常象春,王鐵冠,陶小晚,程 斌
(1.山東科技大學(xué) 山東省沉積成礦作用與沉積礦產(chǎn)重點(diǎn)實(shí)驗(yàn)室,山東 青島 266590; 2.中國石油大學(xué) 油氣資源與探測(cè)國家重點(diǎn)實(shí)驗(yàn)室,北京 102249; 3.中國石油 石油勘探開發(fā)研究院,北京 100083)
?
哈拉哈塘凹陷奧陶系原油芳烴生物標(biāo)志物特征及油源
常象春1,王鐵冠2,陶小晚3,程 斌2
(1.山東科技大學(xué) 山東省沉積成礦作用與沉積礦產(chǎn)重點(diǎn)實(shí)驗(yàn)室,山東 青島 266590; 2.中國石油大學(xué) 油氣資源與探測(cè)國家重點(diǎn)實(shí)驗(yàn)室,北京 102249; 3.中國石油 石油勘探開發(fā)研究院,北京 100083)
哈拉哈塘凹陷是近些年的勘探熱點(diǎn)地區(qū),為了進(jìn)一步明確其原油母源輸入、沉積環(huán)境、成熟度和可能烴源層,對(duì)26個(gè)哈拉哈塘凹陷和塔河奧陶系原油樣品、4個(gè)臺(tái)盆區(qū)烴源巖樣品進(jìn)行了系統(tǒng)的芳烴生物標(biāo)志物分析。研究結(jié)果表明,哈拉哈塘原油均具有高萘、高菲、低聯(lián)苯、貧1,2,5-和1,2,7-三甲基萘而富1,3,6-三甲基萘、高4-MDBT/DBT和(2+3)-MDBT/DBT比值、輕芳烴碳同位素的特點(diǎn),與塔河奧陶系原油非常相似,反映出其屬于典型的海相成因,且以低等藻類和細(xì)菌占生源優(yōu)勢(shì)。高豐度的二苯并噻吩和較低的DBT/P、Pr/Ph比值,指示其源巖沉積于強(qiáng)還原的碳酸鹽沉積環(huán)境。等效鏡質(zhì)體反射率Rc1和Rc2揭示哈拉哈塘原油成熟演化處于中等-較高范疇。甲基三芳甾烷異構(gòu)體組成型式對(duì)比表明,中-上奧陶統(tǒng)烴源巖與哈拉哈塘和塔河奧陶系原油對(duì)比良好,推測(cè)其為本區(qū)奧陶系原油的烴源層。
母源輸入;沉積環(huán)境;成熟度;油-源對(duì)比;芳烴;生物標(biāo)志物;原油;哈拉哈塘凹陷
石油中芳烴餾份的組成是成巖作用與后生作用過程中復(fù)雜變化的結(jié)果[1],故芳烴生物標(biāo)志物被廣泛用于反映母源輸入[2-3]、沉積環(huán)境[4-5]、熱演化程度[6-8]、油油對(duì)比[9]和油藏內(nèi)生物降解影響的研究中[10-11]。
哈拉哈塘凹陷位于塔北隆起中部,面積約4 369 km2(圖1)。2006年,哈拉哈塘凹陷哈6井分別在石炭系底礫巖鉆獲低產(chǎn)工業(yè)油氣流、奧陶系見到良好油氣顯示。自此以后,有100余口井在哈拉哈塘凹陷的中奧陶統(tǒng)一間房組(O2yj)獲得高產(chǎn)油流,展示出哈拉哈塘地區(qū)良好的勘探前景。
塔里木盆地的海相原油有效源巖問題一直存在學(xué)術(shù)爭(zhēng)議[12-13],哈拉哈塘凹陷奧陶系原油的來源亦概莫能外。有人認(rèn)為環(huán)哈拉哈塘凹陷周緣(英買力1、英買力2油藏、東河塘油田、雅克拉油氣藏、哈得遜油田、輪古西)原油具有低伽馬蠟烷、低規(guī)則甾烷C28/(C27+C28+C29)比值和高重排甾烷的特征,表明其油氣來自于中-上奧陶統(tǒng)(O2-3)烴源巖[14-17],飽和烴主體生物標(biāo)志物與塔河原油高度相似且與中-上奧陶統(tǒng)烴源巖對(duì)比好,但一些反映沉積環(huán)境的生物標(biāo)志物參數(shù)也顯示出明顯差異[18];而有些人認(rèn)為哈拉哈塘東西兩側(cè)原油具有相似的成藏過程,源巖來自寒武系—下奧陶統(tǒng)[19],或認(rèn)為哈拉哈塘地區(qū)的油氣主要來自寒武系—下奧陶統(tǒng)和中-上奧陶統(tǒng)兩套烴源巖[20]。
