• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tooth loss inhibits neurogenesis in the dentate gyrus of adult mice

    2014-04-06 12:20:02ShaochenSuTaoQiBaoliSuHuibinGuJianlinWangLanYang

    Shaochen Su, Tao Qi, Baoli Su, Huibin Gu, Jianlin Wang, Lan Yang

    1 School of Life Sciences, Lanzhou University; Second Hospital, Lanzhou University, Lanzhou, Gansu Province, China

    2 First Hospital, Lanzhou University, Lanzhou, Gansu Province, China

    3 Changzhou Institute of Mechatronic and Technology, Changzhou, Jiangsu Province, China

    Tooth loss inhibits neurogenesis in the dentate gyrus of adult mice

    Shaochen Su1, Tao Qi2, Baoli Su3, Huibin Gu3, Jianlin Wang1, Lan Yang1

    1 School of Life Sciences, Lanzhou University; Second Hospital, Lanzhou University, Lanzhou, Gansu Province, China

    2 First Hospital, Lanzhou University, Lanzhou, Gansu Province, China

    3 Changzhou Institute of Mechatronic and Technology, Changzhou, Jiangsu Province, China

    Tooth loss has been shown to affect learning and memory in mice and increases the risk of Alzheimer’s disease. The dentate gyrus is strongly associated with cognitive function. This study hypothesized that tooth loss affects neurons in the dentate gyrus. Adult male mice were randomly assigned to either the tooth loss group or normal control group. In the tooth loss group, the left maxillary and mandibular molars were extracted. Normal control mice did not receive any intervention. Immuno fl uorescence staining revealed that the density and absorbance of doublecortin- and neuronal nuclear antigen-positive cells were lower in the tooth loss group than in the normal control group. These data suggest that tooth loss may inhibit neurogenesis in the dentate gyrus of adult mice.

    nerve regeneration; neurogenesis; neurons; tooth loss; hippocampus; dentate gyrus; doublecortin; neuronal nuclear antigen; neural regeneration

    Funding:This study was supported by the Science and Technology Key Project of Ministry of Education of China, No. 106152; the Scientific Research Project of Second Hospital of Lanzhou University of China, No. C1708.

    Su SC, Qi T, Su BL, Gu HB, Wang JL, Yang L. Tooth loss inhibits neurogenesis in the dentate gyrus of adult mice. Neural Regen Res. 2014;9(17):1606-1609.

    Introduction

    A relationship between tooth loss and memory decline has become increasingly accepted. Epidemiological investigations have demonstrated that tooth loss increases the risk of senile dementia (Nakata, 1998). Animal studies have con fi rmed that a restrictive relationship exists between the teeth and memory. In mice, a large loss in the number of teeth reduces their learning and memory (Kato et al., 1997; Bergdahl et al., 2007). The hippocampus is a key region for higher neural activities such as emotion, behavior, learning, and memory. In particular, neurons in the dentate gyrus of animals and humans play a signi fi cant role in learning and memory, and their structure, number, and regeneration are strongly associated with cognitive function (Eichenbaum, 1999).

    In the present study, we performed double immunofluorescence staining with a marker of newly born neurons, doublecortin, and a marker of neuronal maturation, neuronal nuclear antigen, in the dentate gyrus of adult mice with tooth loss. Results from these experiments showed neurogenesis in this brain region of these mice.

    Materials and Methods

    Animals

    A total of 60 healthy adult male CD1 mice aged 3 or 4 months and weighing 20-30 g were provided by the Experimental Animal Center, Lanzhou University, China. All mice were housed in a standard cage placed in a quiet room (away from the sun and noise). Mice were kept at 22-23°C with a relative humidity of 45-50%, and under a 12-hour light/ dark cycle. The protocols were approved by the Animal Ethics Committee, Second Hospital, Lanzhou University, China.

    Experimental groups and model establishment

    All mice were equally and randomly divided into either the tooth loss group or the normal control group. Mice in the tooth loss group were intraperitoneally injected with 10% chloral hydrate 4 mL/kg and then fi xed in the supine position. The left maxillary and mandibular molars were then extracted 2 days later, thus establishing the tooth loss model. The normal control group did not receive any intervention.

    Preparation of tissue sections

    All mice were anesthetized with chloral hydrate 4 weeks after model establishment. After the heart was exposed, a puncture was made through the cardiac apex until it reached the ascending aorta. The right auricle was then cut with a pair of eye scissors. Physiological saline (150 mL) was used for washing until the lip and tongue became white. The blood vessels of the heart were fully fi xed with 250 mL 4% paraformaldehyde in phosphate-buffered saline (PBS; 0.01 mol/L, pH 7.4, 150 mL). After craniotomy, brain tissue was fi xed (overnight at 4°C)with 4% paraformaldehyde in PBS. Brain tissues were sliced into coronal sections (thickness of 5 μm) from the superior colliculus to the optic chiasm and from the cephalic side to caudal side. Three serial sections were obtained at intervals of 50 μm and placed on poly-lysine-coated slides for further staining.

