• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Causes of Mid-Pliocene Strengthened Summer and Weakened Winter Monsoons over East Asia

    2015-05-22 07:57:39ZHANGRanJIANGDabangandZHANGZhongshi
    Advances in Atmospheric Sciences 2015年7期

    ZHANG Ran,JIANG Dabang,and ZHANG Zhongshi

    1Climate Change Research Center,Chinese Academy of Sciences,Beijing 100029

    2CAS Center for Excellence in Tibetan Plateau Earth Sciences,Beijing 100101

    3Nansen–Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    4Bjerknes Centre for Climate Research,Uni Research,Bergen 5007,Norway

    Causes of Mid-Pliocene Strengthened Summer and Weakened Winter Monsoons over East Asia

    ZHANG Ran?1,JIANG Dabang1,2,3,and ZHANG Zhongshi3,4

    1Climate Change Research Center,Chinese Academy of Sciences,Beijing 100029

    2CAS Center for Excellence in Tibetan Plateau Earth Sciences,Beijing 100101

    3Nansen–Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    4Bjerknes Centre for Climate Research,Uni Research,Bergen 5007,Norway

    The mid-Pliocene warm period was the most recent geological period in Earth’s history that featured long-term warming. Both geological evidence and model results indicate that East Asian summer winds(EASWs)strengthened in monsoonal China,and that East Asian winter winds(EAWWs)weakened in northern monsoonal China during this period,as compared to the pre-industrial period.However,the corresponding mechanisms are still unclear.In this paper,the results of a set of numerical simulations are reported to analyze the effects of changed boundary conditions on the mid-Pliocene East Asian monsoon climate,based on PRISM3(Pliocene Research Interpretation and Synoptic Mapping)palaeoenvironmental reconstruction.The model results showed that the combined changes of sea surface temperatures,atmospheric CO2concentration, and ice sheet extent were necessary to generate an overall warm climate on a large scale,and that these factors exerted the greatest effects on the strengthening of EASWs in monsoonal China.The orographic change produced signif i cant local warming and had the greatest effect on the weakening of EAWWs in northern monsoonal China in the mid-Pliocene.Thus, these two factors both had important but different effects on the monsoon change.In comparison,the effects of vegetational change on the strengthened EASWs and weakened EAWWs were relatively weak.The changed monsoon winds can be explained by a reorganization of the meridional temperature gradient and zonal thermal contrast.Moreover,the effect of orbital parameters cannot be ignored.Results showed that changes in orbital parameters could have markedly affected the EASWs and EAWWs,and caused signif i cant short-term oscillations in the mid-Pliocene monsoon climate in East Asia.

    mid-Pliocene,East Asian monsoon,orographic change,orbital parameters

    1.Introduction

    The mid-Pliocenewarmperiod(mPWP,3.264–3.025Ma, 1 Ma=1 million years)was 1.84°C–3.60°C warmer than the pre-industrial period(Haywood et al.,2013b),with warming both in the ocean and on land.The causes of this warming included the increased atmospheric CO2concentrations,a reduced ice sheet in the polar regions,and changed orography and vegetation(Salzmann et al.,2008;Dowsett et al., 2010).Since the mPWP is the most recent geological period in Earth’s history that featured long-term warming,it has long been a focus for palaeoclimate modeling(e.g.,Chandler et al.,1994;Sloan et al.,1996;Haywood and Valdes,2004; Jiang et al.,2005;Yan et al.,2011;Jiang,2013;Sun et al., 2013;Zhang et al.,2013b;Zhangand Jiang,2014).Recently, the f i rst phase of the Pliocene Model IntercomparisonProject (PlioMIP)was initiated,with standardized designs for simulations(Haywood et al.,2010),to facilitate further model–model intercomparison.

    The East Asian monsoon climate in the mPWP has also been widely studied(Jiang et al.,2005;Yan et al.,2012). In particular,since the initiation of PlioMIP,further understanding of the East Asian monsoon climate in the mPWP can be gained through model–model and model–data comparisons.Forexample,Zhanget al.(2013a)usedthePlioMIP simulations to investigate the regional climate in East Asia; and their model results showed that,in the mPWP compared to the pre-industrial period,the multi-model ensemble mean(MMM)indicates that the East Asian summer winds (EASWs)strengthened in monsoonal China,and the East Asian winter winds(EAWWs)weakened in northern monsoonal China.These model results are generally consistent with geological reconstructions(Ding et al.,2001;Xiong et al.,2001;Wan et al.,2007;Sun et al.,2008;Jiang and Ding, 2010).

    However,the mechanisms responsible for these changed features of the monsoon climate remain unclear.Previous studies indicate that the uplift of the Tibetan Plateau(TP) and global cooling have both had a signif i cant impact on the change of the monsoon climate in East Asia since the mPWP (An et al.,2001;Zhang et al.,2001;Lu et al.,2010;Ge et al.,2013).Theoretically,the global cooling is closely related to changes in sea surface temperatures(SSTs),atmospheric CO2concentration and ice sheet extent,and affects vegetation.Whereas,the uplift of the TP also favors global cooling. Thus,the changes in these boundary conditions are potentially related to one another.However,we emphasize more the climate effects on a regional scale from the uplift of the TP,versus the effects on a large scale from global cooling. Seen in this way and based on mid-Pliocene palaeoenvironmental reconstructed boundary conditions including SSTs, atmospheric CO2concentrations,ice sheet extent,vegetationandorography,we determinetheboundaryconditionsresponsible for the mid-Pliocene stronger EASWs and weaker EAWWs and investigate whether the crucial factors are the same.It is hoped that the f i ndings will aid understanding of the climate effects of the uplift of the TP and global cooling in the East Asian monsoon climate since the mPWP.

    To analyze the climate effects of reconstructed SSTs, an atmosphere-only general circulation model(GCM)was used in this study.The simulated SSTs from a coupled atmosphere–ocean GCM can over-or underestimate the reconstructed SSTs in certain regions(Dowsett et al.,2013; Salzmann et al.,2013),potentially affecting their role in the East Asian monsoon climate.Moreover,considering the changes of boundary conditions on a large scale,we treated the changes of SSTs,atmospheric CO2concentration,and ice sheet together(collectivelyabbreviatedas SCIS)as largescale changes.Previous studies show that the simulated climatic responses arising from the change in ice sheet extent are strong at high latitudes but relatively weak in East Asia (Jiangetal.,2005).Thus,theeffectsofthecombinedchanges of SCIS in East Asia possibly derive more from the changes of SSTs and atmospheric CO2concentration.For comparison,we treated the changes of orographyand vegetation separatelyto emphasizethe effects ona regionalscale in the East Asiancontinent.Althoughthechangesoforographyandvegetation also occur in other regions,the relevant changes in East Asia should have direct impacts in this region.In this way,the climate effects of the boundary conditions between the large and regional scale can be distinguished to a certain degree.

