放| bbb黄色大片| 日韩欧美一区二区三区在线观看| 日本熟妇午夜| 桃色一区二区三区在线观看| 国产国拍精品亚洲av在线观看| 一区二区三区激情视频| 精品午夜福利视频在线观看一区| 久久精品综合一区二区三区| 我的老师免费观看完整版| 老女人水多毛片| 亚洲最大成人手机在线| 久久久久久久久久黄片| 永久网站在线| 亚洲精品乱码久久久v下载方式| 国产精品爽爽va在线观看网站| 日韩中文字幕欧美一区二区| 国产在线精品亚洲第一网站| 午夜精品在线福利| 亚洲美女视频黄频| 国产伦一二天堂av在线观看| 久9热在线精品视频| 一进一出抽搐gif免费好疼| 成年女人毛片免费观看观看9| 色吧在线观看| 亚洲成人久久性| 在线国产一区二区在线| 桃色一区二区三区在线观看| 极品教师在线免费播放| 91字幕亚洲| 国产欧美日韩精品一区二区| 国产日本99.免费观看| 欧美激情在线99| 日本精品一区二区三区蜜桃| 欧美精品啪啪一区二区三区| 国内精品久久久久久久电影| 亚洲av电影在线进入| 久久人人精品亚洲av| 免费av不卡在线播放| 一本精品99久久精品77| 久久久久国内视频| 日韩中文字幕欧美一区二区| 乱码一卡2卡4卡精品| 少妇人妻精品综合一区二区 | 老鸭窝网址在线观看| 搡老岳熟女国产| av中文乱码字幕在线| 脱女人内裤的视频| 久久午夜亚洲精品久久| 深夜精品福利| 亚洲中文字幕日韩| 亚洲av第一区精品v没综合| 国产一级毛片七仙女欲春2| 日韩欧美国产在线观看| 成人av在线播放网站| 欧美精品国产亚洲| 精品一区二区三区人妻视频| 成人一区二区视频在线观看| 国产中年淑女户外野战色| 90打野战视频偷拍视频| 久久精品人妻少妇| 国产精品国产高清国产av| 人妻久久中文字幕网| 淫秽高清视频在线观看| 久久国产乱子伦精品免费另类| 成人国产综合亚洲| 中文字幕人妻熟人妻熟丝袜美| 精品人妻熟女av久视频| 2021天堂中文幕一二区在线观| 怎么达到女性高潮| 亚洲av一区综合| 欧美+亚洲+日韩+国产| 亚洲一区二区三区不卡视频| 国产av一区在线观看免费| 一区二区三区免费毛片| 婷婷精品国产亚洲av在线| 白带黄色成豆腐渣| 欧美另类亚洲清纯唯美| 欧美黑人巨大hd| 波多野结衣高清作品| 亚洲 欧美 日韩 在线 免费| 国产成人a区在线观看| 国产亚洲欧美98| 亚洲av熟女| 亚洲av美国av| 久久久久久九九精品二区国产| netflix在线观看网站| 免费搜索国产男女视频| 亚洲片人在线观看| 国产精品亚洲一级av第二区| 久久草成人影院| 亚洲精品影视一区二区三区av| 亚洲国产精品sss在线观看| 午夜视频国产福利| 日韩欧美在线二视频| 啪啪无遮挡十八禁网站| 少妇的逼好多水| 日韩精品青青久久久久久| 国产伦在线观看视频一区| 国产av一区在线观看免费| 国产亚洲av嫩草精品影院| 日韩欧美三级三区| 日韩免费av在线播放| h日本视频在线播放| 国产在线男女| 女人被狂操c到高潮| 男人和女人高潮做爰伦理| 日本a在线网址| 午夜影院日韩av| 伦理电影大哥的女人| 国产色婷婷99| 老司机福利观看| 桃红色精品国产亚洲av| 一个人免费在线观看电影| 美女高潮喷水抽搐中文字幕| 午夜福利欧美成人| 中文亚洲av片在线观看爽| 特级一级黄色大片| 中文字幕久久专区| 欧美3d第一页| 午夜亚洲福利在线播放| 国产三级中文精品| 白带黄色成豆腐渣| 日日摸夜夜添夜夜添av毛片 | 亚洲精品一卡2卡三卡4卡5卡| 