    Figure 1 Effects of tooth loss on the distribution and morphology of newborn neurons in the mouse dentate gyrus (immunofuorescence staining).

    Table 1 Effects of tooth loss on the distribution of newborn neurons in the mouse dentate gyrus

    Double immunofuorescence staining for doublecortin and neuronal nuclear antigen

    Sections were dehydrated and permeabilized at room temperature (20°C) (Rohr et al., 2001). Antigen was retrieved with citric acid by exposing the sections in the microwave oven for 120 minutes. Sections were then treated with a mixture of hydrogen peroxide and methanol (1:50) at room temperature for 30 minutes to deactivate endogenous peroxidase. Sections were washed (5 minutes × 3) with 0.01 mol/L PBS, These sections were blocked with normal goat serum for 20 minutes, then incubated (overnight at 4°C) with the primary antibodies, donkey anti-doublecortin (1:1,000; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and mouse anti-neuronal nuclear antigen (1:1,000; Chemicon, Hofheim, Germany). After washing (5 minutes × 3) with 0.01 mol/L PBS, sections were incubated (for 10 minutes at 37°C) with the secondary antibodies, goat anti-mouse IgG, Alexa 555 (1:300; Molecular Probes Gotingen, Germany) and goat anti-donkey IgG, Alexa 488 (1:300; Molecular Probes, Gotingen). All sections were subsequently washed (5 minutes × 3) with PBS 0.01 mol/L and then immersed in water, followed by dehydration using a graded alcohol series. The sections were placed in each alcohol grade for 2 minutes and then fi nally immersed in xylene, and moved in a fume cupboard where they were mounted with neutral resin.

    Data analysis

    Newborn neurons and the newborn granule cell layer in the dentate gyrus were observed with a confocal laser scanning microscope (LSM 510; Zeiss, Germany). The distribution, density, and absorbance values of newborn neurons were compared. Doublecortin-labeled newborn neurons in the dentate gyrus were quantified with a confocal laser scanning microscopy. The number (n) of newborn neurons in the granular cell layer and subgranular zone in each section was calculated. The area of the granular cell layer and subgranular zone in the dentate gyrus was also calculated, and the number (n/mm2) of doublecortin-positive cells in a unit area of the dentate gyrus was calculated by the grid test method (Zhu et al., 2009). Absorbance values of doublecortin- and neuronal nuclear antigen-labeled cells were obtained from both groups, as previously described (Zhou et al., 1995).

    Statistical analysis

    Data were expressed as the mean ± SD and were analyzed by the two-samplet-test, which was performed using SPSS 13.0 software (SPSS, Chicago, IL, USA). A value ofP< 0.05 was considered statistically signi fi cant.

    Results

    Distribution and morphology of newborn neurons in the dentate gyrus of mice with tooth loss

    The numbers of both doublecortin and neuronal nuclear antigen-labeled newly born neurons were high in the normal control group, but low in the tooth loss group.

    Doublecortin-labeled cells were detected in the granular cell layer and subgranular zone in both groups 4 weeks after model establishment. Dendrites vertically crossed the lamellar structure and were distributed two-cell widths between the granular cell layer and gate region. A few doublecortin-positive cells migrated to the granular cell layer. Doublecortin-positive cells in the gate region were scattered. Neuronal nuclear antigen-labeled cells were visible in the molecular layer, granular layer and subgranular zone, especially in the subgranular zone (Figure 1).

    In the normal control group, the number of doublecortin-positive cells was high in the subgranular zone of dentate gyrus. These doublecortin-positive cells were arranged in a cluster, and the synapse was long and continuous (Figure 1B). In the tooth loss group, the number of doublecortin-positive cells was low in the subgranular zone of the dentate gyrus. These doublecortin-positive cells were single (with a few in a cluster) and scattered, and the synapse was short and discontinuous (Figure 1A). In neuronal nuclear antigen-labeled images, neuronal nuclear antigen-positive granule cells in the normal control group were visible in the dentate gyrus, and most of them were mature and densely distributed (about 7-9 layers) with a spherical or elliptical shape (Figure 1D). In the tooth loss group, the number of neuronal nuclear antigen-positive cells was less in the dentate gyrus (Figure 1C).

    Effect of tooth loss on neurogenesis in the dentate gyrus

    Both the density and absorbance values of doublecortinand neuronal nuclear antigen-positive cells were signi fi cantly (P< 0.05) lower in the tooth loss group compared with the normal control group (Table 1).