    PrevioussimulationsfocusingontheEastAsianmonsoon climatein themid-Pliocenehavenotinvestigatedthe effectof changes in orbital parameters.The question of how changes in orbital parameters affect the East Asian monsoon climate in the mid-Pliocene therefore required further examination, and we address this aspect in the present paper.

    The remainder of the paper is organized as follows.In section 2,we describe the model and experimental design.In section 3,the model results,including surface air temperature(SAT)and monsoon circulation,are presented.Section 4 presents the implications for paleoclimate evolution in East Asia and discusses the related uncertainties.Section 5 summarizes the study.

    2.Model description and experimental design

    2.1.Model description

    The GCM used in this study is version 4 of the Community Atmosphere Model(CAM4)(Neale et al.,2013),developed at the National Center for Atmospheric Research (NCAR).The resolution of CAM4 used here is T31 in the horizontal direction,with approximately 3.75°in both latitude and longitude,and 26 layers in the vertical direction. Moreover,version 4 of the Community Land Model(CLM4) is also included(Lawrence et al.,2011),and CLM4 uses the same horizontal resolution as in CAM4.More information and validation results regarding CAM4 and CLM4 can be found in Shields et al.(2012)and Neale et al.(2013).

    2.2.Experimental design and boundary conditions

    Ten numerical experiments were performed,as listed in Table 1.The f i rst two experiments were the standard experiments for the pre-industrial(PI)and mPWP(MP),respectively.The boundary conditions were set following the PlioMIP experiment guidelines(Haywood et al.,2010),and the boundary conditions used were from the latest version of the PRISM(Pliocene Research Interpretation and Synoptic Mapping)palaeoenvironmental reconstruction,PRISM3 (Dowsett et al.,2010).The PI experiment used the default modern land/sea conf i guration,orography,ice sheet distribution,modern SSTs and sea ice fraction,and the modern vegetation providedby PRISM3.Atmosphericgreenhousegases were set to the pre-industrial values of 280 ppm for CO2, 270 ppb for N2O,760 ppb for CH4,and zero for CFCs.The solar constant was set to 1365 W m?2.Orbital eccentricity, obliquity and precession were set to 0.016724,23.446°and 102.04°(perihelion minus 180°),respectively.By comparison,in the MP experiment,the“alternate”boundary condi-tions from the PlioMIP,with unchanged land/sea conf i guration,were used.In the MP experiment compared to PI,the changed boundary conditions included the topography(Sohl et al.,2009),land cover(Salzmann et al.,2008),an increase of atmospheric CO2concentration(to 405 ppm),SSTs,and sea ice fraction(Dowsett and Robinson,2009)(Fig.1).The sea icefractionintheMP experimentwas basedontherebuilt SSTs,and the sea ice fraction where the SSTs were higher than?1.8°C was set to zero.The other boundary conditions were kept the same as in the PI experiment.

    Table 1.Experimental design.“MP”stands for mPWP conditions, and“PI”stands for pre-industrial or modern conditions.

    To distinguishthe individualeffects of differentboundary conditions on the mid-Pliocene East Asian monsoon climate (Table 1),six more experiments were designed to perform a full factor separation(Lunt et al.,2012).We use subscripts to indicate the different boundary conditions(“c”for combined changes of SCIS,“o”for orography,and“v”for vegetation). Thus,the factorization is as follows,using Taylor expansions (Lunt et al.,2012):

    Moreover,based on the MP experiment,two further experiments were designed to explore the sensitivity of the East Asian monsoon climate to orbital extremes during the mPWP(Dolan et al.,2011).The orbital parameters in the MP NHmax experiment represented the point in time when the Northern Hemisphere’s summer(July)insolation at 65°N was at a maximum(at 3.037 Ma),and the orbital parameters in the MP NHmin representedthe point in time when the Northern Hemisphere’s summer insolation at 65°N was at a minimum(at 3.049 Ma).All experiments were integrated for 50 years,and all reached a quasi-equilibrium state within the f i rst 30 years.The climatological means from the last 20 years in each experiment were analyzed below.

    3.Model results

    3.1.Annual mean SAT

    The climate was generally warmer and wetter in the mPWP in East Asia.In the MP experiment,compared to PI,the annual mean SAT generally increased in East Asia, with more warming in central-western China.In contrast,little cooling appeared at the southern margin of the Tibetan Plateau(Fig.2a).These results agree well with the MMM of model results from the PlioMIP(Zhang et al.,2013a).

    After comparison,the combined changes of SCIS increased the annual mean SAT substantially,but the change of orography and vegetation only increased the annual mean SAT locally.The contribution of the combined changes of SCIS increased the SAT signif i cantly across East Asia,with an almost zonal distribution and larger warming occurring in the north(Fig.2b).In comparison,because of the nonuniform change of orography(Fig.1a)and the effect of the temperature lapse rate,the SAT change was not uniform(Fig. 2c).More warming appeared in central-western China,and cooling existed around this region(Fig.2c),due to the decreasedorographyin central-westernChinaandthe increased orography around this region in the mPWP compared to the pre-industrial period(Fig.1a).Furthermore,for the contribution of vegetational change,due to the large increase of surface albedo around Northeast China(Fig.1b),the SAT markedly decreased in this region(Fig.2d).On the whole, the combined changes of SCIS had substantial effects on the warming in East Asia,while the change of orography and vegetation only exerted local warming effects.

    The changes in orbital parameters signif i cantly modulated the climate in East Asia.Due to the changed insolation(f i gurenotshown),thechangeoforbitalparametersfrom modern values to the values during 3.037 Ma and 3.049 Ma resulted in markedly different climate effects on the annual mean SAT in East Asia(Figs.2e and f,Table 2).Although the SAT in boreal summer(June,July and August;JJA)generallyincreasedinthe MP NHmaxexperimentanddecreased in the MP NHmin experiment,compared to PI in East Asia (Table 2),the changes in annual mean SAT manifested in a different way(Fig.2e vs.Fig.2f).