乱码一卡2卡4卡精品| 免费黄网站久久成人精品 | 精品国内亚洲2022精品成人| 69av精品久久久久久| 哪里可以看免费的av片| 国模一区二区三区四区视频| 99久久无色码亚洲精品果冻| 十八禁网站免费在线| 亚洲中文字幕一区二区三区有码在线看| 国产不卡一卡二| 日韩国内少妇激情av| 亚洲第一欧美日韩一区二区三区| 我要看日韩黄色一级片| 日本五十路高清| 欧美潮喷喷水| 免费在线观看成人毛片| 国产一区二区亚洲精品在线观看| 波多野结衣高清无吗| 国产精品一区二区免费欧美| 禁无遮挡网站| 日本精品一区二区三区蜜桃| 国产精品一区二区性色av| 欧美绝顶高潮抽搐喷水| 亚洲精品乱码久久久v下载方式| 美女cb高潮喷水在线观看| 国产黄a三级三级三级人| 国产午夜福利久久久久久| 成人精品一区二区免费| 老司机午夜十八禁免费视频| 久久99热这里只有精品18| 悠悠久久av| 中文字幕久久专区| 欧美黄色淫秽网站| 欧美成人一区二区免费高清观看| 精品国产三级普通话版| 国产精品亚洲一级av第二区| 免费人成在线观看视频色| av在线老鸭窝| 非洲黑人性xxxx精品又粗又长| 嫩草影院精品99| 他把我摸到了高潮在线观看| 成人特级黄色片久久久久久久| 午夜日韩欧美国产| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 黄色配什么色好看| 国产精品伦人一区二区| 听说在线观看完整版免费高清| 日韩人妻高清精品专区| 中文字幕久久专区| 亚洲精品久久国产高清桃花| 高清日韩中文字幕在线| 白带黄色成豆腐渣| 色综合欧美亚洲国产小说| 日韩欧美免费精品| 一a级毛片在线观看| 身体一侧抽搐| av专区在线播放| 国产精品美女特级片免费视频播放器| 有码 亚洲区| 永久网站在线| 亚洲在线观看片| 可以在线观看的亚洲视频| 宅男免费午夜| 老熟妇仑乱视频hdxx| 日韩成人在线观看一区二区三区| 国内少妇人妻偷人精品xxx网站| 午夜久久久久精精品| 中国美女看黄片| 宅男免费午夜| 久久精品夜夜夜夜夜久久蜜豆| 91在线观看av| 很黄的视频免费| 搡老妇女老女人老熟妇| 日韩人妻高清精品专区| 老司机深夜福利视频在线观看| 老司机午夜福利在线观看视频| 我要看日韩黄色一级片| 人人妻,人人澡人人爽秒播| 丁香六月欧美| 久99久视频精品免费| 日本精品一区二区三区蜜桃| 一级黄色大片毛片| 9191精品国产免费久久| 国产色爽女视频免费观看| 欧美成人一区二区免费高清观看| 亚洲不卡免费看| 国产亚洲精品久久久com| 亚洲黑人精品在线| 久久精品综合一区二区三区| 男人舔奶头视频| 白带黄色成豆腐渣| 亚洲成人久久爱视频| 99久久无色码亚洲精品果冻| 久久精品影院6| 久久精品夜夜夜夜夜久久蜜豆| 亚洲电影在线观看av| 久久久久国产精品人妻aⅴ院| 校园春色视频在线观看| 欧美成狂野欧美在线观看| 深夜a级毛片| 免费看光身美女| 国产亚洲av嫩草精品影院| 我要搜黄色片| 国产三级黄色录像| 欧美黄色片欧美黄色片| 亚洲美女黄片视频| 91久久精品电影网| 伦理电影大哥的女人| 大型黄色视频在线免费观看| 亚洲自偷自拍三级| 欧美成人性av电影在线观看| 真人一进一出gif抽搐免费| 亚洲第一电影网av| 国产精品乱码一区二三区的特点| 97碰自拍视频| 精品午夜福利在线看| 午夜福利在线观看吧| 色综合欧美亚洲国产小说| 好看av亚洲va欧美ⅴa在| ponron亚洲| 