    Discussion

    Neurogenesis mainly occurs in the subependymal layer and in the dentate gyrus of adult mammals. More specifically, neurogenesis occurs in the subgranular cell zone of the dentate gyrus, and involves neural stem cells/progenitor cells (Altman and Das, 1965; Eriksson et al., 1998). Neural stem cells in the dentate gyrus are located in the subgranule cell layer in hippocampus. Neurogenesis in the infragranular layer consists of three stages: (1) neural stem cell division, (2) gradual migration to the granule cell layer in which newborn cells are semi-mature, and (3) newborn cells integrated in the granule cell layer, with most cells differentiated into mature neural cells (Oyanagi et al., 2001; Leuner et al., 2010). The infragranular layer of the dentate gyrus is considered to be a region for neural stem cell proliferation, with its effects continuing into adulthood. Neural stem cells in the infragranular layer of adult mice constantly proliferate and migrate to the granule cell layer. Moreover, neural stem cells gradually transform into mature cells during migration, and finally differentiated into neurons in the granule cell layer (Corbo et al., 2002). Dentate gyrus is a key region in the brain in which neurogenesis occurs all through life (Nacher et al., 2001). Thus newborn cells may be strongly correlated with learning and memory. A previous study has con fi rmed that newborn cells in the granule cell layer are strongly associated with memory formation, and disruption of neural cell proliferation in the dentate gyrus affects learning and memory (Macklis, 2001).

    The present study may indicate that tooth loss plays a role in learning and memory impairment in mice, by observing neuronal regeneration in the dentate gyrus using double immunofluorescence staining for doublecortin and neuronal nuclear antigen. Our results verified that Doublecortin could be used to analyze neuronal regeneration in the dentate gyrus under different conditions such as environmental change, mature, illness or injury (Jin et al., 2002).

    Doublecortin is a microtubule-associated protein that is extensively expressed in the developing nervous system of mammas. Furthermore, doublecortin is necessary for neuronal migration and differentiation and can label the fi rst and second stages of neurogenesis in the infragranular layer of the dentate gyrus (Sska et al., 2000). Doublecortin is mainly expressed in neuronal cell bodies and plays a major role in migration and axonal differentiation (Gleeson et al., 1999; Friocourt et al., 2003). Our results from the high-powered confocal laser scanning microscope revealed that doublecortin-positive cells were mainly located in the infragranular layer of dentate gyrus. The number of doublecortin-labeled newly born neurons was high in the normal control group, but low in the tooth loss group. Neuronal nuclear antigen labels the fi rst and second stages of neurogenesis in the infragranular layer of the dentate gyrus, and is mainly expressed in mature neurons. Our staining results demonstrated that the number of neuronal nuclear antigen-positive cells was high in the normal control group, but low in the tooth loss group. This study showed that the number and density of newly born neural cells were lower in the tooth loss group compared with the normal control group. Antigen activity and number of positive cells were higher in the normal control group than in the tooth loss group. These results therefore suggest that the neurogenic capacity in the hippocampus is lower in the tooth loss group than in the normal control group.

    Our results from the immuno fl uorescence study demonstrated that tooth loss impaired the distribution, structure, and neurogenic capacity of neurons in the mouse dentate gyrus. These effects may have a negative impact on learning and memory. The alteration in neurotransmitter content, a decrease in cerebral blood fl ow and oxygen levels after tooth loss (Hu et al., 2003), and poor chewing-induced nutritional de fi ciencies may also result in injury to the brain structure and neuronal regeneration at different degrees (Chen et al., 2007). Nevertheless, the impact of tooth loss on learning and memory in mice requires further investigation.

    Author contributions:Su SC, Wang JL and Yang L participated in study design and implementation, result analysis, data statistics, manuscript writing, and submission. Wang JL and Yang L participated in theory and practice guidance, result analysis and manuscript submission. Qi T participated in study implementation and result analysis. Su BL and Gu HB participated in experimental statistics. All authors approved the final version of the paper.

    Conficts of interest:None declared.

    Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124: 319-335.

    Bergdahl M, Habib R, Bergdahl J, Nyberg L, Nilsson LG (2007) Natural teeth and cognitive function in humans. Scand J Psychol 48:557-565.

    Chen Y, Hong J, Xu J, Liao Y, Wei Z, Huang C (2007) Effects of multi-micronutrients on alleviating physical fatigue and improving learning and memory. Yingyang Xuebao 29:213-216.

    Corbo JC, Deuel TA, Long JM, LaPorte P, Tsai E, Wynshaw-Boris A, Walsh CA. (2002) Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J Neurosci 22:7548-7557.

    Eichenbaum H (1999) Conscious awareness, memory and the hippocampus. Nat Neurosci 2:775-776.

    Eriksson PS, Per fi lieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317.