    3.2.Boreal summer and winter monsoon circulation

    The monsoon circulation was also greatly affected by the changes in boundary conditions.In the MP experiment compared to the PI experiment,in JJA,southwesterly winds largely strengthened in monsoonal China(Fig.3a);while in boreal winter(December,January and February;DJF),the conditions were more complex.Northeasterly wind anomalies appeared in southern monsoonal China,while southeasterly wind anomalies occurred in northern monsoonal China, and northwesterly wind anomalies appeared in Northeast

    China(Fig.4a).These results indicate that the mid-Pliocene EASWs largely strengthened in monsoonal China,and the EAWWs slightly weakened in northern monsoonal China. Like the changes in SAT,these characteristics also generally agree with the MMM of the PlioMIP models(Zhang et al., 2013a).

    Table 2.The differences of regionally averaged SAT(units:°C)and meridional 850 hPa winds(units:m s?1)between experiments and the contribution of the combined changes of SCIS,orographic change,and vegetational change in the MP experiment compared to the PI experiment.

    The combined changes of SCIS exerted the greatest effect on strengthening the EASWs in monsoonal China,but the changeof orographyhad the greatest effect on weakening of the EAWWs in northern monsoonal China in the mPWP. In detail,the contributionsof the orographicand vegetational changes were relatively weak for the mid-Pliocene strengthened EASWs in monsoonal China(Figs.3c and d;Table 2), while the combined changes of SCIS exerted the greatest effect(Fig.3b;Table 2).Whereas for EAWWs,the combined changes of SCIS weakened EAWWs mainly in and around Northeast China(Fig.4b),and the vegetational change had a large effect on the strengthened EAWWs in Northeast China (Fig.4d).In contrast,the change of orographyhad the greatest effect on weakening of EAWWs in northern monsoonal China(Fig.4c;Table 2).Thus,the combined changes of SCIS and orographic change both played important roles in the change of East Asian monsoon winds.

    Moreover,the changes in orbital parameters also further modulated the change of monsoon winds.Stronger southwesterlywindanomaliesoccurredin monsoonalChinainJJA (Fig.3e vs.Fig.3a),and weaker southeasterly wind anomalies appeared in northern monsoonal China in DJF(Fig.4e vs.Fig.4a).By comparison,the changes in orbital parameters represented in Figs.3f and 4f had an opposite effect,due to the opposite change in insolation,with weaker southwesterly wind anomalies in monsoonal China in JJA(Fig.3f vs. Fig.3a)but stronger southeasterly wind anomalies in northern monsoonal China in DJF(Fig.4f vs.Fig.4a).Thus,changes in orbital parameters could have markedly affected the monsoon winds in the mid-Pliocene.

    Further investigations showed that the changed monsoon winds could be explained by a reorganization of the meridional temperature gradient and the zonal land–sea thermal contrast(Figs.5 and 6).In JJA in the MP and MP NHmax experiments,compared to PI,and also the contribution of the combined changes of SCIS(Figs.5a,b and e),the SAT generally increased more in the middle latitudes than the low latitudes(Fig.7a).This induced a decreased meridional temperature gradient,and also the anomalous southerly winds in East Asia(Figs.3a,b and e),to compensate for the warming-induced loss of atmospheric mass.Meanwhile,the SAT changes were not evenly distributed between the land and ocean,and the SAT increased more over the East Asian continent than the adjacent oceans(Fig.7b),especially in the MP NHmaxexperimentcomparedto the PI experiment.As a result,the zonal land–sea thermal contrast was enhanced and the correspondingland–sea air pressure gradient was also increased(f i gurenotshown),strengtheningthesoutherlywinds in East Asia.By comparison,the increased meridional temperature gradient and weakenedland–sea thermal contrast,in particular in the MP NHmin experiment compared to the PI experiment(Figs.7a and b;Table 2),hindered the strengthening of EASWs.

    As for JJA,the changeof monsoonwinds in DJF was also related to the change of the meridional temperature gradient and the zonal thermal contrast.In the MP and MP NHmin experiments,compared to the PI experiment,the decreased monsoon winds in northern monsoonal China were more closely related to the increased SAT(Figs.6a and f)and the corresponding weakened surface air pressure in northwestern China(f i gure not shown).This led to a decrease in the meridional temperature gradient and also a weakening of the zonal thermal contrast in East Asia(Figs.7c and d).For the contribution of orographic change,the change of meridional temperature gradient was weak(Fig.7c),and thus the southeasterly wind anomalies in northern monsoonal China weremore related to the increased SAT in northwestern China and the resultant weakened zonal thermal contrast(Figs.7d and 6c).In addition,this warming was further enhanced in the MP and MP NHmin experiments(Fig.7d).

    4.Implications for paleoclimate evolution in East Asia and related uncertainties

    The combined changes of SCIS and orographic change from the mPWP to the present have clearly had different effects on the evolution of East Asian monsoon climate.The model results show that,in the mPWP compared to the preindustrial,the EASWs strengthened in monsoonal China and the EAWWs weakened in northern monsoonal China(Zhang et al.,2013a).These results are consistent with existing geological evidence(Ding et al.,2001;Xiong et al.,2001; Wan et al.,2007;Sun et al.,2008;Jiang and Ding,2010). Our analysis indicates that the reason for the strengthened EASWs and weakened EAWWs was the changes in different boundary conditions.That is,the combined changes of SCIS largely contributed to the strengthened EASWs in the mid-Pliocene through a decreased meridional temperature gradient and a strengthenedzonal land–seathermal contrast;while the orographicchange had an important role in the decreased EAWWs in northern monsoonal China,which derived more from the increased SAT in northwestern China and the resultant weakened zonal thermal contrast.It should be noted that the simulated increased SAT in northwestern China was likely attributable more to the lowered orography of the TP in the mPWP compared to the pre-industrialperiod(Fig.1a). The lowered orography of the TP is consistent with geological evidence,which indicates that several accelerated rises of the northernTP haveoccurredsince the mid-Pliocene(Zheng et al.,2000;Fang et al.,2005;Li et al.,2014).Thus,in turn, from the mPWP to the present,we can see that the EASWs have weakened in monsoonal China and the EAWWs have strengthened in northern monsoonal China.Furthermore,the combined changes of SCIS,mainly representing global cool-ing on a large scale,are more likely to have been responsible for the weakened EASWs,while regional tectonic activity(including the uplift of the northern TP)has played an important role in the strengthening of the EAWWs(Zhang et al.,2015).Our results indicate that the two factors could both haveimportantbutdifferentclimateeffectsforEastAsianclimate evolution on the geologicaltime scale,in contrast to the notion of excessive emphasis on one aspect in this process.