圖1 哈拉哈塘凹陷構(gòu)造位置(a)及樣品分布(b)Fig.1 Structural location of the Halahatang Sag(a)and distribution of samples(b)
芳烴類生物標(biāo)志物作為原油重要組成,可以作為飽和烴研究的重要補(bǔ)充,能提供母源輸入、沉積環(huán)境和成熟度等信息,目前對(duì)于哈拉哈塘凹陷尚未有芳烴研究的公開報(bào)道。本文的目的是通過對(duì)哈拉哈塘地區(qū)奧陶系原油芳烴餾份的系統(tǒng)分析,為深化本區(qū)勘探認(rèn)識(shí)提供重要參考。
哈拉哈塘凹陷北鄰輪臺(tái)斷裂,南接順托果勒低隆起,東為輪南低凸起,西為英買力低凸起。多期構(gòu)造運(yùn)動(dòng),造成該區(qū)斷裂和裂縫發(fā)育,如早-中加里東期大型走滑斷裂、晚加里東期—早海西期小型走滑斷裂、晚海西期火山巖活動(dòng)和印支-燕山期斷裂[16]。平面上,哈拉哈塘地區(qū)以一組“X”型共軛剪切斷裂和一組反“S”型斷裂為主要特征,對(duì)油氣的運(yùn)聚有明顯的控制作用。奧陶系一間房組和鷹山組碳酸鹽巖儲(chǔ)層經(jīng)歷了多期巖溶的疊加改造,風(fēng)化巖溶縫洞體儲(chǔ)層發(fā)育[15,21]。
2.1 樣品準(zhǔn)備
原油樣品共有26個(gè)。其中,17個(gè)取自哈拉哈塘凹陷奧陶系,9個(gè)取自塔河油田中-下奧陶統(tǒng)鷹山組(O1-2y);烴源巖樣品包括兩個(gè)中-上奧陶統(tǒng)樣品和兩個(gè)寒武系樣品。所有樣品均經(jīng)過抽提,后用正己烷沉淀去掉瀝青質(zhì),接下來用硅膠/氧化鋁柱層析分離成飽和烴、芳烴和非烴組分。
2.2 色譜/質(zhì)譜分析
色譜/質(zhì)譜分析使用Finnigan SSQ-710四極桿分析系統(tǒng),配置DB-5熔硅彈性毛細(xì)管柱(30 m×0.32 mm內(nèi)徑)和IAIS數(shù)據(jù)處理系統(tǒng)。
色譜:色譜柱初始溫度為80 ℃,恒溫1 min,以3 ℃/min升至300 ℃,恒溫15 min;對(duì)于吡咯類含氮化合物,色譜柱初始溫度為35 ℃,以2 ℃/min升至120 ℃,恒溫5 min,以3 ℃/min升至310 ℃,恒溫15 min。進(jìn)樣器溫度300 ℃,載氣為He。質(zhì)譜:離子源采用電子轟擊(EI),電離電壓70 eV,發(fā)射電流300 A,掃描范圍 50~550 u/s。
3.1 原油總體特征
3.2 母源輸入特征
3.2.1 萘系列
烷基萘系列化合物在沉積有機(jī)質(zhì)中廣為分布[22],其組成受到源巖、熱應(yīng)力和生物降解等影響[23]。基于在沉積物和低成熟度原油中均具較高的相對(duì)豐度和極為相似的結(jié)構(gòu)組成特征,源于微生物和植物的倍半萜和三萜類被認(rèn)為是烷基萘,如1,2,5- 三甲基萘(TMN),1,2,7-三甲基萘的主要前身物[24-25],在海相成因原油中含量較低[26]。哈拉哈塘奧陶系原油中1,2,5-/1,3,6-TMN介于0.09~0.42,與塔河奧陶系原油(0.21~0.34)、TZ30井和LN46井中-上奧陶統(tǒng)烴源巖(0.49~0.57)、H3井和TD2井寒武系烴源巖(0.37~0.53)呈現(xiàn)相似特征,均富含1,3,6-三甲基萘,少見1,2,5-三甲基萘和1,2,7-三甲基萘特征(圖2;表1),表明這些原油來自海相環(huán)境中低等藻類和細(xì)菌生源有機(jī)質(zhì)占優(yōu)勢(shì)的源巖[25-27]。
圖2 哈拉哈塘凹陷原油芳烴餾分質(zhì)譜(H601-3 井)Fig.2 Mass spectrograms of aromatic fractions of oils from the Halahatang Sag(Well H601-3)
3.2.2 二苯并噻吩系列