    Friocourt G, Koulakoff A, Chafey P, Boucher D, Fauchereau F, Chelly J, Francis F (2003) Doublecortin functions at the extremities of growing neuronal processes. Cereb Cortex 13:620-626.

    Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257-271.

    Hu H, Huang J, Liu H (2003) Protective effects and mechanisms of serial TCM “Huoxuehuayu” prescriptions on cerebral ischemia-reperfusion injury in rats. Zhejiang Daxue Xuebao: Yixue Ban 32:502-506.

    Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 99:11946-11950.

    Kato T, Usami T, Noda Y, Hasegawa M, Ueda M, Nabeshima T (1997) The effect of the loss of molar teeth on spatial memory and acetylcholine release from the parietal cortex in aged rats. Behav Brain Res 83:239-242.

    Leuner B, Gould E (2010) Structural plasticity and hippocampal function. Ann Rev Psychol 61:111-140.

    Macklis JD (2001) Neurobiology: newmemories from new neurons. Nature 410:314-315.

    Nakata M (1998) Masticatory function and its effects on general health. Int Dent J 48:540-548.

    Oyanagi K, Kakita A, Kawasaki K, Hayashi S, Yamada M (2001) Expression of calbindin D-28k and parvalbumin in cerebral cortical dysgenesis induced by administration of ethylnitrosourea to rats at the stage of neurogenesis. Acta Neuropathol 101:375-382.

    Sska M, Ono J, Okada S, Nakamura Y, Kurahashi H (2000) Genetic alteration of the DCX gene in Japanese patients with subcortical laminar heterotopia or isolated lissencephaly sequence. J Hum Genet 45:167-170.

    Zhou Y, Haugland RP (1995) Use of a new fluorescent probe, seminaphtho fl uorescein-calcein, for determination of intracellular pH by simultaneous dual-emission imaging laser scanning confocal microscopy. J Cell Physiol 164:9-16.

    Zhu HL, Bin P, Wu JJ, Xu Q, Zhu WB, Wang BH (2009) A counting method for monoayer cells attached to culture plate in situ. Xibao Shengwuxue Zazhi 164:9-16.

    Copyedited by Farso M, de Souza M, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    Jianlin Wang, Ph.D., School of Life Sciences, Lanzhou University; Second Hospital, Lanzhou University, Lanzhou 730030, Gansu Province, China, jlwang@lzu.edu.cn. Lan Yang, M.D., School of Life Sciences, Lanzhou University; Second Hospital, Lanzhou University, Lanzhou 730030, Gansu Province, China, ylan2005@163.com.

