• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-type MJO Initiation processes over the Western Equatorial Indian Ocean

    2015-06-09 21:30:01MEIShuangliTimLIandCHENWen
    Advances in Atmospheric Sciences 2015年9期

    MEI Shuangli,Tim LI,and CHEN Wen

    1Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,100029

    2University of Chinese Academy of Sciences,Beijing 100049

    3International Laboratory on Climate and Environment Change and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology,Nanjing 210044

    4International Pacific Research Center,Department of Meteorology,School of Ocean and Earth Science and Technology, University of Hawaii at Manoa,Honolulu,Hawaii 96822,USA

    Three-type MJO Initiation processes over the Western Equatorial Indian Ocean

    MEI Shuangli1,2,Tim LI?3,4,and CHEN Wen1

    1Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,100029

    2University of Chinese Academy of Sciences,Beijing 100049

    3International Laboratory on Climate and Environment Change and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology,Nanjing 210044

    4International Pacific Research Center,Department of Meteorology,School of Ocean and Earth Science and Technology, University of Hawaii at Manoa,Honolulu,Hawaii 96822,USA

    Thirty strong Madden–Julian Oscillation(MJO)events in boreal winter 1982–2001 are selected to investigate the triggering processes of MJO convection over the western equatorial Indian Ocean(IO).These MJO events are classified into three types,according to their dynamic and thermodynamic precursor signals in situ.In Type I,a remarkable increase in low-level moisture occurs,on average,7 days prior to the convection initiation.This low-level moistening is mainly due to the advection of the background mean moisture by easterly wind anomalies over the equatorial IO.In Type II,lower-tropospheric ascending motion anomalies develop,on average,4 days prior to the initiation.The cause of this ascending motion anomaly is attributed to the anomalous warm advection,set up by a suppressed MJO phase in the equatorial IO.In Type III,there are no clear dynamic and thermodynamic precursor signals in situ.The convection might be triggered by energy accumulation in the upper layer associated with Rossby wave activity fluxes originated from the midlatitudes.

    MJO,Indian Ocean,dynamic precursor signal,thermodynamic precursor signal

    1.Introduction

    Madden–Julian Oscillation(MJO)is a dominant atmospheric low-frequency mode in the tropics.With a typical planetary zonal scale and a 20–90-day period,MJO convective anomalies are often triggered in the western equatorial Indian Ocean(WEIO),and then propagate eastward along the equator to near the dateline(Lau and Chan,1985;Knutson and Weickmann,1987;Rui and Wang,1990).The MJO is a major source of predictability for extended-range(10–30-day)weather prediction.However,many operational centers around the world suffer from prediction barrier problems at this range.Currently,as many operational forecast centers participate in subseasonal-to-seasonal forecast(S2S) projects,a key issue that these centers face is whether or not their operational models are able to successfully simulate and predict MJO initiation and subsequent evolution.Therefore, further exploration and understanding of MJO initiation and propagation issues are urgently needed.

    Previous studies suggest that MJO convection can be triggered by a tropical and an extratropical process.The tropical process includes the discharge–recharge of local moisture(Blad′e and Hartmann,1993;Kemball-Cook and Weare,2001),radiation–convection feedback(Hu and Randall,1994),circumnavigation of convective coupled Kelvin waves that travel around the global equatorial regions(Lau and Peng,1987;Hendon,1988;Wang and Li,1994),downstream forcing of Rossby waves associated with preceding suppressed phases of MJO in the eastern equatorial Indian Ocean(EEIO)(Matthews,2000;Seo and Kim,2003;Jiang and Li,2005;Zhao et al.,2013),and delayed sea surface temperature feedback(Li et al.,2008).

    The extratropical process is also an important mechanism for MJO initiation.The forcing from midlatitude perturbations propagates southward and equatorward(Hsu et al.,1990;Blad′e and Hartmann,1993;Matthews and Kiladis,1999;Pan and Li,2008;Ray et al.,2009).For example,Kiladis and Weickmann(1992)suggested that Rossby wave trains might propagate into the tropics from extratropical regions to trigger MJO convection.Matthews(2008) reported observations of enhanced Rossby wave activity between 10?N and 30?N,which led the convection onset of successive MJO events over the African and Indian Ocean(IO) regions.In addition,a case study by Ray et al.(2009)showed that equatorward momentum transport from the midlatitudesmight contribute to the generation of a low-level westerly that leads to MJO initiation.Wang et al.(2012)showed that subtropical cold surges could cause MJO convection initiation.

    Many previous studies of MJO initiation were based on case studies or idealized numerical modeling.Recently,Zhao etal.(2013)showed,from a composite analysis of20 years of observational data,that both the tropical lower-tropospheric moisture accumulation in the western IO and midlatitude wave processes are important.Ling et al.(2013)suggested that large-scale signals such as low-level easterly anomalies, surface pressure anomalies,and negative temperature anomalies from the middle to upper layers over the IO may distinguish between MJO and non-MJO events prior to their initiation.Straub(2012)found that 850 hPa easterly anomalies led by about 10 days before the convection onset of the primary MJO.

    By examining individual cases of the same 20-year period as in Zhao et al.(2013),we noticed that individual MJO eventsexperienced differentprecursor signals and thus different initiation processes.This motivated us to investigate individual MJO events,in order to understand what the different predecessors are and what their corresponding triggering processes involve.Accordingly,the present study investigates specific MJO initiation precursors and processes by examining each individual MJO event through diagnosis of a reanalysis dataset.The aim is then to try to elicit information on the commonalities and differences of theses samples,ultimately to reveal whether or not the extratropical forcing is independent of the tropical forcing.The outline of the paper is as follows:Section 2 introduces the datasets and methods used in the study.Section 3 presents the MJO initiation precursors and their respective triggering processes.A conclusion and discussion are given in section 4.