原油中二苯并噻吩(DBT)系列會(huì)隨源巖沉積環(huán)境變化而變化,主要取決于還原硫和有機(jī)質(zhì)的結(jié)合能力,以及由Fe和還原硫反應(yīng)生成黃鐵礦的能力[28]。海相油中4-MDBT(4-甲基二苯并噻吩)/DBT比值大于1.2,湖相中其比值小于1.0,成為有效的判識(shí)標(biāo)志[28]。哈拉哈塘和塔河原油中4-MDBT/DBT比值分別為1.40~2.41和1.20~1.41,亦反映典型的海相原油特征。
3.2.3 芳烴穩(wěn)定碳同位素
原油穩(wěn)定碳同位素值(δ13C)-29‰被用作區(qū)分海相Ⅰ型和Ⅱ型有機(jī)質(zhì)的界線,小于該值指示腐泥型的菌藻類生源[29]。哈拉哈塘原油芳烴δ13C 值為-31.7‰~-32.8‰,與塔河奧陶系原油芳烴(-32.0‰~-33.2‰)非常相似,既旁證了上述烷基萘系列指示的低等生源成烴母質(zhì)結(jié)論,又暗示其與TZ30井和LN46井中-上奧陶統(tǒng)烴源巖(-31.4‰~-31.7‰)存在可能的成因聯(lián)系,而與H3井和TD2井寒武系烴源巖(-25.8‰~-28.1‰)差異較大。
3.3 源巖沉積環(huán)境
硫芴(DBT)、氧芴(DBF)和芴(F)具有相似的基本骨架結(jié)構(gòu),可能源于相似的前身物。氧芴在弱氧化或弱還原條件下有利于形成,而芴和硫芴分別在正常還原條件、強(qiáng)還原條件下更易于形成[30]。在“三芴系列”三角圖中(圖3),哈拉哈塘奧陶系原油樣品分布集中,硫芴相對(duì)含量介于61.18%~74.19%,塔河奧陶系原油(45.77%~71.69%)、TZ30井和LN46井中-上奧陶統(tǒng)烴源巖(57.36%~61.02%)、H3井寒武系烴源巖(88.14%),亦呈現(xiàn)硫芴相對(duì)含量的絕對(duì)優(yōu)勢(shì),反映一種碳酸鹽巖源巖沉積的強(qiáng)還原環(huán)境[31]。而TD2井寒武系烴源巖則以較高的氧芴相對(duì)含量(47.92%)與之相區(qū)別,指示一種正常還原條件。
圖3 “三芴”系列三角圖Fig.3 Triangle diagram of DBT-DBF-F
圖4 Pr/Ph與DBT/P相關(guān)圖Fig.4 Correlation between Pr/Ph and DBT/P
二苯并噻吩/菲(DBT/P)與Pr/Ph(姥鮫烷/植烷)比值相結(jié)合,經(jīng)常用來研究源巖的古沉積環(huán)境[4]。哈拉哈塘凹陷奧陶系原油樣品均落于Ⅳ區(qū)(圖4),指示哈拉哈塘凹陷原油源于海相頁巖。此外,其原油具有較低的Pr/Ph(0.94~1.18)比值,這與其缺氧的、碳酸鹽沉積環(huán)境相一致[32-33]。TZ30井和LN46井中-上奧陶統(tǒng)烴源巖、H3井和TD2井寒武系烴源巖亦落于Ⅳ區(qū),表現(xiàn)出與之相似的沉積環(huán)境,塔河油田奧陶系原油則以略低的Pr/Ph比值而落于Ⅲ區(qū),呈現(xiàn)微弱的環(huán)境條件差異,指示其頁巖的烴源巖貢獻(xiàn)較哈拉哈塘可能要少。
3.4 成熟度
相比而言,評(píng)價(jià)原油成熟度時(shí),菲系列參數(shù)要比萘系列參數(shù)更為可靠[7]。哈拉哈塘凹陷原油中菲成熟度參數(shù)MPI1和MPI3具有很好的相關(guān)性,進(jìn)一步證實(shí)了其在評(píng)價(jià)原油成熟度中的有效性[8]。依據(jù)Boreham等[34]提出的經(jīng)驗(yàn)公式求得等效鏡質(zhì)體反射率(Rc1),哈拉哈塘凹陷奧陶系原油、塔河油田奧陶系原油、TZ30井和LN46井中-上奧陶統(tǒng)烴源巖、H3井和TD2井寒武系烴源巖分別為0.80%~0.95%,0.61%~0.87%,0.67%~0.68%和0.52%~0.77%,均反映中等成熟度特征(表1)。