    The mPWP was verylong(~0.24Ma)andcontainedseveral orbital-scale cycles(Willeit et al.,2013).The model results in the present study show that changes in orbitalscale cycles may signif i cantly modulate the evolution of East Asian monsoonclimate.Changes in orbital parameters could markedly affect SAT,precipitation,and also East Asian monsoon winds.Thus,it is understandable that different proxy data,indicating different climate information,coexist together.Moreover,orbital-scale cycles could further modulate the impact of orographic change and the combined changes of SCIS on the evolution of East Asian monsoon climate.

    The uncertainties in boundary conditions could have affected the model results.For example,a large discrepancy was found in the simulated East Asian monsoon climate between the model results based on reconstructed SSTs and those based on simulated SSTs(Zhang et al.,2013a).The reasons might derive both from the simulated and reconstructed SSTs.Even so,the inconsistency between the simulatedandreconstructedSSTs(Dowsettet al.,2013;Salzmann et al.,2013)is more likely related to the time slab nature of the proxydata,representativeof an average of multiple warm climates,while the model results only ref l ect a climate state based on constant external forcing(Haywood et al.,2013a). Further effort is needed to reduce the uncertainties in boundary conditions.

    More experiments are needed.All the simulations in this study were performed using an atmosphere-only model,and hence f i xed SSTs.Even so,along with changes in orbital parameters,if using a coupled atmosphere–ocean GCM,the simulated SSTs may also change,further affecting the land–sea thermal contrast,and in turn,the East Asian monsoon climate.Thus,more experiments are required to further understand the climate effects of changed orbital parameters. Besides,because of the different physical processes and pa-rameterizations(Zhang et al.,2013a),the relative effects of orographic change compared to other forcings may be different in other GCMs,and thus more experiments with other GCMs are needed.

    5.Summary

    Based on the PRISM3 palaeoenvironmental reconstruction,the causesofthechangesin themid-PlioceneEast Asian monsoon climate are analyzed in this paper.The model results show that the combined changes of SCIS exerted the greatest effect on the strengthening of EASWs in monsoonal China,and the changes of orography had the greatest effect on the weakening of EAWWs in northern monsoonal China, in the mPWP,as compared to the pre-industrial period.The reorganization of the meridional temperature gradient and zonal thermal contrast are revealed as the underlying mechanisms for the changedmonsoonwinds.Moreover,changes in orbital parameters could further markedly modulate the East Asian monsoon climate.

    Acknowledgements.This study was supported by the Strategic Priority Research Program(Grant No.XDB03020602)of the Chinese Academy of Sciences,and by the National Natural Science Foundation of China(Grant Nos.41175072 and 41305073).

    REFERENCES

    An,Z.S.,J.E.Kutzbach,W.L.Prell,and S.C.Porter,2001:Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times.Nature,411,62–66.

    Chandler,M.,D.Rind,and R.Thompson,1994:Joint investigations of the middle Pliocene climate II:GISS GCM northern hemisphere results.Global and Planetary Change,9,197–219.

    Ding,Z.L.,S.L.Yang,J.M.Sun,and T.S.Liu,2001:Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma.Earth and Planetary Science Letters, 185,99–109.

    Dolan,A.M.,A.M.Haywood,D.J.Hill,H.J.Dowsett,S.J. Hunter,D.J.Lunt,and S.J.Pickering,2011:Sensitivity of Pliocene ice sheets to orbital forcing.Palaeogeogr.Palaeoclimatol.Palaeoecol.,309,98–110.

    Dowsett,H.J.,and M.M.Robinson,2009:Mid-Pliocene equatorial Pacif i c sea surface temperature reconstruction:A multiproxy perspective.Philos.Trans.Roy.Soc.A,367,109–125.

    Dowsett,H.J.,and Coauthors,2010:The PRISM3D paleoenvironmental reconstruction.Stratigraphy,7,123–139.

    Dowsett,H.J.,and Coauthors,2013:Sea surface temperature of the mid-Piacenzian ocean:A data-model comparison.Scientif i c Reports,3,doi:10.1038/srep02013.

    Fang,X.,Z.Zhao,J.Li,and M.Yan,2005:Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implication for the northern Tibetan Plateau uplift.Science China Earth Sciences,48,1040–1051.

    Ge,J.Y.,and Coauthors,2013:Major changes in East Asian climate in the mid-Pliocene:Triggered by the uplift of the Tibetan Plateau or global cooling?Journal of Asian Earth Sciences,69,48–59.

    Haywood,A.M.,and P.J.Valdes,2004:Modelling Pliocene warmth:Contribution of atmosphere,oceans and cryosphere. Earth and Planetary Science Letters,218,363–377.

    Haywood,A.M.,and Coauthors,2010:Pliocene Model Intercomparison Project(PlioMIP):Experimental design and boundary conditions(Experiment 1).Geoscientif i c Model Development,3,227–242.

    Haywood,A.M.,and Coauthors,2013a:On the identif i cation of a Pliocene time slice for data-model comparison.Philos.Trans. Roy.Soc.A,371,doi:10.1098/rsta.2012.0515.

    Haywood,A.M.,and Coauthors,2013b:Large-scale features of Pliocene climate:Results from the Pliocene Model Intercomparison Project.Climate of the Past,9,191–209.

    Jiang,D.,2013:Vegetation feedback at the mid-Pliocene.Atmospheric and Oceanic Science Letters,6,320–323.

    Jiang,D.,H.J.Wang,Z.L.Ding,X.M.Lang,and H.Drange, 2005:Modeling the middle Pliocene climate with a global atmospheric general circulation model.J.Geophys.Res.,110, doi:10.1029/2004JD005639.

    Jiang,H.C.,and Z.L.Ding,2010:Eolian grain-size signature of the Sikouzi lacustrine sediments(Chinese Loess Plateau): Implications for Neogene evolution of the East Asian winter monsoon.Geological Society of America Bulletin,122,843–854.

    Lawrence,D.M.,and Coauthors,2011:Parameterizationimprovements and functional and structural advances in version 4 of the Community Land Model.Journal of Advances in Modeling Earth Systems,3,doi:10.1029/2011MS000045.