    2.Data and methodology

    2.1.Data

    This study is based on ERA-40 reanalysis datasets(Uppala et al.,2005)and outgoing longwave radiation(OLR) datasets(Liebmann and Smith,1996)derived from the European Centre for Medium-Range Weather Forecast(ECMWF) and the National Oceanic and Atmospheric Administration (NOAA)respectively,both with a 2.5?spatial resolution.Our analysis focuses on the same 20-yr period(1 January 1982 to 31 December 2001)northern winter(November–April)season as in Zhao et al.(2013).To examine the precursor SST signal,we use the Global Ocean Data Assimilation System (GODAS)pentad outputs of ocean temperature at the first layer(5 m),which has a resolution of 1?×1?that increases to 1/3?in the north–south direction within 10?of the equator (Saha et al.,2006).

    2.2.Moisture and heat budgets diagnosis

    The intraseasonal moisture and heat budget below are performed to understand the cause of low-level moisture increase and anomalous ascending motion generation before MJO convection onset.They are derived from the temperature and specific humidity tendency equations(Yanai et al., 1973)by applying a 20–90-day band-pass Lanczos filter:

    where cprepresents the specific heat at constant pressure,R the gas constant,?the horizontal gradient operator,L the latent heat of condensation,t time,p pressure,T temperature,q specific humidity,V V V the horizontal velocity vector,ωthe vertical p-velocity,Q1diabatic heating,and Q2the atmospheric apparent moisture sink(Zhao et al.,2013).In addition,()′denotes the 20–90-day intraseasonal component.

    where an overbar,a prime,and an asterisk represent the LFBS,MJO,and high-frequency component,respectively.

    2.3.Phase-independent wave activity flux

    To show the extratropical forcing effect on the MJO initiation,a wave activity flux is examined(Takaya and Nakamura,2001;Zhao et al.,2013):

    where a bar and a prime represent the LFBS and the intraseasonal anomaly,W is the horizontal wave activity flux,u and v are zonal and meridional wind velocity,respectively,andψ is the streamfunction(Zhao et al.,2013).

    3.Precursor signals associated with Threetype initiation processes

    The common features associated with MJO initiation during the 20-yr(1982–2001)northern winter period were examined by Zhao et al.(2013).Here,we focus on precursor signals associated with individual MJO events.Zhao et al. (2013)employed a regional EOF analysis method,with its first principal component amplitude more than one standard deviation as a criterion in selecting relatively strong MJO events.Using this method,a total of 55 cases are selected. The disadvantage of this method is that it includes local nonpropagating or westward-propagating events.To overcome this problem,an objective method,carried out in a way similar to that of Rui and Wang(1990),is employed to selectstrong,and the most representative,MJO events that formed over the WEIO.Firstly,a time–longitude diagram of the 20–90-day filtered OLR anomaly averaged over 10?S and 10?N is plotted.Then,MJO events are selected based on the time–longitude diagram using the following three criteria:(1)a contour line of negative OLR anomalies of?5 W m?2must appear continuously from the WEIO(~60?E)to the western Maritime Continent(~100?E).This constraint ensures continuous eastward propagation of the MJO over the IO.(2)The maximum strength of the negative OLR anomaly over the equatorial IO exceeds?25 W m?2(this lower limit is based on the standard deviation of OLR anomalies over the equatorial Indian Ocean and is applied to ensure that only strong MJO cases are selected).(3)At least 50%of the time span of the MJO event appears during the period from 1 November to 30 April of the following year.Using this criterion, we obtain 30 strong,continuous eastward-propagating MJO events that occurred during 1982–2001 and initiated over the WEIO.Among them,23 events overlap with those of Zhao et al.(2013).

    The information for all the selected individual MJO eventsisgiven in Table 1.Foreach event,the initiation region is determined according to the time–longitude diagram,following Zhao et al.(2013).Once the initiation region is determined,a box(at least 10?×10?)averaged time series of the intraseasonal OLR anomaly is plotted,and the initiation date is then determined based on the OLR transition from positive to negative values(see Fig.1a for an example).The vertical profiles of 20–90-day filtered key atmospheric variables such as vertical velocity,specific humidity and temperature are then examined.

    Based on the examination of the aforementioned key dynamic and thermodynamic signals and their corresponding triggering processes before the initiation for each event,we put those MJO events with common characteristics together for analysis,and thus three types of initiation processes are identified.In the first type,PBL moisture anomalies signif icantly lead the convection onset.In the second type,lowertropospheric ascending motion anomalies lead the convection initiation.In the third type,neither low-level specific humidity nor vertical motion lead the convection,but there is clear evidence of midlatitude Rossby wave activity flux convergence before the convection onset.

    In the following,we investigate the common features associated with each of the three types of initiation processes. A composite analysis method was applied to each type,with a reference day(day 0)corresponding to the initiation date shown in Table 1.Therefore,day 0 represents the time of MJO convection initiation in the WEIO.

    3.1.Type I:PBL moisture-leading

    Seventeen out of thirty MJO events are identified as possessing the characteristic of robust PBL moisture leading MJO convection initiation.The left panel of Fig.1 represents the composite time evolution of the intraseasonal OLR anomaly and vertical profiles of intraseasonal vertical velocity and specific humidity anomalies(Figs.1a–c).Prior to the convection initiation,there are positive OLR and midtropospheric descending motion anomalies.On average,the PBL significant positive moisture anomalies lead the convection initiation by 7 days.The variance of the PBL moisture phase leading is 8.1,which implies a standard deviation of2.9 days.Such a phase leading feature is statistically significant, exceeding the 95%confidence level.The moisture anomalies are initially confined to the lower level and then develop gradually upward into the upper troposphere(Fig.1c).The low-level moisture increase could cause a convectively unstable stratification,resulting in the MJO convection initia-tion.The onset of the shallow convection may be inferred from the vertical velocity profile from day?2 to day 0(Fig. 1b),when anomalous ascending motion occurs primarily in the low level.After the initiation date,the ascending motion anomaly penetrates quickly into the upper troposphere,representing the onset of deep convection(Fig.1b).

    Table 1.Information on the individual MJO events selected for each type,including case number and initiation date(in the format of year–month–day;for example,19821214 corresponds to 14 December 1982).