由于二甲基二苯并噻吩具有較高的熱穩(wěn)定性和較強(qiáng)的抗生物降解能力,4,6-/1,4-二甲基二苯并噻吩(4,6-/1,4-DMDBT)比值被認(rèn)為是評(píng)價(jià)原油成熟度更為理想的工具[35]。利用該比值建立的經(jīng)驗(yàn)公式[36],求得哈拉哈塘凹陷奧陶系原油另一組等效鏡質(zhì)體反射率(Rc2)值為0.78%~1.34% (表1),亦表明屬于中等-較高成熟范疇。
3.5 油源
由于塔里木盆地海相原油具有相對(duì)較高的成熟度,鉆遇可能烴源層的鉆井較少[37],當(dāng)前進(jìn)行塔里木盆地海相原油油源對(duì)比時(shí)經(jīng)常選用臺(tái)盆區(qū)較為公認(rèn)的烴源巖樣品,如TZ12井、TZ30井和LN46井的中-上奧陶統(tǒng)烴源巖,TD2井、KN1井和H3井的寒武系烴源巖等[31,37-39,41]。
前述分析對(duì)比表明,哈拉哈塘凹陷奧陶系原油與塔河油田奧陶系原油具有相似的主體芳烴生物標(biāo)志物特征。除芳烴碳同位素外,TZ30井和LN46井中-上奧陶統(tǒng)烴源巖、H3井和TD2井寒武系烴源巖不但未能展示出明顯的芳烴生物標(biāo)志物區(qū)別,而且均與哈拉哈塘凹陷原油顯示出較高相似性,并不能有效確認(rèn)其可能的烴源層。
芳烴化合物中有一類特殊生物標(biāo)志物——甲基三芳甾烷。它由多個(gè)異構(gòu)體組成,其組成型式可以有效應(yīng)用于油油、油源對(duì)比[39-41]。特別是其中的三芳甲藻甾烷,是芳構(gòu)化作用造成的具有3個(gè)芳香環(huán)的甲藻甾烷,屬于溝鞭藻屬的生物標(biāo)志物,生源意義明顯[41]。塔里木盆地臺(tái)盆區(qū)中-上奧陶統(tǒng)烴源巖含有低豐度的甲基三芳甾烷系列(圖5a中4、6~9號(hào)峰),且不具三芳甲藻甾烷的豐度優(yōu)勢(shì)。而寒武系烴源巖則發(fā)育較為豐富的甲基三芳甾烷系列(圖5b),且具有顯著的C29三芳甲藻甾烷的豐度優(yōu)勢(shì)(3號(hào)峰),可以有效區(qū)別這兩套烴源巖[41-42]。
哈拉哈塘凹陷O2yj原油中,甲基三芳甾烷系列的豐度更低,檢測(cè)不到三芳甲藻甾烷(圖5c,d),其甲基三芳甾烷系列的分布型式仍然與TZ30井O2-3烴源巖如出一轍,對(duì)比良好,而與TD2井寒武系黑色泥巖反差甚大。
前人研究亦表明,塔河油田奧陶系原油由于呈現(xiàn)與中-上奧陶統(tǒng)烴源巖分布相似,與寒武系烴源巖明顯不同的甲基三芳甾烷、甲藻甾烷和三芳甾烷的分布[43-44],既表明出其源于中-上奧陶統(tǒng)烴源巖,又反映出其與哈拉哈塘凹陷奧陶系原油成因上的相似性。
2) 哈拉哈塘凹陷奧陶系原油具極低豐度的甲基三芳甾烷系列,且基本檢測(cè)不到三芳甲藻甾烷,芳烴δ13C 值較輕,為-31.7‰~-32.8‰,與塔河油田奧陶系原油和臺(tái)盆區(qū)中-上奧陶統(tǒng)烴源巖對(duì)比良好,而與寒武系黑色泥巖區(qū)別顯著,表明其與中-上奧陶統(tǒng)烴源巖有成因上的相關(guān)性。
圖5 原油及源巖甲基三芳甾烷系列對(duì)比Fig.5 Comparison of methyl triaromatic sterane between oil samples from the Halahatang Sag and potential source rocksa.TZ30井,埋深4 918 m,O2-3,黑色泥灰?guī)r;b.TD2井,埋深4 777.2 m,,黑色泥巖;c.H601-2井,埋深6 556.08~6 664.72 m,O2yj,輕質(zhì)油;d.XK9C井,埋深6 757.01~7 011.67 m,O2yj,輕質(zhì)油
[1] Peters K E,Walters C C,Moldowan J M.The biomarker guide(Volumes 2)[M].London:Cambridge University Press,2005.