    10.4103/1673-5374.141786

    http://www.nrronline.org/

    Accepted: 2014-07-30

    一个人看视频在线观看www免费 | 免费观看精品视频网站| 亚洲午夜理论影院| 999精品在线视频| 在线观看一区二区三区| 最近最新中文字幕大全免费视频| 老司机午夜十八禁免费视频| 国产精华一区二区三区| 人妻丰满熟妇av一区二区三区| 成人三级做爰电影| 欧美另类亚洲清纯唯美| 天堂影院成人在线观看| 久久久久久久久免费视频了| 久久久精品大字幕| 99热这里只有精品一区 | 热99在线观看视频| 亚洲av成人不卡在线观看播放网| 亚洲中文字幕日韩| 九九在线视频观看精品| 欧美日韩精品网址| 国产精品99久久99久久久不卡| 网址你懂的国产日韩在线| 一个人看视频在线观看www免费 | 成人高潮视频无遮挡免费网站| 一二三四在线观看免费中文在| 1000部很黄的大片| 九九热线精品视视频播放| 性色avwww在线观看| 99久久综合精品五月天人人| 少妇熟女aⅴ在线视频| 99国产精品一区二区三区| 1000部很黄的大片| 90打野战视频偷拍视频| 亚洲欧美日韩高清专用| 99热精品在线国产| 97碰自拍视频| 嫩草影院精品99| 国产成人aa在线观看| 真实男女啪啪啪动态图| 成人av一区二区三区在线看| 九色成人免费人妻av| 国产亚洲精品久久久com| 丰满人妻熟妇乱又伦精品不卡| 99国产精品一区二区三区| 亚洲欧美日韩无卡精品| 国产高清有码在线观看视频| 国产精品久久电影中文字幕| 在线a可以看的网站| 国内揄拍国产精品人妻在线| 成人无遮挡网站| 在线播放国产精品三级| 变态另类成人亚洲欧美熟女| 国产三级在线视频| 精品人妻1区二区| 少妇的丰满在线观看| 免费观看的影片在线观看| 国产精品久久视频播放| 亚洲精品中文字幕一二三四区| 岛国在线免费视频观看| 久久精品91无色码中文字幕| 禁无遮挡网站| 最近在线观看免费完整版| 亚洲成人久久爱视频| 中出人妻视频一区二区| 九色国产91popny在线| 看黄色毛片网站| 欧美绝顶高潮抽搐喷水| 黄色成人免费大全| 黄色 视频免费看| 一二三四社区在线视频社区8| 午夜福利视频1000在线观看| 国产欧美日韩精品一区二区| 久久国产乱子伦精品免费另类| 香蕉丝袜av| 亚洲成a人片在线一区二区| 少妇的逼水好多| 91字幕亚洲| 久久久久久久午夜电影| 在线免费观看不下载黄p国产 | 天堂动漫精品| 国产亚洲欧美98| 久久久久免费精品人妻一区二区| 国产av在哪里看| 国产一区二区三区在线臀色熟女| 日韩有码中文字幕| 国产成+人综合+亚洲专区| 女人高潮潮喷娇喘18禁视频| 99久久无色码亚洲精品果冻| 久久久精品大字幕| 免费看a级黄色片| av在线天堂中文字幕| 欧美黄色淫秽网站| 黄色日韩在线| 一二三四社区在线视频社区8| 欧美日韩一级在线毛片| netflix在线观看网站| 久久欧美精品欧美久久欧美| 女生性感内裤真人,穿戴方法视频| 最近在线观看免费完整版| 真人做人爱边吃奶动态| 国产精品久久久av美女十八| 免费看十八禁软件| 少妇的逼水好多| 欧美日本亚洲视频在线播放| 亚洲精品久久国产高清桃花| 一级毛片精品| 少妇人妻一区二区三区视频| 亚洲五月天丁香| 国产又黄又爽又无遮挡在线| av天堂在线播放| 亚洲 欧美一区二区三区| 亚洲成人久久性| 国产一区二区在线av高清观看| 女警被强在线播放| 两性午夜刺激爽爽歪歪视频在线观看| av国产免费在线观看| 我要搜黄色片| 亚洲欧洲精品一区二区精品久久久| 九九在线视频观看精品| 亚洲av成人av| 久久久久国内视频| 青草久久国产| avwww免费| 免费高清视频大片| 香蕉丝袜av| 欧美成狂野欧美在线观看| 最新在线观看一区二区三区| 国产 一区 欧美 日韩| 一本综合久久免费| 身体一侧抽搐| 久久99热这里只有精品18| 成人特级av手机在线观看| 色精品久久人妻99蜜桃| 亚洲欧美激情综合另类| 淫妇啪啪啪对白视频| 在线十欧美十亚洲十日本专区| 午夜福利高清视频| 欧美午夜高清在线| 国产精品精品国产色婷婷| 亚洲欧美日韩高清专用| 在线国产一区二区在线| 精品国产三级普通话版| 禁无遮挡网站| 两人在一起打扑克的视频| 免费一级毛片在线播放高清视频| 村上凉子中文字幕在线| 久久九九热精品免费| 亚洲中文日韩欧美视频| 亚洲国产精品999在线| 亚洲av日韩精品久久久久久密| 女人高潮潮喷娇喘18禁视频| 