李婷,李秀翠,梁冬施,溫正旺,梅紅芳,曹紅超,蘇苗賞,蔡曉紅△
(1溫州醫(yī)科大學(xué)附屬第一醫(yī)院兒科,浙江 溫州 325000;溫州醫(yī)科大學(xué)附屬第二醫(yī)院,育英兒童醫(yī)院2兒童神經(jīng)內(nèi)科,3兒童急診科,4兒童感染科,5兒童呼吸科,浙江 溫州 325027)
·短篇論著·
慢性間歇性低氧對大鼠腎臟氧化應(yīng)激損傷及HIF-1α表達(dá)的影響*
李婷1,李秀翠2,梁冬施3,溫正旺4,梅紅芳5,曹紅超5,蘇苗賞5,蔡曉紅5△
(1溫州醫(yī)科大學(xué)附屬第一醫(yī)院兒科,浙江 溫州 325000;溫州醫(yī)科大學(xué)附屬第二醫(yī)院,育英兒童醫(yī)院2兒童神經(jīng)內(nèi)科,3兒童急診科,4兒童感染科,5兒童呼吸科,浙江 溫州 325027)
目的:觀察慢性間歇性低氧(CIH)大鼠腎組織形態(tài)學(xué)及其氧化應(yīng)激相關(guān)指標(biāo)變化,探討CIH的腎損害機(jī)制。方法:將40只SD大鼠隨機(jī)分為4組,CIH組2周和4周組(2IH和4IH)以及對照組2周和4周組(2C和4C),每組10只,采用化學(xué)比色法檢測血清SOD活性,腎臟稱重計(jì)算腎體比,HE染色、PAS染色和Masson染色法觀察腎組織病理結(jié)構(gòu)變化,real-time PCR法檢測腎組織HIF-1α、Cu/ZnSOD和MnSOD mRNA的表達(dá)變化。結(jié)果: (1)各組大鼠平均腎重、體重和腎體比差異無統(tǒng)計(jì)學(xué)意義(均P>0.05);IH組大鼠腎組織存在病理損害,HE和PAS染色示腎小球系膜和基底膜輕度增生,腎小管上皮水腫,4周組損害較明顯;Masson染色I(xiàn)H和對照組均未見纖維化改變。(2)化學(xué)比色法示IH組血清SOD活性低于相應(yīng)對照組(均P<0.05),4IH組下降更明顯(P<0.05)。Cu/ZnSOD和MnSOD mRNA組間比較差異有統(tǒng)計(jì)學(xué)意義(均P<0.05);Cu/ZnSOD mRNA表現(xiàn)為IH組低于相應(yīng)對照組(均P<0.05),4IH組與2IH組比較差異無統(tǒng)計(jì)學(xué)意義;MnSOD mRNA的表達(dá)4IH組較4C組下調(diào),差異有統(tǒng)計(jì)學(xué)意義(P<0.05),4IH組明顯高于2IH組(P<0.05),2IH和2C組比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。IH組腎組織HIF-1α的mRNA表達(dá)均高于相應(yīng)對照組(均P<0.05),4IH組高于2IH組(P<0.05)。結(jié)論:CIH可誘導(dǎo)大鼠腎小球、小管結(jié)構(gòu)異常,但4周CIH尚未引起腎組織纖維化改變。CIH可通過上調(diào)HIF-1α mRNA和下調(diào)Cu/Zn SOD、MnSOD mRNA的表達(dá),參與氧化應(yīng)激損傷過程。
間歇性低氧;氧化應(yīng)激;腎損傷
據(jù)流行病學(xué)調(diào)查顯示,兒童的阻塞性睡眠呼吸暫停低通氣綜合征(obstructive sleep apnea hyponea syndrome,OSAHS)的患病率為2%~4.8%[1-2],OSAHS對兒童的生長發(fā)育帶來極大的危害,其中以學(xué)齡前兒童多見。OSAHS可導(dǎo)致全身多系統(tǒng)功能損害,其中包括OSAHS導(dǎo)致腎損害已被臨床證實(shí),主要表現(xiàn)為夜間多尿、腎功能改變、蛋白尿、腎小管功能受損等,但其分子機(jī)制尚不清楚。睡眠呼吸暫停模式慢性間歇低氧是OSAHS特有的特殊低氧模式,是任何其它低氧性疾病所不能達(dá)到和不具備的。反復(fù)的低氧-復(fù)氧,類似缺血再灌注,細(xì)胞線粒體產(chǎn)生較多的活性氧簇(reactive oxygen species,ROS),引起機(jī)體氧化應(yīng)激,是OSAHS導(dǎo)致腎損害的重要的病理生理機(jī)制??