    Figure 4 shows the composite of 1000–700 hPa integrated intraseasonal wind and background moisture fields averaged during the period from day?7 to day 0.Note that maximum mean specific humidity appears in the eastern IO and Maritime Continent,and mean moisture decreases toward the west.Moreover,the significant moisture field distributes over the equatorial IO regions.The intraseasonal flow field during day?7 to day 0 is characterized by easterly anomalies at the equator and two anticyclonic Rossby gyres off the equator in the tropical IO.The wind anomaly distribution is consistent with the Gill pattern(Gill,1980)and is typically observed when the suppressed MJO phase is located over the EEIO. Further exploration of the intraseasonal OLR field confirmsthat a maximum positive OLR anomaly center associated with the MJO is located over the EEIO during this period (figure not shown).The intraseasonal flow advects the background high moisture westward,resulting in PBL moisture increases in the WEIO.

    3.2.Type II:PBL ascending-motion-leading

    Seven out of the thirty MJO events happened when significant PBL ascending motion anomalies led the convection initiation,while moisture anomalies did not.The right panel of Fig.1 shows the composite time evolution of the intraseasonal OLR anomaly and the time–vertical sections of anomalous vertical motion and moisture fields.The ascending motion anomaly,which is significant at the 95%conf idence level,occurs initially near the surface and develops gradually upward.On average,the PBL ascending motion leads the convection onset by 4 days(Figs.1e and f),and the variance for the vertical motion phase-leading in Type II is 1.6.This implies a standard deviation of 1.3 days.Diagnosis of the low-level moisture budget during the period from day?3 to day 0 shows that the increased moisture is primarily caused by vertical advection,while the horizontal advection plays a minor role(Fig.2b).A further analysis shows that the moistening due to vertical advection is mainly caused by the advection of mean moisture by anomalous ascending motion (figure not shown).

    To understand the cause of the PBL ascending motion anomaly,we diagnose the lower-tropospheric heat budget, following Jiang and Li(2005).Figure 5b represents the composite of 1000–700 hPa integrated intraseasonal heat budget termsaveraged during the period from day?4 to day 0.Compared with Fig.5a,the budget result reveals that the horizontal temperature advection is a major term that is offset largely by the adiabatic cooling term,which is associated with vertical motions.In other words,the negative adiabatic heating, representing the cooling of the atmosphere induced by the ascending motion anomaly,is compensated by the anomalous horizontal warm advection.The temperature tendency term and the diabatic term are much smaller,and can be,to the first order of approximation,neglected.The result suggests that the PBL ascending motion is caused by the anomalous horizontal warm advection.This warm advection effect acts in a similar way to the traditional omega equation in a quasigeostrophic framework(Holton,2004).

    To further examine the source of the anomalous horizontal warm advection,each component of the horizontal temperature advection(Fig.3b)is calculated.It is found that the largest contributor is the advection of LFBS mean temperature by intraseasonal flow.Figure 6 represents the spatial distribution of vertically integrated intraseasonal wind and background temperature fields averaged during the period of day?4 to day 0.Whereas maximum mean temperature appears over the EEIO,the MJO flow prior to the initiation is dominated by anomalous easterlies at the equator and anticyclonic flow to the south of the equator.The anomalous lower-tropospheric circulation is associated with a positive OLRanomaly centered overthe tropicalcentralIO(figure not shown).The anomalous easterly flow,which is statistically significant(exceeding the 95%confidence level),advects the background high temperature westward,leading to anomalous warm temperature advection,which induces anomalous ascending motion over the initiation region.

    Another possible mechanism in generating PBL vertical motion is through SST forcing,in which warm SST anomalies could cause a PBL convergence via the change of PBL temperature and pressure fields(Lindzen and Nigam,1987). The examination of the local intraseasonal SSTA field shows that for three(four)out of seven MJO events,there are positive(negative)precursor SSTA signals over the initiation region(figure not shown).This mixed SSTA condition implies that the ocean surface condition is not critical for generating the anomalous ascending motion.In contrast,the anomalous warm advection appears in all seven Type II events,implying that it plays a critical role in triggering anomalous ascending motion prior to MJO initiation.

    3.3.Type III:Neither PBL moisture-nor ascendingmotion-leading

    In contrast to the first two types of initiation processes, there are no obvious local dynamic and thermodynamic precursor signals in Type III.A total of six events are identified for this type.Figure 7 shows the composite time evolution of the intraseasonal OLR anomaly,vertical motion,and moisture profiles for Type III.During the period of day?5 to day 0,descending motions and negative moisture anomalies appear over the initiation region in the low level(from 1000 to 700 hPa).Compared with Type I and Type II,it is apparent that the moisture tendency is positive,and the PBL moistening can be mainly attributed to the apparent moisture source term(?Q2/L)(Fig.2c).The heat budget result shows that the descending-motion-induced adiabatic warming is offset by the diabatic heating.The horizontal temperature advection,on the other hand,is very small(Fig.5 c).

    Although no robust tropical precursor signals can be found(Figs.7b and c),there are clear midlatitude signals prior to Type III MJO convection onset.Figure 8 represents the composite upper-tropospheric(200 hPa)streamfunction anomaly pattern prior to the initiation date(averaged from day?5 to day 0).It is clear that the streamfunction anomalies display a clear wave train pattern,particularly in the Southern Hemisphere,with positive anomaly centers located in the western South Atlantic and South Africa,and negative anomaly centers in the southwestern South Atlantic and southeastSouth Atlantic.The 200 hPa wave activity flux field exhibits an equatorward wave energy dispersion characteristic.In the midlatitudes,there are pronounced eastward wave activity fluxes,which turn equatorward and converge onto the tropical IO(Fig.8).

    4.Conclusion and discussion

    In the present reported study,the early signals and initiation processes relating to each one of a set of individual MJO events over the WEIO in winter are investigated through diagnosis of a 20-yr ERA-40 reanalysis dataset.Thirty strong, continuouseastward-propagating MJOeventsare selected for analysis.These events are classified into three types according to their precursor local moisture and vertical motion signals.

    For Type I,MJO initiation is characterized by a PBL moisture-leading process.Seventeen events are identified for this type.The analysis shows that a notable increase of the lower-tropospheric specific humidity occurs 7 days before MJO convection onset.The increase of lower-tropospheric moisture induces a convectively unstable stratification,leading to the MJO convection onset over the WEIO.The diagnosis of the lower-level specific humidity budget shows that the moistening is induced mainly by the advection of the mean moisture by the MJO flow.The anomalous wind is a part of the Rossby wave response to a preceding MJO suppressed phase with a heating anomaly over the EEIO.