日韩欧美精品v在线| 国产精品一区二区三区四区久久| 午夜影院日韩av| 久久精品国产亚洲av香蕉五月| 女生性感内裤真人,穿戴方法视频| 舔av片在线| 我要搜黄色片| 亚洲色图 男人天堂 中文字幕| 在线观看午夜福利视频| 国内精品久久久久久久电影| 成人一区二区视频在线观看| av天堂中文字幕网| 亚洲国产看品久久| 免费大片18禁| 热99re8久久精品国产| 淫妇啪啪啪对白视频| 亚洲人成网站在线播放欧美日韩| 精品国产三级普通话版| 五月玫瑰六月丁香| 特级一级黄色大片| 国产午夜精品论理片| 九九在线视频观看精品| 国产精品香港三级国产av潘金莲| 少妇裸体淫交视频免费看高清| 在线观看免费午夜福利视频| 天堂影院成人在线观看| 成年版毛片免费区| 成人三级黄色视频| 久久久精品欧美日韩精品| tocl精华| 99热这里只有是精品50| 女同久久另类99精品国产91| 一区福利在线观看| 制服丝袜大香蕉在线| 热99re8久久精品国产| 国产1区2区3区精品| 夜夜看夜夜爽夜夜摸| 亚洲精品美女久久久久99蜜臀| 中文字幕精品亚洲无线码一区| 天天一区二区日本电影三级| 国产一区二区在线av高清观看| 久久久久国产一级毛片高清牌| 精品不卡国产一区二区三区| 制服丝袜大香蕉在线| 九色国产91popny在线| 午夜免费成人在线视频| 国模一区二区三区四区视频 | 亚洲激情在线av| 欧美日韩福利视频一区二区| 国产视频一区二区在线看| 国产精品日韩av在线免费观看| 少妇的丰满在线观看| 一区二区三区激情视频| 91在线精品国自产拍蜜月 | 色哟哟哟哟哟哟| 中文字幕熟女人妻在线| www.熟女人妻精品国产| 久久久久久九九精品二区国产| 岛国在线免费视频观看| 在线国产一区二区在线| 在线永久观看黄色视频| 最新在线观看一区二区三区| 久久久久久人人人人人| 高清毛片免费观看视频网站| 久久久久国产精品人妻aⅴ院| 88av欧美| 狂野欧美激情性xxxx| 国产一区二区三区视频了| av在线天堂中文字幕| 亚洲天堂国产精品一区在线| 99re在线观看精品视频| 在线免费观看不下载黄p国产 | 亚洲人与动物交配视频| 国产亚洲av高清不卡| 亚洲av电影在线进入| 久久久久国产一级毛片高清牌| 身体一侧抽搐| 免费人成视频x8x8入口观看| 国产精品电影一区二区三区| 1024香蕉在线观看| 欧美日韩亚洲国产一区二区在线观看| 999久久久国产精品视频| 69av精品久久久久久| 精品国产乱子伦一区二区三区| 美女免费视频网站| 热99re8久久精品国产| 青草久久国产| 精品福利观看| 香蕉丝袜av| 夜夜躁狠狠躁天天躁| 精品久久久久久,| 1024手机看黄色片| 国产精品亚洲一级av第二区| 亚洲黑人精品在线| 欧美乱码精品一区二区三区| 一二三四社区在线视频社区8| 色综合欧美亚洲国产小说| 老熟妇仑乱视频hdxx| 日本 欧美在线| 人人妻人人看人人澡| 色综合亚洲欧美另类图片| 最新在线观看一区二区三区| 91字幕亚洲| 日韩高清综合在线| 国产毛片a区久久久久| 久久精品综合一区二区三区| 国产成人av激情在线播放| 国产一区二区在线观看日韩 | 亚洲第一欧美日韩一区二区三区| 国产精品影院久久| 久99久视频精品免费| 欧美日韩精品网址| 亚洲精品中文字幕一二三四区| 美女被艹到高潮喷水动态| 久久精品国产亚洲av香蕉五月| 欧美色欧美亚洲另类二区| 亚洲精品在线美女| 成人无遮挡网站| 特级一级黄色大片| 国产精品日韩av在线免费观看| 级片在线观看| 国产精品香港三级国产av潘金莲| www国产在线视频色| 精品电影一区二区在线| 最近在线观看免费完整版| 婷婷精品国产亚洲av| 亚洲狠狠婷婷综合久久图片| 99热精品在线国产| 中文字幕人妻丝袜一区二区| 最近最新中文字幕大全电影3| 在线视频色国产色| 国产69精品久久久久777片 | 欧美黄色淫秽网站| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 九九在线视频观看精品| 精品久久久久久久末码| 手机成人av网站| 国产精品av久久久久免费| 国产又黄又爽又无遮挡在线| 亚洲国产看品久久| 夜夜夜夜夜久久久久| ponron亚洲| a在线观看视频网站| 国产毛片a区久久久久| 成在线人永久免费视频| 色综合婷婷激情| 天堂动漫精品| 淫妇啪啪啪对白视频| 九九久久精品国产亚洲av麻豆 | 999久久久国产精品视频| 高清毛片免费观看视频网站| 女同久久另类99精品国产91| 