寡趸瘎?,如超氧化物歧化酶(superoxide dismutase,SOD)在抗氧化應(yīng)激反應(yīng)中作為主要的催化酶而起重要的保護(hù)作用。因此本研究模擬OSAHS的典型病理生理特征,建立慢性間歇低氧(chronic intermittent hypoxia,CIH)的幼鼠模型,觀察慢性間歇性低氧暴露后大鼠腎組織形態(tài)學(xué)改變,并檢測腎組織中低氧誘導(dǎo)因子1α(hypoxia-inducible factor-1α,HIF-1α)、MnSOD和Cu/ZnSOD mRNA的表達(dá)情況,揭示慢性間歇性低氧產(chǎn)生的氧化應(yīng)激反應(yīng)對大鼠腎損害的影響機(jī)制。
1 實(shí)驗(yàn)動物和主要材料
SPF級SD幼年大鼠(90~110 g,3~4周)購自溫州醫(yī)科大學(xué)實(shí)驗(yàn)動物中心。
間歇低氧不銹鋼飼氧艙自行設(shè)計(jì)制備;醫(yī)用壓縮氧氣(濃度>99.5%)、高純度壓縮氮?dú)?濃度>99.99%)、壓縮空氣由溫州市醫(yī)用氧廠充裝。
2 主要方法
2.1 動物分組SPF級健康雄性SD大鼠,共40只,隨機(jī)分為4組,每組10只,分別為CIH 2周組(2IH)、4周組(4IH),以及對照組2周組(2C)、4周組(4C)。
2.2 CIH動物模型建立將CIH組置于間歇低氧不銹鋼飼氧艙中,設(shè)定實(shí)驗(yàn)參數(shù)如下:在0.3 kPa氣壓下通氮?dú)?0 s,然后停30 s,以25 L/min的通氣流量通氧氣12 s,然后停18 s,如此構(gòu)成一個間歇低氧循環(huán),低氧時艙內(nèi)氧濃度維持在10.0%±1.5%,復(fù)氧時氧氣濃度維持在21.0%±0.5%,艙內(nèi)CO2的濃度低于0.01%,每天實(shí)驗(yàn)時間持續(xù)7.5 h(8:30~16: 00),每周持續(xù)7 d,用以模擬中重度OSAHS。對照艙:通入壓縮后的空氣,其它參數(shù)設(shè)置相同。實(shí)驗(yàn)時拉上窗簾,各個氧艙上蓋上黑布,保持艙內(nèi)黑暗,模擬大鼠夜間睡眠狀態(tài),保證艙內(nèi)溫度和室內(nèi)溫度22~24℃,濕度40%~50%。每天實(shí)驗(yàn)結(jié)束后,將大鼠分組放入另外的籠子里,給予日光燈照射,模擬白天狀態(tài)。實(shí)驗(yàn)時大鼠的活動和飲食不受限制。
2.3 標(biāo)本采集造模結(jié)束后稱重,精確到小數(shù)點(diǎn)后1位,并記錄。每組隨機(jī)取4只大鼠麻醉后,開胸分離心臟,留取5 mL動脈血,置于4℃冰箱靜置2 h,低溫離心機(jī)4℃4 000 r/min離心l5 min,抽取血清,-80℃冰箱保存,用于檢測總SOD活力。余6只大鼠用3%戊巴比妥鈉(40 mg/kg)腹腔注射麻醉后,開腹暴露左右腎,從腎靜脈注入預(yù)冷的生理鹽水灌洗致左、右腎變蒼白后取出,在冰板上去除包膜后稱重,精確到小數(shù)點(diǎn)后2位,記錄并計(jì)算腎體比[腎體比(%)=腎重/體重×100%]。右腎置4%多聚甲醛中固定。
2.4 腎組織病理染色(HE染色、PAS染色和Masson染色)組織塊常規(guī)石蠟包埋,4 μm切片,切片常規(guī)用二甲苯脫蠟,經(jīng)各級乙醇至水洗,分別于HE、PAS和Masson染色。腎臟病理損害的評估包括腎小球腫脹、腎小管上皮細(xì)胞腫脹及結(jié)構(gòu)紊亂、腎小球系膜增生和腎小球及間質(zhì)纖維化改變,每項(xiàng)損害嚴(yán)重程度按照0~4分來評估:0=輕微損害,1=輕度損害,2=中度損害,3=重度損害,4=嚴(yán)重?fù)p害。全部4項(xiàng)積分為0~16分。