    For Type II,MJO initiation is characterized by a phase leading of lower-tropospheric ascending motion.Seven events are identified for this type.The analysis shows that significant development of the lower-tropospheric ascending motion occurs 4 days prior to MJO convection onset.The ascending motion anomalies advect atmospheric moisture upward,promoting latent heat release and triggering MJO convection.A diagnosis of the lower-level heat budget indicates that anomalous warm horizontal advection prior to the convection initiation is a primary factor triggering the ascending motion anomaly.Further diagnosis suggests that the warm advection is mainly due to the advection of the background mean temperature by equatorial easterly anomalies in response to a positive OLR anomaly in the equatorial IO.

    For Type III,no clear precursor moisture and ascending motion signals are found in situ.The forcing arises primarily from midlatitude perturbations.Six events are identified.The composite analysis shows that there are robust Rossby wave train signals in the upper troposphere(with alternate cyclonic and anticyclonic circulation)extending from the midlatitudes to the tropical IO a few days prior to Type III MJO initiation. The upper-tropospheric wave activity fluxes point toward thetropical IO,with a flux convergence occurring there.The result implies that midlatitude Rossby wave energy accumulation may have an effect on the triggering of MJO convection.

    Compared with the composite result of Zhao et al.(2013), who showed common precursor features of MJO initiation, the current analysis suggests three different types of initiation characteristics among individual events within the 20 year period.Through event-by-event examination,we have classified the MJO initiation scenarios into three types based on local dynamic and thermodynamic precursor signals.We believe that such a classification is helpful for operational application to identify and predict individual MJO initiation events.

    However,it is worth mentioning that such a classification has its limitations.For example,Types I and II do not exclude the midlatitude wave impact.In fact,we note that eight out of seventeen Type I events and two out of seven Type II events involve the midlatitude wave energy dispersion effect.This indicates that during the initiation of these MJO events,both tropical and extratropical processes might work together.For these mixed events,it is important to further reveal the relative roles of the tropical and extratropical processes through idealized numerical experiments that isolate each of the processes.We intend to carry out this work in the near future. For Type III,on the other hand,the midlatitude wave process seems to be working alone,since key dynamic and thermodynamic precursor signals in the tropical region were not found.

    Another issue is how the current findings relate to successive and primary events(Matthews,2008).It is likely that Type I events are more like successive cases,since they are preceded by low-level easterly anomalies in the equatorial IO induced by a preceding suppressed-phase MJO event(Fig.4, also see Zhao et al.,2013).Type II and III cases,on the other hand,are more likely primary events,since they are triggered either by extratropical forcing or heating anomalies not related to preceding MJO events.More in-depth observational analyses and numerical modeling studies are needed to reveal the origin of the precursor heating and circulation anomalies associated with Type II events and specific processes through which midlatitude waves affect tropical convection.

    Acknowledgements.This research was supported by the China National 973 Project Grant No.2015CB453200),the National Natural Science Foundation of China Grant Nos.41475084 and 41230527,the Office of Naval Research Grant No.N00014-1210450,and the International Pacific Research Center(IPRC) sponsored by the Japan Agency for Marine-Earth Science and Technology.The School of Ocean and Earth Science and Technology contribution number is 9293,the IPRC contribution number is 1106, and Earth Science Modeling Center contribution number 039.We wish to thank the reviewers for their valuable suggestions,which helped to improve the manuscript.

    REFERENCES

    Blad′e,I.,and D.L.Hartmann,1993:Tropical intraseasonal oscillations in a simple nonlinear model.J.Atmos.Sci.,50,2922– 2939,doi:10.1175/1520-0469(1993)050<2922:TIOIAS>2. 0.CO;2.

    Gill,A.E.,1980:Some simple solutions for heat-induced tropical circulation.Quart.J.Roy.Meteor.Soc.,106,447–462,doi: 10.1002/qj.49710644905.

    Hendon,H.H.,1988:A simple model of the 40-50 day oscillation. J.Atmos.Sci.,45,569–584,doi:10.1175/1520-0469(1988) 045<0569:ASMOTD>2.0.CO;2.

    Holton,J.,2004:An Introduction to Dynamic Meteorology.4th ed.,Academic Press,535 pp.

    Hsu,H.-H.,B.J.Hoskins,and F.-F.Jin,1990:The 1985/86 intraseasonal oscillation and the role of the extratropics.J.Atmos.Sci.,47,823–839,doi:10.1175/1520-0469(1990)047<0823:TIOATR>2.0.CO;2.

    Hsu,P.-C.,and T.Li,2012:Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian oscillation.J.Climate,25,4914–4931,doi: 10.1175/JCLI-D-11-00310.1.

    Hu,Q.,and D.A.Randall,1994:Low-frequency oscillations in radiative-convective systems.J.Atmos.Sci.,51,1089–1099, doi:10.1175/1520-0469(1994)051<1089:LFOIRC>2.0.CO; 2.

    Jiang,X.-A.,and T.Li,2005:Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean.J.Climate,18,3777–3795,doi:10.1175/JCLI3516.1.

    Kemball-Cook,S.R.,and B.C.Weare,2001:The onset of convection in the Madden-Julian oscillation.J.Climate,14,780–793,doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2. 0.CO;2.

    Kiladis,G.N.,and K.M.Weickmann,1992:Circulation anomalies associated with tropical convection during northern winter.Mon.Wea.Rev.,120,1900–1923,doi:10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.

    Knutson,T.R.,and K.M.Weickmann,1987:30–60 day atmospheric oscillations:Composite life cycles of convection and circulation anomalies.Mon.Wea.Rev.,115,1407–1436,doi: 10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.

    Lau,K.-M.,and P.H.Chan,1985:Aspects of the 40–50 day oscillation during the northern winter as inferred from outgoing longwave radiation.Mon.Wea.Rev.,113,1889–1909,doi: 10.1175/1520-0493(1985)113<1889:AOTDOD>2.0.CO;2.