    Li,J.,X.Fang,C.Song,B.Pan,Y.Ma,and M.Yan,2014:Late Miocene–Quaternary rapid stepwise uplift of the NE Tibetan Plateauand its effects onclimaticand environmental changes. Quaternary Research,81,400–423.

    Lu,H.,X.Wang,and L.Li,2010:Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridif i cation in central Asia.Geological Society,London,Special Publications,342,29–44.

    Lunt,D.J.,A.M.Haywood,G.A.Schmidt,U.Salzmann,P. J.Valdes,H.J.Dowsett,and C.A.Loptson,2012:On the causes of mid-Pliocenewarmthandpolar amplif i cation.Earth and Planetary Science Letters,321–322,128–138.

    Neale,R.B.,J.Richter,S.Park,P.H.Lauritzen,S.J.Vavrus,P.J. Rasch,and M.Zhang,2013:The mean climate of the Community Atmosphere Model(CAM4)in forced SST and fully coupled experiments.J.Climate,26,5150–5168.

    Salzmann,U.,A.M.Haywood,D.J.Lunt,P.J.Valdes,and D. J.Hill,2008:A new global biome reconstruction and datamodel comparison for the middle Pliocene.Global Ecology and Biogeography,17,432–447.

    Salzmann,U.,and Coauthors,2013:Challenges in quantifying Pliocene terrestrial warming revealed by data-model discord. Nature Climate Change,3,969–974.

    Shields,C.A.,D.A.Bailey,G.Danabasoglu,M.Jochum,J. T.Kiehl,S.Levid,and S.Park,2012:The low-resolution CCSM4.J.Climate,25,3993–4014.

    Sloan,L.C.,T.J.Crowley,and D.Pollard,1996:Modeling of middle Pliocene climate with the NCAR GENESIS general circulation model.Marine Micropaleontology,27,51–61.

    Sohl,L.E.,M.A.Chandler,R.B.Schmunk,K.Mankoff,J.A. Jonas,K.M.Foley,and H.J.Dowsett,2009:PRISM3/GISS topographic reconstruction.U.S.Geological Survey Data Se-ries,No.419,6 pp.

    Sun,D.H.,R.X.Su,J.Bloemendal,and H.Y.Lu,2008:Grainsize and accumulation rate records from Late Cenozoic aeolian sequences in northern China:Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation.Palaeogeogr.Palaeoclimatol.Palaeoecol.,264, 39–53.

    Sun,Y.,G.Ramstein,C.Contoux,and T.J.Zhou,2013:A comparative study of large-scale atmospheric circulation in the context of a future scenario(RCP4.5)and past warmth(mid-Pliocene).Climate of the Past,9,1613–1627.

    Wan,S.M.,A.C.Li,P.D.Clift,and J.B.W.Stuut,2007:Development of the East Asian monsoon:Mineralogical and sedimentological records in the northern South China Sea since 20 Ma.Palaeogeogr.Palaeoclimatol.Palaeoecol.,254,561–582.

    Willeit,M.,A.Ganopolski,and G.Feulner,2013:On the effect of orbital forcing on mid-Pliocene climate,vegetation and ice sheets.Climate of the Past,9,1749–1759.

    Xiong,S.F.,Z.L.Ding,and S.L.Yang,2001:Abrupt shifts in the late Cenozoic environment of north-western China recorded in loess-palaeosol-red clay sequences.Terra Nova,13,376–381.

    Yan,Q.,Z.S.Zhang,H.J.Wang,D.Jiang,and W.P.Zheng,2011: Simulation of sea surface temperature changes in the middle Pliocene warm period and comparison with reconstructions. Chinese Science Bulletin,56,890–899.

    Yan,Q.,Z.S.Zhang,and Y.Q.Gao,2012:An East Asian monsoon in the mid-Pliocene.Atmospheric and Oceanic Science Letters,5,449–454.

    Zhang,P.Z.,P.Molnar,and W.R.Downs,2001:Increased sedimentation rates and grain sizes 2–4 Myr ago due to the infl uence of climate change on erosion rates.Nature,410,891–897.

    Zhang,R.,and D.Jiang,2014:Impact of vegetation feedback on the mid-Pliocene warm climate.Adv.Atmos.Sci.,31,1407–1416,doi:10.1007/s00376-014-4015-5.

    Zhang,R.,and Coauthors,2013a:Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP.Climate of the Past,9, 2085–2099.

    Zhang,R.,D.Jiang,Z.Zhang,and E.Yu,2015:The impact of regional uplift of the Tibetan Plateau on the Asian monsoon climate.Palaeogeogr.Palaeoclimatol.Palaeoecol.,417,137–150.

    Zhang,Z.S.,and Coauthors,2013b:Mid-Pliocene Atlantic meridional overturning circulation not unlike modern.Climate of the Past,9,1495–1504.

    Zheng,H.B.,C.M.Powell,and Z.S.An,2000:Pliocene uplift of the northern Tibetan Plateau.Geology,28,715–718.

    :Zhang,R.,D.B.Jiang,and Z.S.Zhang,2015:Causes of mid-Pliocene strengthened summer and weakened winter monsoons over East Asia.Adv.Atmos.Sci.,32(7),1016–1026,

    10.1007/s00376-014-4183-3.

    (Received 23 August 2014;revised 8 November 2014;accepted 21 November 2014)