88av欧美| 国模一区二区三区四区视频| 成熟少妇高潮喷水视频| 国产探花极品一区二区| 国产三级中文精品| 波多野结衣高清作品| 午夜老司机福利剧场| 蜜桃久久精品国产亚洲av| 欧美精品啪啪一区二区三区| 此物有八面人人有两片| 欧美午夜高清在线| 日韩av在线大香蕉| 久久精品国产99精品国产亚洲性色| 看片在线看免费视频| 中文亚洲av片在线观看爽| 亚洲片人在线观看| 男女视频在线观看网站免费| 在线免费观看不下载黄p国产 | 亚洲av熟女| x7x7x7水蜜桃| 丁香六月欧美| 国产高清视频在线播放一区| 亚洲国产欧洲综合997久久,| 最后的刺客免费高清国语| 午夜福利成人在线免费观看| 久久久久免费精品人妻一区二区| av在线蜜桃| 久久久久久久久大av| 免费人成视频x8x8入口观看| 非洲黑人性xxxx精品又粗又长| 国产成人a区在线观看| .国产精品久久| 精品人妻视频免费看| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩高清专用| 九色国产91popny在线| 九九在线视频观看精品| 久久亚洲精品不卡| 日日摸夜夜添夜夜添av毛片 | 中文字幕精品亚洲无线码一区| 国产单亲对白刺激| 少妇的逼水好多| 国产高清视频在线播放一区| 欧美黄色片欧美黄色片| 日韩高清综合在线| 亚洲精品乱码久久久v下载方式| 91狼人影院| 自拍偷自拍亚洲精品老妇| 乱人视频在线观看| 国产69精品久久久久777片| 午夜免费男女啪啪视频观看 | 日本撒尿小便嘘嘘汇集6| 欧美高清成人免费视频www| ponron亚洲| 丰满人妻熟妇乱又伦精品不卡| 黄色配什么色好看| 婷婷色综合大香蕉| 亚洲aⅴ乱码一区二区在线播放| 中文字幕免费在线视频6| 亚洲色图av天堂| 国产免费av片在线观看野外av| 欧美色视频一区免费| 午夜久久久久精精品| 亚洲人成网站在线播放欧美日韩| 亚洲综合色惰| 午夜福利视频1000在线观看| 99热这里只有是精品50| 我的老师免费观看完整版| 国产一区二区在线av高清观看| 精品一区二区三区视频在线| 国产成人a区在线观看| 国内精品美女久久久久久| 九色成人免费人妻av| 精品熟女少妇八av免费久了| 国产探花在线观看一区二区| 免费在线观看影片大全网站| 久久人人爽人人爽人人片va | 淫妇啪啪啪对白视频| 永久网站在线| 有码 亚洲区| 一级黄片播放器| 韩国av一区二区三区四区| 久久久久亚洲av毛片大全| or卡值多少钱| 极品教师在线视频| 欧美激情久久久久久爽电影| 婷婷六月久久综合丁香| 成人无遮挡网站| 久久国产精品人妻蜜桃| 日本免费一区二区三区高清不卡| 亚洲av成人av| 久久久色成人| 午夜视频国产福利| 亚洲精品亚洲一区二区| 美女xxoo啪啪120秒动态图 | 午夜福利高清视频| 俄罗斯特黄特色一大片| 亚洲av不卡在线观看| 亚洲av五月六月丁香网| 日本 av在线| 亚洲五月婷婷丁香| 99热这里只有是精品50| 日韩精品青青久久久久久| 69人妻影院| 色尼玛亚洲综合影院| 国产精品久久久久久久电影| 变态另类丝袜制服| 精品欧美国产一区二区三| 看黄色毛片网站| 久久国产乱子免费精品| 午夜老司机福利剧场| 国产精品电影一区二区三区| 波多野结衣高清无吗| 亚洲最大成人av| 中文字幕免费在线视频6| 亚洲电影在线观看av| 舔av片在线| 亚洲精品456在线播放app | 欧美日韩瑟瑟在线播放| 