    Lau,K.-M.,and L.Peng,1987:Origin of low-frequency(intraseasonal)oscillations in the tropical atmosphere.Part I: Basic theory.J.Atmos.Sci.,44,950–972,doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    Li,T.,F.Tam,X.H.Fu,T.J.Zhou,and W.J.Zhu,2008:Causes of the intraseasonal SST variability in the tropical Indian Ocean. Atmos.Oceanic Sci.Lett.,1,18–23.

    Liebmann,B.,and C.A.Smith,1996:Description of a complete(interpolated)outgoing longwave radiation dataset.Bull. Amer.Meteor.Soc.,77,1275–1277.

    Lindzen,R.S.,and S.Nigam,1987:On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics.J.Atmos.Sci.,44,2418–2436,doi: 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    Ling,J.,C.D.Zhang,and P.Bechtold,2013:Large-scale distinctions between MJO and Non-MJO convective initiation over the tropical Indian Ocean.J.Atmos.Sci.,70,2696–2712,doi: 10.1175/JAS-D-13-029.1.

    Matthews,A.J.,2000:Propagation mechanisms for the Madden-Julian Oscillation.Quart.J.Roy.Meteor.Soc.,126,2637–2651,doi:10.1002/qj.49712656902.

    Matthews,A.J.,2008:Primary and successive events in the Madden-Julian oscillation.Quart.J.Roy.Meteor.Soc.,134, 439–453,doi:10.1002/qj.224.

    Matthews,A.J.,and G.N.Kiladis,1999:The tropicalextratropical interaction between high-frequency transients and the Madden-Julian oscillation.Mon.Wea.Rev.,127,661–677,doi:10.1175/1520-0493(1999)127<0661:TTEIBH>2. 0.CO;2.

    Pan,L.-L.,and T.Li,2008:Interactions between the tropical ISO and midlatitude low-frequency flow.Climate Dyn.,31,375–388,doi:10.1007/s00382-007-0272-7.

    Ray,P.,C.D.Zhang,J.Dudhia,and S.S.Chen,2009:A numerical case study on the initiation of the Madden-Julian oscillation. J.Atmos.Sci.,66,310–331,doi:10.1175/2008JAS2701.1.

    Rui,H.L.,and B.Wang,1990:Development characteristics and dynamic structure of tropical intraseasonal convection anomalies.J.Atmos.Sci.,47,357–379,doi:10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    Saha,S.,and Coauthors,2006:The NCEP climate forecastsystem. J.Climate,19,3483–3517,doi:10.1175/JCLI3812.1.

    Seo,K.H.,and K.Y.Kim,2003:Propagation and initiation mechanisms of the Madden-Julian oscillation.J.Geophys.Res.,108,4384,doi:10.1029/2002JD002876.

    Straub,K.H.,2012:MJO initiation in the real-time multivariate MJO index.J.Climate,26,1130–1151,doi:10.1175/JCLID-12-00074.1.

    Takaya,K.,and H.Nakamura,2001:A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J.Atmos.Sci.,58,608–627,doi:10.1175/1520-0469(2001) 058<0608:AFOAPI>2.0.CO;2.

    Uppala,S.M.,and Coauthors,2005:The ERA-40 re-analysis. Quart.J.Roy.Meteor.Soc.,131,2961–3012,doi:10.1256/qj. 04.176.

    Wang,B.,and T.M.Li,1994:Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system.J.Atmos.Sci.,51,1386–1400,doi: 10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.

    Wang,L.,K.Kodera,and W.Chen,2012:Observed triggering of tropical convection by a cold surge:Implications for MJO initiation.Quart.J.Roy.Meteor.Soc.,138,1740–1750,doi: 10.1002/qj.1905.

    Yanai,M.,S.Esbensen,and J.-H.Chu,1973:Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets.J.Atmos.Sci.,30,611–627,doi: 10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    Zhao,C.B.,T.Li,and T.J.Zhou,2013:Precursor signals and processes associated with MJO initiation over the Tropical Indian Ocean.J.Climate,26,291–370,doi:10.1175/JCLID-12-00113.1.

    :Mei,S.L.,T.Li,and W.Chen,2015:Three-type MJO Initiation processes over the Western Equatorial Indian Ocean.Adv.Atmos.Sci.,32(9),1208–1216,

    10.1007/s00376-015-4201-0.