    ?Corresponding author:ZHANG Ran Email:zhangran@mail.iap.ac.cn

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2015

    午夜影院在线不卡| 婷婷色综合大香蕉| 久久热在线av| 亚洲五月色婷婷综合| av天堂在线播放| 亚洲成av片中文字幕在线观看| 精品国产乱码久久久久久男人| 99香蕉大伊视频| 亚洲国产精品一区三区| 亚洲成人免费电影在线观看 | 男女高潮啪啪啪动态图| 亚洲欧美日韩高清在线视频 | 超碰97精品在线观看| 国产黄色视频一区二区在线观看| 欧美亚洲日本最大视频资源| 久久久欧美国产精品| 亚洲av日韩在线播放| av福利片在线| 亚洲精品乱久久久久久| 国产成人免费观看mmmm| 久久天躁狠狠躁夜夜2o2o | 9色porny在线观看| 亚洲精品乱久久久久久| 国产精品国产三级专区第一集| 十八禁人妻一区二区| 国产色视频综合| 亚洲欧美成人综合另类久久久| 七月丁香在线播放| 国产熟女午夜一区二区三区| 欧美精品一区二区免费开放| 久久性视频一级片| 亚洲av成人精品一二三区| 一边亲一边摸免费视频| 亚洲,一卡二卡三卡| 一本大道久久a久久精品| 激情视频va一区二区三区| 午夜视频精品福利| 国产深夜福利视频在线观看| 国产日韩欧美在线精品| 建设人人有责人人尽责人人享有的| 欧美少妇被猛烈插入视频| 日本vs欧美在线观看视频| 亚洲欧美一区二区三区黑人| 亚洲一码二码三码区别大吗| 欧美xxⅹ黑人| 久久久精品免费免费高清| 美女午夜性视频免费| 考比视频在线观看| 欧美老熟妇乱子伦牲交| 国产在线免费精品| 国产高清不卡午夜福利| 一级毛片黄色毛片免费观看视频| 深夜精品福利| 老司机影院毛片| 久久中文字幕一级| 亚洲久久久国产精品| 国产主播在线观看一区二区 | 国产伦人伦偷精品视频| 十八禁网站网址无遮挡| 看免费成人av毛片| 天天添夜夜摸| 免费观看av网站的网址| 国产成人精品久久久久久| 国产一卡二卡三卡精品| 亚洲视频免费观看视频| 国产成人精品在线电影| 国产成人精品久久久久久| 只有这里有精品99| 亚洲国产av新网站| 国产一区亚洲一区在线观看| 国产成人啪精品午夜网站| 91老司机精品| 国产av国产精品国产| 夜夜骑夜夜射夜夜干| 国产精品久久久久久精品电影小说| 久久久精品区二区三区| 日本91视频免费播放| 亚洲国产精品999| 一区二区三区精品91| 青春草亚洲视频在线观看| 久久人人爽人人片av| 国产不卡av网站在线观看| 麻豆av在线久日| 激情五月婷婷亚洲| 丰满饥渴人妻一区二区三| 考比视频在线观看| 欧美日韩一级在线毛片| 最近手机中文字幕大全| 美女中出高潮动态图| cao死你这个sao货| 9色porny在线观看| 女人被躁到高潮嗷嗷叫费观| 美女脱内裤让男人舔精品视频| 七月丁香在线播放| 一二三四在线观看免费中文在| 80岁老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线| 2021少妇久久久久久久久久久| 男人添女人高潮全过程视频| 免费人妻精品一区二区三区视频| 91老司机精品| 国产亚洲av片在线观看秒播厂| 丝袜美腿诱惑在线| 夫妻午夜视频| 每晚都被弄得嗷嗷叫到高潮| 久久人妻福利社区极品人妻图片 | 日韩电影二区| 一区二区三区精品91| xxxhd国产人妻xxx| 亚洲第一av免费看| 精品福利永久在线观看| 久久久久国产一级毛片高清牌| 中文字幕最新亚洲高清| av电影中文网址| 中文字幕制服av| 日韩 欧美 亚洲 中文字幕| 高清视频免费观看一区二区| 日本黄色日本黄色录像| 肉色欧美久久久久久久蜜桃| 只有这里有精品99| 成人国产av品久久久| 99久久综合免费| 精品久久久精品久久久| 99热全是精品| 精品一区二区三卡| 制服诱惑二区| av国产久精品久网站免费入址| 精品亚洲成国产av| 国产熟女欧美一区二区| 两性夫妻黄色片| 少妇的丰满在线观看| 亚洲国产中文字幕在线视频| 啦啦啦视频在线资源免费观看| 亚洲一区中文字幕在线| 亚洲精品在线美女| 天天影视国产精品| 国产精品香港三级国产av潘金莲 | 久久精品久久久久久噜噜老黄| 久久影院123| 午夜免费鲁丝| 又黄又粗又硬又大视频| 每晚都被弄得嗷嗷叫到高潮| 少妇精品久久久久久久| 中文字幕人妻丝袜一区二区| 99精国产麻豆久久婷婷| 电影成人av| 99热国产这里只有精品6| 91麻豆av在线| 日日爽夜夜爽网站| 水蜜桃什么品种好| 精品亚洲成a人片在线观看| 亚洲成av片中文字幕在线观看| 国产伦人伦偷精品视频| 亚洲av成人精品一二三区| 欧美大码av| 丝袜脚勾引网站| 欧美黑人精品巨大| 亚洲人成电影免费在线| 水蜜桃什么品种好| 国产一区二区三区综合在线观看| 久久免费观看电影| 久久影院123| 久久久久久久国产电影| 亚洲av欧美aⅴ国产| 精品第一国产精品| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆av在线久日| 啦啦啦在线免费观看视频4| 精品人妻1区二区| 你懂的网址亚洲精品在线观看| 两性夫妻黄色片| 国产一卡二卡三卡精品| 91九色精品人成在线观看| 99国产精品99久久久久| 欧美成人午夜精品| 一个人免费看片子| 亚洲视频免费观看视频| 免费观看av网站的网址| 男人操女人黄网站| 日本猛色少妇xxxxx猛交久久| 精品高清国产在线一区| 欧美精品啪啪一区二区三区 | 国产男女内射视频| 国产免费视频播放在线视频| 侵犯人妻中文字幕一二三四区| 国产精品麻豆人妻色哟哟久久| 99re6热这里在线精品视频| 色精品久久人妻99蜜桃| 婷婷色综合大香蕉| 99re6热这里在线精品视频| 叶爱在线成人免费视频播放| av片东京热男人的天堂| 国产精品一区二区在线不卡| 亚洲国产精品一区三区| 国产av国产精品国产| 男女边吃奶边做爰视频| 一级毛片女人18水好多 | 天堂俺去俺来也www色官网| 日韩欧美一区视频在线观看| 免费高清在线观看日韩| 