2.5 采用real-time PCR法檢測左腎HIF-1α、Cu/Zn-SOD和MnSOD mRNA的表達(dá)采用Trizol從腎組織中抽提總RNA,操作按說明書進(jìn)行,并行RNA純度及定量檢測,并將RNA逆轉(zhuǎn)錄成cDNA,用PCR擴(kuò)增儀進(jìn)行基因擴(kuò)增。PCR反應(yīng)條件為95℃5 min;95℃10 s,60℃10 s,72℃10 s,45個循環(huán)擴(kuò)增。β-actin作為內(nèi)參照,所用β-actin、HIF-1α、Cu/Zn SOD和MnSOD引物序列由上海生工生物工程有限公司設(shè)計(jì)并合成,序列見表1。運(yùn)用Lightcycler 480 15.0軟件來記錄數(shù)據(jù)并分析,以2-ΔCt計(jì)算目的基因的相對表達(dá)量。
表1 引物序列Table 1.The sequences of the primers for real-time PCR
3 統(tǒng)計(jì)學(xué)處理
除腎臟病理評分之外,各組均為正態(tài)計(jì)量資料數(shù)據(jù),以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,腎臟病理評分以中位數(shù)(median)表示,用SPSS 21.0統(tǒng)計(jì)軟件處理。腎臟病理評分多組間采用Kruskal-Wallis檢驗(yàn)。其它資料多組間比較采用單因素方差分析(One-way ANOVA),組與組之間的兩兩比較,若方差齊則用LSD檢驗(yàn),方差不齊則用Dunnett’s T3檢驗(yàn)。
1 各組大鼠腎重、體重、腎體比的情況
各組大鼠腎重、體重及腎重/體重比差異均無統(tǒng)計(jì)學(xué)意義,見表2。
表2 各組腎重、體重及腎體比的比較Table 2.The comparison of renal weight,body weight,ratio of renal weight to body weight in 4 groups(Mean±SD.n=10)
2 各組大鼠腎組織病理學(xué)改變
2.1 HE染色2C與4C組腎小球和腎小管上皮結(jié)構(gòu)基本正常,IH組腎小球系膜輕度增生,腎小球塞滿整個腎小囊腔,腎小管上皮細(xì)胞腫脹,以近端小管為主,4IH組較2IH組改變明顯,見圖1。
2.2 PAS染色2C與4C組腎小球基底膜和系膜無明顯增厚,腎小管上皮細(xì)胞刷狀緣完整,IH組可見腎小球基底膜和系膜輕度增厚,腎小管上皮細(xì)胞刷狀緣結(jié)構(gòu)不完整,4IH組較2IH組改變明顯,見圖1。
2.3 Masson染色I(xiàn)H組(2周組、4周組)和C組(2周組、4周組)腎小球及腎小管間質(zhì)均無藍(lán)色膠原纖維沉著,見圖1。
2.4 病理評分(n=6)病理評分顯示IH組(4IH組為5,2IH組為3)比相應(yīng)空氣模擬對照組(2C和4C組均為0.5)病理損害嚴(yán)重,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),且4IH組比2IH病理損害更明顯,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
3 各組大鼠血清SOD活性改變及腎組織HIF-1α、Cu/ZnSOD和MnSOD mRNA的表達(dá)變化
3.1 血清SOD活力的變化2IH、4IH組血清中SOD活性分別低于2C、4C組(P<0.05),4IH組明顯低于2IH組(P<0.05),2C與4C組比較差異無統(tǒng)計(jì)學(xué)意義,見圖2。
Figure 1.The changes of histological structure in glomeruli and renal tubules from the rats exposed to chronic intermittent hypoxia and the control rats.Normal histological structure of glomeruli and renal tubules were observed in 2C group and 4C group.Mesangial proliferation of glomeruli was seen in 2IH group and 4IH group(long arrow).Thickening membranes within the glomeruli were found in 2IH group and 4IH group(long arrow).Swelling was seen in renal tuble in 2IH group and 4IH group (short arrow).No fibrotic response was observed in Masson staining.圖1 各組大鼠腎臟形態(tài)學(xué)改變