    12 September 2014;revised 10 February 2015;accepted 16 February 2015)

    ?Corresponding author:Tim LI

    Email:timli@hawaii.edu

    精品一品国产午夜福利视频| 男的添女的下面高潮视频| 九九爱精品视频在线观看| 女性被躁到高潮视频| 亚洲av电影在线观看一区二区三区| 99热国产这里只有精品6| 大香蕉久久网| 人人妻人人看人人澡| 国产爽快片一区二区三区| 老熟女久久久| 三级国产精品片| 国产老妇伦熟女老妇高清| videossex国产| 伦理电影免费视频| 国产精品国产三级国产av玫瑰| 少妇人妻久久综合中文| 亚洲精品aⅴ在线观看| 97在线人人人人妻| 内地一区二区视频在线| 午夜激情福利司机影院| 日本欧美国产在线视频| www.色视频.com| 免费观看av网站的网址| 赤兔流量卡办理| 久久久a久久爽久久v久久| 男人狂女人下面高潮的视频| 最近2019中文字幕mv第一页| 最近手机中文字幕大全| 最近中文字幕高清免费大全6| 欧美另类一区| 亚洲欧洲日产国产| 爱豆传媒免费全集在线观看| 少妇人妻久久综合中文| av福利片在线| 久久久午夜欧美精品| 男女啪啪激烈高潮av片| 纵有疾风起免费观看全集完整版| 边亲边吃奶的免费视频| 亚洲精品乱码久久久久久按摩| 深夜a级毛片| 日本与韩国留学比较| 亚洲精品视频女| 永久网站在线| 欧美人与善性xxx| 黄色欧美视频在线观看| 成年av动漫网址| 久久精品国产a三级三级三级| 成年av动漫网址| tube8黄色片| 精品亚洲成a人片在线观看| 亚洲图色成人| 中文字幕亚洲精品专区| 国产精品一二三区在线看| 精品人妻熟女av久视频| 夜夜骑夜夜射夜夜干| 18禁在线无遮挡免费观看视频| 91精品国产国语对白视频| 国产综合精华液| 观看美女的网站| 国产成人免费无遮挡视频| 69精品国产乱码久久久| 国产精品成人在线| av在线观看视频网站免费| 国产黄色免费在线视频| 久久99精品国语久久久| 只有这里有精品99| av播播在线观看一区| freevideosex欧美| 日韩av不卡免费在线播放| 亚洲精品,欧美精品| 亚洲天堂av无毛| 观看av在线不卡| 亚洲欧洲国产日韩| 人人妻人人澡人人看| 欧美bdsm另类| 久久久久久伊人网av| 亚洲av男天堂| 各种免费的搞黄视频| 日日撸夜夜添| 亚洲精品乱久久久久久| 桃花免费在线播放| 亚洲av男天堂| 亚洲国产欧美在线一区| 在线观看三级黄色| 国产国拍精品亚洲av在线观看| 亚洲av.av天堂| 18禁裸乳无遮挡动漫免费视频| 亚洲av.av天堂| 亚洲av.av天堂| 成人国产av品久久久| av国产久精品久网站免费入址| 男男h啪啪无遮挡| 91精品国产国语对白视频| av国产久精品久网站免费入址| 中文乱码字字幕精品一区二区三区| 51国产日韩欧美| 婷婷色av中文字幕| 午夜精品国产一区二区电影| 国产伦精品一区二区三区四那| 日日啪夜夜撸| 精品一品国产午夜福利视频| 免费观看在线日韩| 日韩中字成人| 免费久久久久久久精品成人欧美视频 | 欧美日本中文国产一区发布| 国产男女超爽视频在线观看| 婷婷色综合大香蕉| 男女边吃奶边做爰视频| 一区二区三区乱码不卡18| 午夜激情福利司机影院| 精品亚洲乱码少妇综合久久| 午夜福利,免费看| 三级国产精品欧美在线观看| 国产黄频视频在线观看| 99热网站在线观看| 精品国产乱码久久久久久小说| 一级,二级,三级黄色视频| 成人毛片a级毛片在线播放| 国产av精品麻豆| 两个人的视频大全免费| 全区人妻精品视频| 中文字幕人妻丝袜制服| 男人舔奶头视频| 美女国产视频在线观看| 一级二级三级毛片免费看| 一区二区三区乱码不卡18| 黄色视频在线播放观看不卡| 欧美日韩av久久| 国产精品国产三级国产专区5o| 午夜精品国产一区二区电影| 又爽又黄a免费视频| videos熟女内射| 女的被弄到高潮叫床怎么办| 免费看av在线观看网站| 乱人伦中国视频| 成人美女网站在线观看视频| 久久毛片免费看一区二区三区| 赤兔流量卡办理| 久久久国产欧美日韩av| 91成人精品电影| 一级毛片aaaaaa免费看小| 精品少妇黑人巨大在线播放| 成年美女黄网站色视频大全免费 | 18+在线观看网站| 五月开心婷婷网| 国产在线视频一区二区| 国产成人精品福利久久| 国产高清不卡午夜福利| 三级国产精品欧美在线观看| 亚洲欧美精品自产自拍| 2022亚洲国产成人精品| 久久久午夜欧美精品| 日韩不卡一区二区三区视频在线| 亚洲欧洲日产国产| 亚洲色图综合在线观看| 日本黄色片子视频| 高清毛片免费看| 特大巨黑吊av在线直播| 91成人精品电影| 欧美+日韩+精品| 亚洲经典国产精华液单| 日韩人妻高清精品专区| 寂寞人妻少妇视频99o| 看十八女毛片水多多多| av网站免费在线观看视频| 日产精品乱码卡一卡2卡三| 国产午夜精品久久久久久一区二区三区| 亚洲av.av天堂| 国产精品国产三级专区第一集| 久久久久久伊人网av| 五月玫瑰六月丁香| 久久97久久精品| 精品久久久精品久久久| 夜夜骑夜夜射夜夜干| 国产一级毛片在线| 在线观看国产h片| 免费大片18禁| 一区二区三区免费毛片| 18禁在线无遮挡免费观看视频| 我要看黄色一级片免费的| 青春草国产在线视频| 18禁动态无遮挡网站| 成人二区视频| 亚洲av成人精品一区久久| 国产午夜精品一二区理论片| 国产精品.