人人妻人人澡人人看| 黑人猛操日本美女一级片| 一级毛片女人18水好多 | 高清视频免费观看一区二区| 侵犯人妻中文字幕一二三四区| 乱人伦中国视频| 久久精品aⅴ一区二区三区四区| 看十八女毛片水多多多| 1024视频免费在线观看| 在线av久久热| 黄色怎么调成土黄色| 亚洲精品一卡2卡三卡4卡5卡 | 高清欧美精品videossex| 国产爽快片一区二区三区| 国产精品二区激情视频| 日韩av在线免费看完整版不卡| 一本色道久久久久久精品综合| 好男人视频免费观看在线| 亚洲精品在线美女| 久久毛片免费看一区二区三区| 日本黄色日本黄色录像| 亚洲av国产av综合av卡| 色综合欧美亚洲国产小说| 久久精品国产综合久久久| 婷婷成人精品国产| 1024香蕉在线观看| 国产精品 国内视频| 一本色道久久久久久精品综合| 亚洲av片天天在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲成人国产一区在线观看 | 久久久久网色| 人妻 亚洲 视频| 精品福利永久在线观看| 午夜福利影视在线免费观看| 国产成人一区二区在线| 日韩中文字幕视频在线看片| 精品人妻1区二区| 国产黄频视频在线观看| 久久国产精品影院| 男女免费视频国产| 99久久99久久久精品蜜桃| 国产伦理片在线播放av一区| 一边亲一边摸免费视频| 精品亚洲成a人片在线观看| 欧美精品一区二区免费开放| 亚洲精品第二区| 天天添夜夜摸| 99国产精品99久久久久| 亚洲精品美女久久av网站| 美女扒开内裤让男人捅视频| videos熟女内射| 日本色播在线视频| 麻豆乱淫一区二区| 欧美激情高清一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产一区二区激情短视频 | 麻豆乱淫一区二区| 老鸭窝网址在线观看| 91精品国产国语对白视频| 久久精品aⅴ一区二区三区四区| 性少妇av在线| 韩国精品一区二区三区| av福利片在线| 美女视频免费永久观看网站| 日韩大码丰满熟妇| 欧美日韩av久久| 成在线人永久免费视频| 亚洲成人手机| 欧美日本中文国产一区发布| 久久人人爽av亚洲精品天堂| 国产91精品成人一区二区三区 | 精品熟女少妇八av免费久了| 欧美日韩黄片免| 国产精品 国内视频| 高清欧美精品videossex| 欧美日本中文国产一区发布| 我的亚洲天堂| 在线观看免费视频网站a站| 免费不卡黄色视频| 老汉色∧v一级毛片| 人成视频在线观看免费观看| 国产精品久久久久成人av| 国产欧美亚洲国产| 国产人伦9x9x在线观看| 亚洲人成网站在线观看播放| 国产精品 欧美亚洲| videos熟女内射| 欧美日韩福利视频一区二区| 免费在线观看影片大全网站 | 亚洲精品日本国产第一区| 欧美人与善性xxx| 免费久久久久久久精品成人欧美视频| 波多野结衣av一区二区av| 99热国产这里只有精品6| 丰满饥渴人妻一区二区三| 欧美精品人与动牲交sv欧美| 免费日韩欧美在线观看| 欧美xxⅹ黑人| 欧美 亚洲 国产 日韩一| 午夜福利免费观看在线| 精品少妇内射三级| 国产伦理片在线播放av一区| 一区在线观看完整版| av在线播放精品| 国产亚洲一区二区精品| 亚洲,欧美,日韩| 日本午夜av视频| 国产成人av激情在线播放| 免费在线观看影片大全网站 | 中文字幕色久视频| 国产精品99久久99久久久不卡| 91精品三级在线观看| 亚洲免费av在线视频| 精品福利观看| 久久久久精品人妻al黑| 日本vs欧美在线观看视频| 男人爽女人下面视频在线观看| 熟女av电影| 日本wwww免费看| 亚洲精品日本国产第一区| 国产成人一区二区在线| 免费不卡黄色视频| 精品福利观看| 日韩,欧美,国产一区二区三区| av一本久久久久| 精品一区二区三卡| av片东京热男人的天堂| 亚洲中文字幕日韩| 91精品三级在线观看| 中文字幕人妻熟女乱码| 精品第一国产精品| 久久国产精品影院| 国产成人精品在线电影| 国产精品亚洲av一区麻豆| 欧美性长视频在线观看| 熟女av电影| 精品一区二区三区四区五区乱码 | 80岁老熟妇乱子伦牲交| 女警被强在线播放| www日本在线高清视频| 亚洲av美国av| 视频区图区小说| 男人爽女人下面视频在线观看| 日本黄色日本黄色录像| 色综合欧美亚洲国产小说| 另类精品久久| 免费观看人在逋| 久久国产精品人妻蜜桃| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看| 91九色精品人成在线观看| 国产伦理片在线播放av一区| 一级毛片 在线播放| 午夜激情av网站| 在线天堂中文资源库| av片东京热男人的天堂| av在线老鸭窝| av网站在线播放免费| 免费少妇av软件| 狂野欧美激情性xxxx| 亚洲 国产 在线| 亚洲激情五月婷婷啪啪| 欧美乱码精品一区二区三区| 中文欧美无线码| 亚洲av男天堂| 中文字幕精品免费在线观看视频| 日韩精品免费视频一区二区三区| 亚洲欧美一区二区三区黑人| 精品一区二区三区av网在线观看 | 久久久国产一区二区| 精品少妇内射三级| 国产真人三级小视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 水蜜桃什么品种好| av有码第一页| 啦啦啦中文免费视频观看日本| 中文字幕人妻丝袜一区二区| 日日摸夜夜添夜夜爱| 国产亚洲欧美在线一区二区| 丰满少妇做爰视频| 狠狠婷婷综合久久久久久88av| 人妻人人澡人人爽人人| 国产亚洲精品久久久久5区| 中文字幕精品免费在线观看视频| 欧美在线一区亚洲| 国产视频一区二区在线看| 视频在线观看一区二区三区| 久久久久网色| 国产成人一区二区在线| 各种免费的搞黄视频| 亚洲欧美日韩另类电影网站| 成年人免费黄色播放视频| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕制服av| 1024视频免费在线观看| 亚洲精品国产av成人精品| 99国产精品免费福利视频| 欧美国产精品一级二级三级| 日本五十路高清| 国产一区二区三区av在线| a 