久久久成人免费电影| 嫁个100分男人电影在线观看| 国内精品久久久久精免费| 亚洲精品在线观看二区| 成人午夜高清在线视频| 九色国产91popny在线| 久久久久亚洲av毛片大全| 69av精品久久久久久| 国产aⅴ精品一区二区三区波| 国产乱人视频| 岛国在线免费视频观看| 亚洲av成人精品一区久久| 亚洲电影在线观看av| 嫩草影院精品99| 别揉我奶头 嗯啊视频| 国产爱豆传媒在线观看| 国产高清有码在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 1000部很黄的大片| а√天堂www在线а√下载| 国产在线精品亚洲第一网站| 午夜福利在线在线| 久久亚洲真实| 免费观看精品视频网站| 国产三级在线视频| 成人无遮挡网站| 波多野结衣巨乳人妻| 久久精品国产亚洲av香蕉五月| 久久久色成人| 欧美乱色亚洲激情| 亚洲精品色激情综合| 在线免费观看不下载黄p国产 | aaaaa片日本免费| 欧美日韩国产亚洲二区| 免费电影在线观看免费观看| 国产亚洲欧美98| 午夜两性在线视频| 听说在线观看完整版免费高清| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产高清在线一区二区三| 亚洲av第一区精品v没综合| 久久久精品大字幕| 精品人妻视频免费看| 一级作爱视频免费观看| 日韩精品中文字幕看吧| 天堂√8在线中文| 午夜福利成人在线免费观看| 1000部很黄的大片| 亚洲国产精品999在线| 啪啪无遮挡十八禁网站| 午夜视频国产福利| 亚洲美女视频黄频| 在线免费观看不下载黄p国产 | 国产精品乱码一区二三区的特点| 日本精品一区二区三区蜜桃| 色av中文字幕| 人人妻,人人澡人人爽秒播| 午夜精品在线福利| 国内精品一区二区在线观看| 国产高清视频在线观看网站| 国产精品伦人一区二区| 一进一出抽搐gif免费好疼| 国产精品久久久久久人妻精品电影| 亚洲经典国产精华液单 | 91在线精品国自产拍蜜月| 亚洲天堂国产精品一区在线| 国产精品久久久久久亚洲av鲁大| 日韩欧美精品免费久久 | 黄色视频,在线免费观看| 又黄又爽又刺激的免费视频.| 免费看a级黄色片| 禁无遮挡网站| 欧美日本视频| 亚洲自偷自拍三级| 亚洲精品456在线播放app | 日本黄大片高清| 99国产精品一区二区蜜桃av| 免费一级毛片在线播放高清视频| 草草在线视频免费看| 在线免费观看不下载黄p国产 | 国产视频一区二区在线看| 日本免费a在线| 啦啦啦韩国在线观看视频| 深夜a级毛片| 真人一进一出gif抽搐免费| 黄色一级大片看看| 淫秽高清视频在线观看| 十八禁国产超污无遮挡网站| 日韩欧美精品v在线| 亚洲国产色片| 亚洲av二区三区四区| 亚洲性夜色夜夜综合| 中文字幕久久专区| 九九久久精品国产亚洲av麻豆| 最新在线观看一区二区三区| 两个人的视频大全免费| 欧美黑人巨大hd| 久久精品国产亚洲av涩爱 | 国产伦人伦偷精品视频| 免费在线观看日本一区| 99久久精品热视频| 亚洲第一欧美日韩一区二区三区| 此物有八面人人有两片| 好男人在线观看高清免费视频| 黄色日韩在线| 极品教师在线免费播放| 中文字幕av在线有码专区| 亚洲自偷自拍三级| 别揉我奶头 嗯啊视频| 国产精品影院久久| 一区二区三区四区激情视频 | 深爱激情五月婷婷| 99热这里只有是精品在线观看 | 亚洲精品日韩av片在线观看| 最近视频中文字幕2019在线8| 