3.2 各組大鼠腎組織HIF-1α、Cu/ZnSOD和MnSOD mRNA的表達(dá)變化HIF-1α mRNA在各組間比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。與相應(yīng)對照組比較,IH組大鼠腎組織HIF-1αm RNA表達(dá)均增加(P<0.05),與2IH組比較,4IH組表達(dá)顯著升高(P<0.05);MnSOD和Cu/ZnSOD mRNA組間比較差異有統(tǒng)計(jì)學(xué)意義。其中Cu/ZnSOD的mRNA表達(dá)量IH組分別低于相應(yīng)對照組(P<0.05),4IH組與2IH組之間差異無統(tǒng)計(jì)學(xué)意義。MnSOD mRNA的表達(dá)量,2IH組與相應(yīng)對照組(2C組)比較差異無統(tǒng)計(jì)學(xué)意義,4IH組與相應(yīng)對照組(4C組)及2IH組比較均明顯下降,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),見圖2。
OSAHS是一種以間歇性低氧和片段化睡眠為主要病理生理機(jī)制的多系統(tǒng)功能障礙性疾病。目前在OSAHS相關(guān)心血管并發(fā)癥及認(rèn)知功能損害的分子機(jī)制研究中,氧化應(yīng)激損傷是靶器官損害的主要機(jī)制[3-4]。OSAHS相關(guān)性腎損害可表現(xiàn)為[5-9]夜間多尿、腎功能改變、蛋白尿、腎小管功能受損等。CIH動物模型研究[10-11]模擬OSAHS病理生理改變,發(fā)現(xiàn)其可引起腎臟組織結(jié)構(gòu)、超微結(jié)構(gòu)、蛋白組學(xué)改變,但均為成年動物。其次,腎臟作為高血流高灌注臟器,對氧供給和氧張力變化較為敏感,容易致缺氧性損傷,兒童尤甚。本研究選擇3~4周齡SD幼鼠,利用自行研制的間歇性低氧氧艙,采用90 s 10%O2的間歇性低氧模式,主要用于探討OSAHS對兒童腎組織的影響。。根據(jù)我們前期的研究[12],90 s 10%O2模式的間歇性低氧相當(dāng)于人類中重度OSAHS的病理生理改變。本研究顯示中重度間歇性低氧復(fù)氧的暴露,腎重體重比無明顯改變,但病理評分顯示低氧組腎臟損傷嚴(yán)重,表現(xiàn)為腎小球及小管結(jié)構(gòu)出現(xiàn)了改變。腎慢性缺氧是引起腎間質(zhì)纖維化的關(guān)鍵因素,低氧可上調(diào)近曲小管上皮細(xì)胞和腎臟成纖維細(xì)胞TGF-β表達(dá)。本研究應(yīng)用Masson染色觀察腎小管間質(zhì)及腎小球纖維化改變,發(fā)現(xiàn)2周和4周IH組均未引起腎組織纖維化改變;Sun等[13]在成年小鼠的研究也顯示間歇性低氧暴露8周后腎組織才開始出現(xiàn)纖維化改變,表明CIH引起腎組織纖維化改變與間歇性低氧時間長短以及低氧程度有關(guān)。
Figure 2.The changes of the oxidative stress markers in the serum and kidney of the rats with different treatments.A:the serum SOD level were measured by xanthine oxidase methods;B~D:real-time PCR was used to detect the mRNA expression of HIF-1α,Cu/ZnSOD and MnSOD in the kidney.Mean±SD.n=6.*P<0.05 vs 2C group;#P<0.05 vs 4C group;△P<0.05 vs 2IH group.圖2 大鼠血清SOD活性及腎組織HIF-1α、Cu/ZnSOD和MnSOD mRNA的相對表達(dá)量