久久久| 交换朋友夫妻互换小说| 久久久亚洲精品成人影院| 一区在线观看完整版| 一级片'在线观看视频| 免费观看性生交大片5| 男男h啪啪无遮挡| 97精品久久久久久久久久精品| 自线自在国产av| 亚洲国产日韩一区二区| 91久久精品电影网| 日本色播在线视频| av免费观看日本| 久久人人爽人人爽人人片va| 久久久久久久精品精品| 亚洲va在线va天堂va国产| 国产精品国产三级国产专区5o| 国产精品欧美亚洲77777| 大香蕉97超碰在线| 熟妇人妻不卡中文字幕| 欧美激情极品国产一区二区三区 | 欧美精品亚洲一区二区| 中文字幕制服av| av在线老鸭窝| 久久这里有精品视频免费| 伦理电影大哥的女人| 永久网站在线| 一区在线观看完整版| 国产成人精品婷婷| videossex国产| 亚洲国产欧美日韩在线播放 | 亚洲av欧美aⅴ国产| 看十八女毛片水多多多| 99久久精品热视频| 国产精品久久久久久精品电影小说| 亚洲精华国产精华液的使用体验| 久久热精品热| 国产成人精品婷婷| 亚洲av综合色区一区| 欧美区成人在线视频| 成人国产av品久久久| 国产精品蜜桃在线观看| 国产日韩欧美在线精品| 99国产精品免费福利视频| 菩萨蛮人人尽说江南好唐韦庄| 欧美 亚洲 国产 日韩一| 晚上一个人看的免费电影| 欧美最新免费一区二区三区| 少妇人妻久久综合中文| av免费在线看不卡| 日日爽夜夜爽网站| 日韩电影二区| 女人久久www免费人成看片| 国产亚洲5aaaaa淫片| 精品久久久久久久久av| 亚洲高清免费不卡视频| 乱系列少妇在线播放| 国产一区有黄有色的免费视频| 人人妻人人看人人澡| 在线观看av片永久免费下载| 97超视频在线观看视频| 成人国产av品久久久| 国产一区二区在线观看av| 美女xxoo啪啪120秒动态图| 美女福利国产在线| 国产69精品久久久久777片| 日韩视频在线欧美| 久久久久久久久久久免费av| 国产伦精品一区二区三区视频9| 亚洲国产精品一区三区| 极品教师在线视频| 成人午夜精彩视频在线观看| 久久人妻熟女aⅴ| 人人妻人人澡人人看| 国产亚洲欧美精品永久| 国产免费一区二区三区四区乱码| 国产69精品久久久久777片| 秋霞伦理黄片| 性高湖久久久久久久久免费观看| 日韩伦理黄色片| 一本一本综合久久| 97超碰精品成人国产| 国产永久视频网站| 久久久久精品久久久久真实原创| 91久久精品国产一区二区三区| 水蜜桃什么品种好| 中国美白少妇内射xxxbb| 日韩制服骚丝袜av| 在现免费观看毛片| 赤兔流量卡办理| 夫妻性生交免费视频一级片| 最近最新中文字幕免费大全7| 亚洲国产精品成人久久小说| 欧美变态另类bdsm刘玥| 亚洲欧美一区二区三区黑人 | 又大又黄又爽视频免费| 男男h啪啪无遮挡| 成年av动漫网址| 不卡视频在线观看欧美| 日日摸夜夜添夜夜添av毛片| 麻豆成人av视频| 亚洲av国产av综合av卡| av播播在线观看一区| 国产亚洲91精品色在线| 久久久国产一区二区| 只有这里有精品99| 精品一区二区免费观看| 一级毛片久久久久久久久女| 韩国av在线不卡| av有码第一页| 日韩一本色道免费dvd| 99热网站在线观看| 国模一区二区三区四区视频| 一区二区三区四区激情视频| 在线观看www视频免费| 精品视频人人做人人爽| 亚洲第一区二区三区不卡| 色吧在线观看| 多毛熟女@视频| 老司机影院成人| 国产精品99久久99久久久不卡 | 韩国高清视频一区二区三区| 黄色欧美视频在线观看| 不卡视频在线观看欧美| 99热网站在线观看| 午夜激情福利司机影院| 免费大片黄手机在线观看| 亚洲自偷自拍三级| 卡戴珊不雅视频在线播放| 久久精品久久久久久久性| 午夜视频国产福利| 亚洲精品aⅴ在线观看| 大片电影免费在线观看免费| 99久国产av精品国产电影| 观看免费一级毛片| 一级,二级,三级黄色视频| 国产精品免费大片| 老司机影院成人| 丁香六月天网| 精品一区二区三卡| 全区人妻精品视频| 亚洲精品久久久久久婷婷小说| 18禁裸乳无遮挡动漫免费视频| 精品国产国语对白av| 高清在线视频一区二区三区| 色94色欧美一区二区| 国产伦精品一区二区三区视频9| 国产成人免费无遮挡视频| 国产91av在线免费观看| 黄色日韩在线| 亚洲综合色惰| 人妻人人澡人人爽人人| 精品亚洲乱码少妇综合久久| 国产av精品麻豆| 亚洲av.av天堂| 亚洲综合精品二区| 中文字幕人妻熟人妻熟丝袜美| 九草在线视频观看| 又大又黄又爽视频免费| 久久韩国三级中文字幕| 熟妇人妻不卡中文字幕| 人人妻人人澡人人爽人人夜夜| 草草在线视频免费看| 嫩草影院入口| 观看免费一级毛片| 全区人妻精品视频| 久久久国产一区二区| 狂野欧美激情性bbbbbb| 成人免费观看视频高清| 中文欧美无线码| 国精品久久久久久国模美| 午夜精品国产一区二区电影| 亚洲中文av在线| 极品人妻少妇av视频| 精品久久久精品久久久| 观看免费一级毛片| 黄色一级大片看看| 草草在线视频免费看| 亚洲色图综合在线观看| 自线自在国产av| 欧美区成人在线视频| 一本—道久久a久久精品蜜桃钙片| 我要看黄色一级片免费的| 久久久久久久亚洲中文字幕| 日本黄大片高清| 高清av免费在线| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av涩爱| 成人黄色视频免费在线看| 久久6这里有精品| 乱人伦中国视频| 插逼视频在线观看| 亚洲国产欧美在线一区| 亚洲欧美中文字幕日韩二区| 少妇被粗大的猛进出69影院 | 国产精品免费大片| 97精品久久久久久久久久精品| 中文字幕久久专区| 日韩人妻高清精品专区| 国产综合精华液| 亚洲美女搞黄在线观看| av.