毛片基地| 久久99一区二区三区| 老司机在亚洲福利影院| 只有这里有精品99| 在线亚洲精品国产二区图片欧美| 午夜av观看不卡| 久久精品亚洲熟妇少妇任你| 91麻豆精品激情在线观看国产 | 亚洲中文av在线| 欧美久久黑人一区二区| 男女无遮挡免费网站观看| 女警被强在线播放| 激情视频va一区二区三区| 午夜av观看不卡| 亚洲国产成人一精品久久久| 七月丁香在线播放| av欧美777| 成人影院久久| 精品少妇黑人巨大在线播放| 好男人视频免费观看在线| 国产亚洲精品久久久久5区| 中文乱码字字幕精品一区二区三区| 在线天堂中文资源库| 日韩大片免费观看网站| 国产极品粉嫩免费观看在线| 精品少妇久久久久久888优播| 成年动漫av网址| 日本午夜av视频| 欧美日韩精品网址| 19禁男女啪啪无遮挡网站| 国产亚洲午夜精品一区二区久久| 十八禁高潮呻吟视频| 中文欧美无线码| 久久国产精品影院| 亚洲av日韩在线播放| 亚洲中文日韩欧美视频| 在线天堂中文资源库| 久久热在线av| 精品国产一区二区三区四区第35| 少妇人妻久久综合中文| 91九色精品人成在线观看| 在线观看免费视频网站a站| 性少妇av在线| 韩国高清视频一区二区三区| 亚洲黑人精品在线| 欧美乱码精品一区二区三区| 黄色一级大片看看| 久久热在线av| 热99久久久久精品小说推荐| 久久久久国产一级毛片高清牌| 免费黄频网站在线观看国产| 国产精品 欧美亚洲| 亚洲,欧美,日韩| 国产成人a∨麻豆精品| 大陆偷拍与自拍| 九草在线视频观看| 最黄视频免费看| 国产在视频线精品| 91精品三级在线观看| 美女扒开内裤让男人捅视频| 丁香六月天网| 精品国产乱码久久久久久小说| 日韩 亚洲 欧美在线| 性色av乱码一区二区三区2| 国产成人av激情在线播放| 蜜桃在线观看..| 日韩av免费高清视频| 欧美在线黄色| 成人国产av品久久久| 99国产精品免费福利视频| 国产成人欧美在线观看 | 丝袜喷水一区| 国产成人精品久久二区二区91| 国产精品一区二区免费欧美 | 日本欧美视频一区| 午夜av观看不卡| 一级黄色大片毛片| 国产免费福利视频在线观看| 久久精品国产综合久久久| 久久鲁丝午夜福利片| 黄片播放在线免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲伊人久久精品综合| 国产精品久久久久久精品古装| 久久人妻福利社区极品人妻图片 | 国产91精品成人一区二区三区 | 亚洲中文av在线| 制服人妻中文乱码| 亚洲国产毛片av蜜桃av| 午夜老司机福利片| 少妇粗大呻吟视频| 日韩一本色道免费dvd| 国产黄色视频一区二区在线观看| 精品熟女少妇八av免费久了| 国产一区有黄有色的免费视频| 777米奇影视久久| 亚洲男人天堂网一区| 亚洲欧美一区二区三区久久| 电影成人av| 久久久久久久大尺度免费视频| 一级毛片 在线播放| 日本91视频免费播放| 亚洲伊人久久精品综合| 久久久国产一区二区| 免费看av在线观看网站| 亚洲黑人精品在线| 久久精品国产综合久久久| 国产亚洲欧美在线一区二区| 99久久综合免费| 欧美在线一区亚洲| 中文字幕亚洲精品专区| 午夜激情久久久久久久| 在线天堂中文资源库| 久久精品亚洲熟妇少妇任你| 午夜av观看不卡| 日本五十路高清| 黑人猛操日本美女一级片| 亚洲中文av在线| 下体分泌物呈黄色| 日韩伦理黄色片| 国产淫语在线视频| 国产1区2区3区精品| 国产免费福利视频在线观看| 美女视频免费永久观看网站| 啦啦啦在线观看免费高清www| 99re6热这里在线精品视频| 婷婷色综合www| 十八禁人妻一区二区| av在线app专区| 精品一区在线观看国产| 成在线人永久免费视频| 亚洲中文字幕日韩| e午夜精品久久久久久久| 欧美老熟妇乱子伦牲交| av国产久精品久网站免费入址| 中文字幕人妻丝袜制服| 欧美 亚洲 国产 日韩一| 最近最新中文字幕大全免费视频 | 成人18禁高潮啪啪吃奶动态图| 少妇精品久久久久久久| av片东京热男人的天堂| 国产野战对白在线观看| 日本vs欧美在线观看视频| 91成人精品电影| 精品欧美一区二区三区在线| 午夜福利乱码中文字幕| 亚洲欧洲日产国产| 午夜福利乱码中文字幕| 亚洲色图综合在线观看| 国产成人精品无人区| 飞空精品影院首页| 午夜久久久在线观看| 黄色一级大片看看| 一级a爱视频在线免费观看| 日本一区二区免费在线视频| 亚洲精品一区蜜桃| 777米奇影视久久| h视频一区二区三区| 中文精品一卡2卡3卡4更新| 少妇精品久久久久久久| 久久久国产一区二区| 成人午夜精彩视频在线观看| 十分钟在线观看高清视频www| av在线老鸭窝| 久久久国产一区二区| av欧美777| 成人影院久久| 国产伦理片在线播放av一区| 丰满迷人的少妇在线观看| 国产成人一区二区在线| 精品一区二区三区av网在线观看 | 精品福利永久在线观看| 久热爱精品视频在线9| 国产成人影院久久av| 婷婷色av中文字幕| 美女主播在线视频| 亚洲专区中文字幕在线| 婷婷色综合大香蕉| 伊人久久大香线蕉亚洲五| 国产97色在线日韩免费| 亚洲第一av免费看| 欧美少妇被猛烈插入视频| 亚洲av美国av| 日日爽夜夜爽网站| 色网站视频免费| 国产老妇伦熟女老妇高清| 亚洲一区二区三区欧美精品| 亚洲精品在线美女| 操出白浆在线播放| 在线观看人妻少妇| 久久久国产一区二区| 久热这里只有精品99| √禁漫天堂资源中文www| 尾随美女入室| 亚洲 欧美一区二区三区| 日韩,欧美,国产一区二区三区| 国产1区2区3区精品| 美女脱内裤让男人舔精品视频| 中文字幕高清在线视频| 一级毛片黄色毛片免费观看视频| 精品福利观看| 亚洲美女黄色视频免费看| www.自偷自拍.com| 精品久久蜜臀av无| 一区二区日韩欧美中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲av电影在线进入| 不卡av一区二区三区| 一区二区三区精品91| 嫩草影视91久久| 亚洲国产中文字幕在线视频| 欧美黄色片欧美黄色片| 欧美变态另类bdsm刘玥| 青青草视频在线视频观看|