18美女黄网站色大片免费观看| 日本熟妇午夜| 51午夜福利影视在线观看| 成人一区二区视频在线观看| 亚洲精品色激情综合| 成熟少妇高潮喷水视频| 亚洲欧美日韩无卡精品| 欧美3d第一页| 亚洲精品在线观看二区| 亚洲人成伊人成综合网2020| 久久欧美精品欧美久久欧美| 非洲黑人性xxxx精品又粗又长| 国产99白浆流出| 成人无遮挡网站| 激情在线观看视频在线高清| 69av精品久久久久久| 特级一级黄色大片| 黄频高清免费视频| 一本综合久久免费| 制服丝袜大香蕉在线| 99久久99久久久精品蜜桃| 国产成人福利小说| 国产1区2区3区精品| 波多野结衣高清作品| 丰满人妻熟妇乱又伦精品不卡| 99re在线观看精品视频| 老司机福利观看| 无遮挡黄片免费观看| 99久久国产精品久久久| 日本免费一区二区三区高清不卡| 1024手机看黄色片| 老熟妇仑乱视频hdxx| 久久久色成人| 亚洲成人久久性| 禁无遮挡网站| 国产一区二区三区视频了| 俺也久久电影网| 久久国产精品影院| 这个男人来自地球电影免费观看| 亚洲色图av天堂| 两个人视频免费观看高清| 国产精品99久久久久久久久| 免费大片18禁| 亚洲va日本ⅴa欧美va伊人久久| 舔av片在线| 人人妻人人看人人澡| 成年女人永久免费观看视频| 亚洲中文日韩欧美视频| 嫩草影院精品99| 小蜜桃在线观看免费完整版高清| 亚洲av日韩精品久久久久久密| 国产精品电影一区二区三区| 久久精品综合一区二区三区| 亚洲av片天天在线观看| or卡值多少钱| 成人永久免费在线观看视频| 在线观看美女被高潮喷水网站 | xxxwww97欧美| 亚洲真实伦在线观看| 可以在线观看的亚洲视频| 身体一侧抽搐| 亚洲成人久久爱视频| 国产爱豆传媒在线观看| 午夜激情欧美在线| 男人舔奶头视频| 精品无人区乱码1区二区| www.自偷自拍.com| 精品一区二区三区四区五区乱码| 免费看a级黄色片| xxxwww97欧美| 美女免费视频网站| www.精华液| 男人舔女人下体高潮全视频| 国内久久婷婷六月综合欲色啪| 一a级毛片在线观看| 老司机午夜福利在线观看视频| 日韩人妻高清精品专区| bbb黄色大片| 久久精品91蜜桃| 天天躁日日操中文字幕| 91九色精品人成在线观看| av国产免费在线观看| 99久久久亚洲精品蜜臀av| 亚洲熟妇熟女久久| 亚洲人与动物交配视频| 婷婷精品国产亚洲av| 舔av片在线| 国产又黄又爽又无遮挡在线| 精品人妻1区二区| 黄片大片在线免费观看| 久久精品国产综合久久久| 九九久久精品国产亚洲av麻豆 | 国产精品 欧美亚洲| 国产av在哪里看| 国产亚洲av嫩草精品影院| 亚洲欧美日韩东京热| 女生性感内裤真人,穿戴方法视频| 亚洲精品乱码久久久v下载方式 | 精品久久久久久,| 欧美日韩一级在线毛片| 亚洲专区字幕在线| 欧美av亚洲av综合av国产av| 人人妻人人澡欧美一区二区| av在线天堂中文字幕| 国产伦精品一区二区三区四那| 国产一区二区在线观看日韩 | 久久香蕉国产精品| 级片在线观看| 日韩 欧美 亚洲 中文字幕| 狂野欧美白嫩少妇大欣赏| 午夜两性在线视频| 久久中文字幕人妻熟女| 中文字幕久久专区| 精品国产美女av久久久久小说| 老司机午夜福利在线观看视频| 老熟妇仑乱视频hdxx| 这个男人来自地球电影免费观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产精品久久男人天堂| 天天躁狠狠躁夜夜躁狠狠躁| 久久久色成人| 国产亚洲av高清不卡| 久久性视频一级片| 一区二区三区高清视频在线| 99热6这里只有精品| 亚洲自拍偷在线| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 久久午夜综合久久蜜桃| 国产一区二区激情短视频| 国产伦精品一区二区三区四那| 天天添夜夜摸| www日本在线高清视频| 国产精品 国内视频| 欧美日韩综合久久久久久 | av福利片在线观看| 嫁个100分男人电影在线观看| av在线蜜桃| 国产真实乱freesex| 午夜免费成人在线视频| 精品久久久久久成人av| 深夜精品福利| 99久久99久久久精品蜜桃| 亚洲欧美一区二区三区黑人| 一个人看的www免费观看视频| 黄片大片在线免费观看| 好男人电影高清在线观看| 老司机午夜十八禁免费视频| 少妇丰满av| 99久久成人亚洲精品观看| 十八禁网站免费在线| 亚洲av片天天在线观看| 久久精品综合一区二区三区| 久久久久免费精品人妻一区二区| 