在线天堂| 夫妻午夜视频| 性色av一级| 国产在线视频一区二区| 国产精品成人在线| 国产高清有码在线观看视频| av线在线观看网站| 午夜福利在线观看免费完整高清在| 国产亚洲欧美精品永久| 日韩一区二区三区影片| 日韩熟女老妇一区二区性免费视频| 色吧在线观看| 最近的中文字幕免费完整| 日韩,欧美,国产一区二区三区| 少妇人妻 视频| 亚洲精品日本国产第一区| 在线播放无遮挡| 国内揄拍国产精品人妻在线| 国产精品久久久久成人av| 久久精品熟女亚洲av麻豆精品| 这个男人来自地球电影免费观看 | 亚洲中文av在线| 日韩大片免费观看网站| 久久精品夜色国产| 亚洲欧美日韩东京热| 亚洲伊人久久精品综合| 国产老妇伦熟女老妇高清| 欧美激情国产日韩精品一区| 少妇人妻久久综合中文| 狂野欧美激情性bbbbbb| 久久鲁丝午夜福利片| 日本vs欧美在线观看视频 | 全区人妻精品视频| 精品一区在线观看国产| 精品99又大又爽又粗少妇毛片| 欧美日韩一区二区视频在线观看视频在线| 一级毛片电影观看| 丝袜在线中文字幕| 肉色欧美久久久久久久蜜桃| av一本久久久久| 高清毛片免费看| 交换朋友夫妻互换小说| 国产视频首页在线观看| 99久久人妻综合| 亚洲精品aⅴ在线观看| 青青草视频在线视频观看| 高清在线视频一区二区三区| 精品人妻偷拍中文字幕| 中文字幕av电影在线播放| 欧美变态另类bdsm刘玥| 亚洲av福利一区| 精品亚洲成国产av| 亚洲欧洲国产日韩| 美女视频免费永久观看网站| 2022亚洲国产成人精品| 熟女人妻精品中文字幕| 亚洲av日韩在线播放| 2021少妇久久久久久久久久久| 全区人妻精品视频| 人妻人人澡人人爽人人| 国产高清不卡午夜福利| 啦啦啦中文免费视频观看日本| 人人妻人人看人人澡| 男女边吃奶边做爰视频| 一级毛片aaaaaa免费看小| 日韩三级伦理在线观看| 欧美 日韩 精品 国产| 国产精品一区www在线观看| 欧美三级亚洲精品| 午夜91福利影院| 老司机影院毛片| 好男人视频免费观看在线| 久久久久久久久久人人人人人人| 校园人妻丝袜中文字幕| 国产伦在线观看视频一区| 9色porny在线观看| 国产日韩欧美在线精品| 国产精品国产三级国产专区5o| 天堂中文最新版在线下载| videossex国产| 人体艺术视频欧美日本| 精品少妇久久久久久888优播| 亚洲国产精品999| 噜噜噜噜噜久久久久久91| 人妻 亚洲 视频| 成人国产av品久久久| 波野结衣二区三区在线| 亚洲欧美日韩卡通动漫| 免费看光身美女| 色视频在线一区二区三区| 欧美人与善性xxx| 精品国产乱码久久久久久小说| 精品国产国语对白av| 岛国毛片在线播放| 综合色丁香网| 另类亚洲欧美激情| 国产亚洲欧美精品永久| 精品一区二区三卡| 一本—道久久a久久精品蜜桃钙片| 又黄又爽又刺激的免费视频.| 97在线视频观看| 内射极品少妇av片p| 能在线免费看毛片的网站| 边亲边吃奶的免费视频| 晚上一个人看的免费电影| 亚洲一级一片aⅴ在线观看| 久久毛片免费看一区二区三区| av在线播放精品| 免费观看在线日韩| 国产69精品久久久久777片| 精品一区二区免费观看| av专区在线播放| 亚洲色图综合在线观看| 在线看a的网站| 妹子高潮喷水视频| 桃花免费在线播放| 欧美老熟妇乱子伦牲交| 日韩欧美精品免费久久| 蜜臀久久99精品久久宅男| 久久精品国产亚洲av天美| 欧美精品国产亚洲| 国产成人freesex在线| 国产精品久久久久成人av| 只有这里有精品99| 乱码一卡2卡4卡精品| 九色成人免费人妻av| 伊人久久精品亚洲午夜| 五月天丁香电影| 成人黄色视频免费在线看| 亚洲国产毛片av蜜桃av| 一级二级三级毛片免费看| 欧美区成人在线视频| 一级黄片播放器| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品免费免费高清| 9色porny在线观看| av.在线天堂| 欧美丝袜亚洲另类| 黑人高潮一二区| 亚洲,欧美,日韩| 免费观看的影片在线观看| 久久99蜜桃精品久久| 中文在线观看免费www的网站| 久久ye,这里只有精品| 国产男女超爽视频在线观看| 免费在线观看成人毛片| 亚洲国产精品专区欧美| 在线播放无遮挡| 插阴视频在线观看视频| av播播在线观看一区| 国产色爽女视频免费观看| 国产综合精华液| 免费观看在线日韩| 丝袜在线中文字幕| 2018国产大陆天天弄谢| 女性生殖器流出的白浆| 水蜜桃什么品种好| 精品久久久久久电影网| 91精品一卡2卡3卡4卡| 精品卡一卡二卡四卡免费| 亚洲av中文av极速乱| 又爽又黄a免费视频| 国产日韩一区二区三区精品不卡 | 性高湖久久久久久久久免费观看| 精品人妻熟女av久视频| 99久久精品热视频| 在线播放无遮挡| 午夜福利影视在线免费观看| 亚洲美女黄色视频免费看| av在线老鸭窝| 久久精品久久精品一区二区三区| 中文天堂在线官网| 久久精品国产a三级三级三级| 成人影院久久| 黄色配什么色好看| 最后的刺客免费高清国语| 亚洲国产精品一区二区三区在线| 成年人午夜在线观看视频| 国产精品国产三级专区第一集| 免费看日本二区| 亚洲av.av天堂| 伦精品一区二区三区| 女性被躁到高潮视频| 精品国产乱码久久久久久小说| 两个人免费观看高清视频 | 久久热精品热| 精品亚洲乱码少妇综合久久| 国产精品女同一区二区软件| 在线看a的网站| 蜜桃久久精品国产亚洲av| 一级毛片电影观看| 国产有黄有色有爽视频| 久热久热在线精品观看| √禁漫天堂资源中文www| 色94色欧美一区二区| 国产精品国产三级国产专区5o| 久久久久视频综合| 亚洲无线观看免费| 一区二区三区免费毛片| 我的老师免费观看完整版| a级毛色黄片| 成人国产麻豆网| 成人美女网站在线观看视频| 黑人猛操日本美女一级片| 久久精品国产亚洲av涩爱| 国产成人91sexporn| 亚洲欧美清纯卡通| 这个男人来自地球电影免费观看 | 国产精品一二三区在线看| 人人妻人人澡人人看| 国产色婷婷99| 搡老乐熟女国产| 色网站视频免费| 日韩 亚洲 欧美在线| 69精品国产乱码久久久| 久久久a久久爽久久v久久| 久久久久人妻精品一区果冻| 国产一区二区三区综合在线观看 | 成人国产麻豆网| 国产乱人偷精品视频| xxx大片免费视频| 欧美老熟妇乱子伦牲交| 高清不卡的av网站| 亚洲第一区二区三区不卡| 久久精品国产亚洲网站| 视频区图区小说| 美女中出高潮动态图| 观看美女的网站| 美女脱内裤让男人舔精品视频|