久久精品国产99精品国产亚洲性色| 中文亚洲av片在线观看爽| 国内毛片毛片毛片毛片毛片| 18+在线观看网站| 波多野结衣高清作品| 99久久成人亚洲精品观看| 五月伊人婷婷丁香| 亚洲人成伊人成综合网2020| 一进一出抽搐gif免费好疼| 一本久久中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩乱码在线| netflix在线观看网站| 在线免费观看的www视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲美女黄片视频| 很黄的视频免费| 国产男靠女视频免费网站| 可以在线观看的亚洲视频| 亚洲av五月六月丁香网| 欧美性感艳星| 真人做人爱边吃奶动态| 麻豆国产97在线/欧美| 国产色婷婷99| 国产成年人精品一区二区| 国内久久婷婷六月综合欲色啪| 少妇被粗大猛烈的视频| 中出人妻视频一区二区| 亚洲美女黄片视频| 亚洲成a人片在线一区二区| 国产免费一级a男人的天堂| 美女cb高潮喷水在线观看| 在线a可以看的网站| 毛片一级片免费看久久久久 | 一级作爱视频免费观看| 夜夜看夜夜爽夜夜摸| 午夜福利在线观看吧| 国内精品一区二区在线观看| av在线天堂中文字幕| 99久久99久久久精品蜜桃| 国产亚洲欧美在线一区二区| 日日摸夜夜添夜夜添小说| 亚洲熟妇中文字幕五十中出| 国产高清三级在线| 日本精品一区二区三区蜜桃| 中文在线观看免费www的网站| 搡女人真爽免费视频火全软件 | 看十八女毛片水多多多| 99国产精品一区二区蜜桃av| 欧美精品啪啪一区二区三区| 18禁在线播放成人免费| 成人永久免费在线观看视频| 欧美一区二区亚洲| 欧美+日韩+精品| 嫩草影院精品99| 99久久99久久久精品蜜桃| 欧美一区二区国产精品久久精品| 精品久久久久久久人妻蜜臀av| 国产精品爽爽va在线观看网站| 精品久久久久久久人妻蜜臀av| 欧美日韩中文字幕国产精品一区二区三区| 一本精品99久久精品77| 久久99热这里只有精品18| 亚洲精品乱码久久久v下载方式| 一a级毛片在线观看| 日韩欧美在线二视频| 国产欧美日韩一区二区三| 国内久久婷婷六月综合欲色啪| 免费av毛片视频| www.熟女人妻精品国产| 久久久久久久久大av| 国产色爽女视频免费观看| 在线免费观看的www视频| 观看免费一级毛片| 欧美黄色片欧美黄色片| 国产色婷婷99| 国产国拍精品亚洲av在线观看| 人妻丰满熟妇av一区二区三区| 在线免费观看的www视频| 亚洲av成人精品一区久久| 88av欧美| 国产成人a区在线观看| 一二三四社区在线视频社区8| 日韩大尺度精品在线看网址| 国产精品一区二区三区四区久久| 免费观看精品视频网站| 国产三级黄色录像| 成人一区二区视频在线观看| 有码 亚洲区| 国产激情偷乱视频一区二区| 露出奶头的视频| 亚洲一区二区三区不卡视频| 亚洲av熟女| 小说图片视频综合网站| 久久九九热精品免费| 国产精品一区二区性色av| 亚洲人成电影免费在线| av中文乱码字幕在线| 蜜桃亚洲精品一区二区三区| 3wmmmm亚洲av在线观看| 亚洲av电影不卡..在线观看| 亚洲美女视频黄频| 国产色爽女视频免费观看| 国产av不卡久久| 亚洲中文日韩欧美视频| 美女xxoo啪啪120秒动态图 | 美女黄网站色视频| 夜夜躁狠狠躁天天躁| 五月玫瑰六月丁香| 国产精品人妻久久久久久| 美女xxoo啪啪120秒动态图 |