国产精品久久久久久人妻精品电影| 小说图片视频综合网站| 日韩有码中文字幕| 午夜福利18| 一卡2卡三卡四卡精品乱码亚洲| 丰满的人妻完整版| 日韩大尺度精品在线看网址| 久久中文字幕人妻熟女| 亚洲欧美精品综合一区二区三区| 国产淫片久久久久久久久 | 国产熟女xx| 亚洲国产精品成人综合色| 欧美日韩国产亚洲二区| 国产精品爽爽va在线观看网站| 免费在线观看亚洲国产| 色视频www国产| 国产精品久久久久久久电影 | 欧美在线黄色| 久久性视频一级片| 日本成人三级电影网站| 日韩av在线大香蕉| 欧美精品啪啪一区二区三区| 偷拍熟女少妇极品色| 真人做人爱边吃奶动态| 日韩三级视频一区二区三区| 精品一区二区三区av网在线观看| 国产免费av片在线观看野外av| 精品99又大又爽又粗少妇毛片 | 亚洲性夜色夜夜综合| 小蜜桃在线观看免费完整版高清| 九色成人免费人妻av| 看免费av毛片| 十八禁网站免费在线| 亚洲欧美日韩高清在线视频| 亚洲精品美女久久久久99蜜臀| 在线观看舔阴道视频| 日本 欧美在线| 一区二区三区高清视频在线| 国产v大片淫在线免费观看| 久久婷婷人人爽人人干人人爱| 高潮久久久久久久久久久不卡| a级毛片a级免费在线| 手机成人av网站| 1024手机看黄色片| 丁香欧美五月| 欧美一级a爱片免费观看看| 精品久久久久久久毛片微露脸| 成年版毛片免费区| 精品熟女少妇八av免费久了| 99re在线观看精品视频| 中文字幕久久专区| 日日干狠狠操夜夜爽| 亚洲中文字幕一区二区三区有码在线看 | 1024手机看黄色片| 亚洲国产精品sss在线观看| 观看免费一级毛片| 香蕉丝袜av| 亚洲中文字幕日韩| 美女高潮的动态| 色吧在线观看| 国产伦一二天堂av在线观看| 桃红色精品国产亚洲av| 欧美日本亚洲视频在线播放| 制服人妻中文乱码| 久久中文字幕一级| 精品国产超薄肉色丝袜足j| 最新在线观看一区二区三区| 黄片小视频在线播放| 欧美乱码精品一区二区三区| 99riav亚洲国产免费| 国产高潮美女av| 人妻久久中文字幕网| 波多野结衣高清作品| 日韩国内少妇激情av| 亚洲色图 男人天堂 中文字幕| 美女大奶头视频| 淫妇啪啪啪对白视频| 国产黄色小视频在线观看| 国产午夜福利久久久久久| 久久久国产成人精品二区| 美女高潮喷水抽搐中文字幕| 免费在线观看视频国产中文字幕亚洲| 午夜精品在线福利| 五月伊人婷婷丁香| 夜夜躁狠狠躁天天躁| 51午夜福利影视在线观看| 国产一区二区三区视频了| 久久久久国产一级毛片高清牌| 亚洲熟妇中文字幕五十中出| 又黄又爽又免费观看的视频| 久99久视频精品免费| 热99在线观看视频| 亚洲av片天天在线观看| 99riav亚洲国产免费| 亚洲乱码一区二区免费版| 久久久久久久久免费视频了| 亚洲欧美一区二区三区黑人| 日韩欧美 国产精品| 蜜桃久久精品国产亚洲av| 日韩三级视频一区二区三区| 网址你懂的国产日韩在线| 美女 人体艺术 gogo| 国产主播在线观看一区二区| 亚洲av片天天在线观看| 国产成人影院久久av| 精品久久久久久,| 怎么达到女性高潮| 狠狠狠狠99中文字幕| av在线蜜桃| 蜜桃久久精品国产亚洲av| 露出奶头的视频| 又紧又爽又黄一区二区| 国产69精品久久久久777片 | 亚洲专区字幕在线| 欧美色视频一区免费| av国产免费在线观看| 国产1区2区3区精品| 免费看十八禁软件| 久久国产乱子伦精品免费另类| 高潮久久久久久久久久久不卡| 欧美激情在线99| 91字幕亚洲| 久久午夜综合久久蜜桃| 搡老妇女老女人老熟妇| 999精品在线视频| 蜜桃久久精品国产亚洲av| 亚洲精品粉嫩美女一区| av天堂中文字幕网| 性欧美人与动物交配| 床上黄色一级片| 又紧又爽又黄一区二区| 又爽又黄无遮挡网站| 亚洲国产欧洲综合997久久,| 老熟妇乱子伦视频在线观看| 免费在线观看成人毛片| 男女床上黄色一级片免费看| 激情在线观看视频在线高清| 国内精品久久久久久久电影| 国产成年人精品一区二区| 曰老女人黄片| 三级毛片av免费| 99热只有精品国产| 国产毛片a区久久久久| 免费在线观看亚洲国产| 国产高清视频在线观看网站| 不卡av一区二区三区| 精品熟女少妇八av免费久了| 色噜噜av男人的天堂激情| 99久久99久久久精品蜜桃| 毛片女人毛片| 97人妻精品一区二区三区麻豆| 精品国内亚洲2022精品成人| 99久久无色码亚洲精品果冻| 2021天堂中文幕一二区在线观| 美女午夜性视频免费| 丁香六月欧美|