慢性間歇性低氧復(fù)氧是OSAHS特征性低氧方式,不同于持續(xù)性低氧過程,為一種更嚴(yán)重的低氧,其病理生理過程類似于缺血再灌注損傷。HIF-1是調(diào)控氧平衡的轉(zhuǎn)錄因子,為氧敏感的α亞基和穩(wěn)定表達(dá)的β亞基組成的異源二聚體結(jié)構(gòu),局部組織HIF-1α含量可間接反映組織細(xì)胞缺氧情況。持續(xù)低氧主要通過介導(dǎo)低氧適應(yīng)性反應(yīng)增加HIF-1α的表達(dá),間歇低氧也可上調(diào)HIF-1α表達(dá),但其所依賴的信號轉(zhuǎn)導(dǎo)途徑不同于持續(xù)低氧反應(yīng)[14]。王贊峰等[15]的研究發(fā)現(xiàn)間斷低氧處理30 d后,大鼠腦內(nèi)HIF-1α mRNA和蛋白表達(dá)明顯增強(qiáng),免疫組化顯示HIF-1α的分布區(qū)域與TUNEL陽性細(xì)胞一致,反映高表達(dá)的HIF-1α參與神經(jīng)系統(tǒng)慢性間斷低氧的應(yīng)答。da Rosa等[16]發(fā)現(xiàn)慢性間歇性低氧下小鼠肺組織和肝臟HIF-1α蛋白表達(dá)上調(diào)。因此腎組織HIF-1α mRNA的表達(dá)變化可反映CIH條件下腎組織缺氧情況。本研究應(yīng)用實(shí)時定量PCR方法檢測腎組織中與低氧相關(guān)的HIF-1α mRNA表達(dá),顯示在IH暴露下其表達(dá)上調(diào),呈時間依賴性增加,說明在CIH條件下SD大鼠腎組織存在低氧。
多項(xiàng)臨床研究顯示,OSAHS患者體內(nèi)存在氧化應(yīng)激[3,17-20]和抗氧化能力的下降[21]。SODs是體內(nèi)一線抗氧化反應(yīng)的酶,銅/鋅超氧化物歧化酶(copper/zinc superoxide dismutase,Cu/ZnSOD)和錳超氧化物歧化酶(manganese superoxide dismutase,Mn-SOD)是其最主要的2種類型,Cu/ZnSOD主要表達(dá)于胞漿中,MnSOD主要位于線粒體。本研究通過化學(xué)比色法測定CIH大鼠血清中總SOD活性,發(fā)現(xiàn)SOD活性下降,與暴露時間呈負(fù)相關(guān),說明CIH SD大鼠體內(nèi)存在氧化應(yīng)激,表現(xiàn)為抗氧化能力下降。同時本研究用實(shí)時熒光定量法檢測腎組織中反映抗氧化能力的2種酶Cu/ZnSOD和MnSOD mRNA的表達(dá),發(fā)現(xiàn)IH組2種SOD酶基因表達(dá)均下調(diào),間接表明了間歇性低氧誘導(dǎo)了腎組織的氧化應(yīng)激。MnSOD可維持線粒體正常功能,其活性下降失活導(dǎo)致線粒體損傷,最終導(dǎo)致氧化應(yīng)激的發(fā)生。李光等[22]研究發(fā)現(xiàn)2周間歇性低氧主要下調(diào)胰腺β細(xì)胞MnSOD表達(dá)。Nanduri等[23]的研究也顯示,PC12細(xì)胞經(jīng)間歇性低氧暴露后主要表現(xiàn)為MnSOD表達(dá)下調(diào),其它抗氧化酶不變,上述研究表明間歇性低氧的暴露主要引起MnSOD表達(dá)的下調(diào),本研究顯示間歇低氧組早期下調(diào)胞漿Cu/ZnSOD的表達(dá),隨著缺氧時間延長,引起線粒體MnSOD表達(dá)的下調(diào),表明CIH大鼠出現(xiàn)了氧化應(yīng)激反應(yīng),導(dǎo)致腎組織結(jié)構(gòu)的損害。
綜上所述,CIH可通過上調(diào)HIF-1 mRNA表達(dá)、下調(diào)Cu/Zn SOD和MnSOD mRNA表達(dá),參與大鼠腎組織氧化應(yīng)激損傷。
[1]Wildhaber JH,Moeller A.Sleep and respiration in children:time to wake up![J].Swiss Med Wkly,2007,137(49-50):689-694.
[2]Li AM,So HK,Au CT,et al.Epidemiology of obstructive sleep apnoea syndrome in Chinese children:a two-phase community study[J].Thorax,2010,65(11):991-997.
[3]Jurado-Gamez B,F(xiàn)ernandez-Marin MC,Gomez-Chaparro JL,et al.Relationship of oxidative stress and endothelial dysfunction in sleep apnoea[J].Eur Respir J,2011,37 (4):873-879.
[4]Nair D,Dayyat EA,Zhang SX,et al.Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea[J].PLoS One,2011,6(5):e19847.
[5]Chou YT,Lee PH,Yang CT,et al.Obstructive sleep apnea:a stand-alone risk factor for chronic kidney disease[J].Nephrol Dial Transplant,2011,26(7):2244-2250.
[6]Nicholl DD,Ahmed SB,Loewen AH,et al.Declining kidney function increases the prevalence of sleep apnea and nocturnal hypoxia[J].Chest,2012,141(6): 1422-1430.
[7]Uyar M,Davutoglu V.Obstructive sleep apnoea:a standalone risk factor for chronic kidney disease[J].Nephrol Dial Transplant,2011,26(8):2718.
[8]Mallamaci F,Tripepi G.Comment accompanying:obstructive sleep apnoea:a stand-alone risk factor for chronic kidney disease by Chou Yu-Ting[J].Nephrol Dial Transplant,2011,26(7):2072-2074.
[9]Turek NF,Ricardo AC,Lash JP.Sleep disturbances as nontraditional risk factors for development and progression of CKD:review of the evidence[J].Am J Kidney Dis, 2012,60(5):823-833.
[10]宋愛玲,曾奕明.慢性間斷性缺氧對小鼠腎組織結(jié)構(gòu)、基質(zhì)金屬蛋白酶及其組織抑制因子表達(dá)的影響[J].國際呼吸雜志,2007,27(11):808-812.
[11]張春燕,楊燁,陳燕,等.慢性間歇性缺氧大鼠腎臟組織表達(dá)蛋白質(zhì)組的變化[J].瀘州醫(yī)學(xué)院學(xué)報(bào),2011,34(3):255-257.
[12]李秀翠,蔡曉紅,溫正旺,等.間歇性低氧動物模型的建立及驗(yàn)證[J].醫(yī)學(xué)研究雜志,2012,41(7):57-61.
[13]Sun W,Yin X,Wang Y,et al.Intermittent hypoxia-induced renal antioxidants and oxidative damage in male mice:hormetic dose response[J].Dose Response,2012,11(3):385-400.
[14]Yuan G,Nanduri J,Khan S,et al.Induction of HIF-1alpha expression by intermittent hypoxia:involvement of NADPH oxidase,Ca2+signaling,prolyl hydroxylases,and mTOR[J].J Cell Physiol,2008,217(3):674-685.
[15]王贊峰,代冰,康健.慢性間斷低氧對大鼠腦內(nèi)缺氧誘導(dǎo)因子-1α表達(dá)和神經(jīng)細(xì)胞凋亡的影響[J].中國病理生理雜志,2010,26(3):593-595.
[16]da Rosa DP,F(xiàn)orgiarini LF,Baronio D,et al.Simulating sleep apnea by exposure to intermittent hypoxia induces inflammation in the lung and liver[J].Mediators Inflamm,2012,2012:879419.
[17]Lavie L,Vishnevsky A,Lavie P.Evidence for lipid peroxidation in obstructive sleep apnea[J].Sleep,2004,27 (1):123-128.
[18]Westhoff M,Litterst P.Obstructive sleep apnoea and oxidative stress[J].Pneumologie,2012,66(10):610-615.
[19]Baysal E,Taysi S,Aksoy N,et al.Serum paraoxonase,arylesterase activity and oxidative status in patients with obstructive sleep apnea syndrome(OSAS)[J].Eur Rev Med Pharmacol Sci,2012,16(6):770-774.
[20]Ntalapascha M,Makris D,Kyparos A,et al.Oxidative stress in patients with obstructive sleep apnea syndrome[J].Sleep Breath,2013,17(2):549-555.
[21]Katsoulis K,Kontakiotis T,Spanogiannis D,et al.Total antioxidant status in patients with obstructive sleep apnea without comorbidities:the role of the severity of the disease[J].Sleep Breath,2011,15(4):861-866.
[22]李光,柴文戍,康健.間歇低氧小鼠胰腺β細(xì)胞凋亡及其機(jī)制的實(shí)驗(yàn)研究[J].中國病理生理雜志,2011,27(4):794-797.
[23]Nanduri J,Wang N,Yuan G,et al.Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress:implications for recurrent apnea-induced morbidities[J].Proc Natl Acad Sci U S A,2009,106(4): 1199-1204.
Effect of chronic intermittent hypoxia on renal oxidative stress damage and HIF-1α expression in rats
LI Ting1,LI Xiu-cui2,LIANG Dong-shi3,WEN Zheng-wang4,MEI Hong-fang5,CAO Hong-chao5,SU Miao-shang5,CAI Xiao-h(huán)ong5
(1Department of Pediatrics,The First Affiliated Hospital of Wenzhou Medical University,Wenzhou 325000,China;2Department of Neurology,3Department of Emergency,4Department of Infectious Disease,5Department of Respiratory Disease,The Second Affiliated Hospital of Wenzhou Medical University,Wenzhou 325027,China.E-mail:caixh839@sina.com)
AIM:To investigate the mechanism of renal damage in chronic intermittent hypoxia(CIH)rat model.METHODS:The Sprague-Dawley rats were randomly divided into 2-week CIH group(2IH),2-week simulated air control group(2C),4-week CIH group(4IH)and 4-week simulated air control group(4C).HE staining,PAS staining and Masson staining were used for histological evaluation.Blood was collected for the measurement of superoxide dismutase(SOD).The mRNA expression of hypoxia-inducible factor-1α(HIF-1α),manganese superoxide dismutase(MnSOD),copper/zinc superoxide dismutase(Cu/ZnSOD)was detected by real-time PCR.RESULTS:(1)No significance difference of renal weight,body weight,and the ratio of renal weight to body weight was observed,while IH caused morphologic kidney damage,especially in 4IH group.Hypertrophy of epithelial cells in the kidney tubles and dilation in the glomeruli were observed under light microscope with HE and PAS staining,especially in 4IH group.Masson staining showed no significant fibrotic response in the kidney of the rats exposed to IH.(2)The SOD levels in the serum and kidney were decreased after CIH.Compared with the corresponding control groups,the levels of serum SOD were significantly lower in CIH groups,especially in 4IH group.The mRNA expression of Cu/ZnSOD and MnSOD in CIH groups decreased significantly as compared with control groups.The mRNA levels of HIF-1α were significantly higher in CIH groups than those in the corresponding control groups.CONCLUSION:CIH induces abnormalities of glomeruli and convoluted tubules,while 4-week IH exposure has not led to fibrotic response.CIH participates in the process of renal oxidative stress damage by upregulating HIF-1α transcription and downregulating Cu/ZnSOD and MnSOD transcription.
Intermittent hypoxia;Oxidative stress;Renal injury
R363;R725.6
A
10.3969/j.issn.1000-4718.2015.02.028
1000-4718(2015)02-348-06
2014-07-25
2014-12-09
浙江省科技廳項(xiàng)目(No.2013C33174);浙江省自然科學(xué)基金資金項(xiàng)目(No.Y2110277);溫州市科技計(jì)劃項(xiàng)目(No.H20130001);浙江省衛(wèi)生廳項(xiàng)目(No.2011RCB027;No.2013RCA037;No.2014ZDA014);國家衛(wèi)計(jì)委國家重點(diǎn)臨床專
科開放課題(No.20130209)
△通訊作者Tel:0577-88832693;E-mail:caixh839@sina.com