[2] Requejo A G,Sassen R,McDonald T,et al.Polynuclear aromatic hydrocarbons as indicators of the source and maturity of marine crude oils[J].Organic Geochemistry,1996,24:1017-1033.
[3] Oliveira C R,Oliveira C J F,Ferreira A A,et al.Characterization of aromatic steroids and hopanoids in marine and lacustrine crude oils using comprehensive two dimensional gas chromatography coupled to time-of-flight mass spectrometry[J].Organic Geochemistry,2012,53:131-136.
[4] Hughes W B,Holba A G,Dzou L I.The ratios of dibenzothiophene to phenanthrenes and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J].Geochimica et Cosmochimica Acta,1995,59:3581-3598.
[5] Sivan P,Datta G C,Singh R R.Aromatic biomarkers as indicators of source,depositional environment,maturity and secondary migration in the oils of Cambay Basin,India[J].Organic Geochemistry,2008,39:1620-1630.
[6] Radke M.Application of aromatic compounds as maturity indicators in source rocks and crude oils[J].Marine and Petroleum Geology,1988,5:224-236.
[8] Chang Xiangchun,Wang Tieguan,Li Qiming,et al.Maturity assessment of severely biodegraded marine oils from the Halahatang Depression in Tarim Basin[J].Energy Exploration and Exploitation,2012,30:331-350.
[9] Dahl J,Moldowan J M,Summons R E,et al.Extended 3b-alkyl steranes and 3-alkyl triaromatic steroids in crude oils and rock extracts[J].Geochimica et Cosmochimica Acta,1995,59:3717-3729.
[10] Wardroper A M K,Hoffmann C F,Maxwell J R,et al.Crude oil biodegradation under simulated and natural conditions-Ⅱ aromatic steroid hydrocarbons[J].Organic Geochemistry,1984,6:605-617.
[11] Asif M,Grice K,Fazeelat T.Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin,Pakistan[J].Organic Geochemistry,2009,40:301-311.
[12] 云金表,金之鈞,解國軍.塔里木盆地下古生界主力烴源巖分布[J].石油與天然氣地質(zhì),2014,35(6):827-837 Yun Jinbiao,Jin Zhijun,Xie Guojun.Distribution of major hydrocarbon source rocks in the Lower Palaeozoic,Tarim Basin[J].Oil and Gas Geology,2014,35(6):827-837.
[13] 黃繼文,顧憶,丁勇,等.塔里木盆地北部地區(qū)上奧陶統(tǒng)烴源條件[J].石油與天然氣地質(zhì),2012,33(6):853-858. Huang Jiwen,Gu Yi,Ding Yong,et al.Upper Ordovician source rocks in northern Tarim Basin[J].2012,33(6):853-858.
[14] 盧玉紅,肖中堯,顧喬元,等.塔里木盆地環(huán)哈拉哈塘海相油氣地球化學(xué)特征與成藏[J].中國科學(xué)(D輯),2007,37(增Ⅱ):167-176. Lu Yuhong,Xiao Zhongyao,Gu Qiaoyuan,et al.Geochemistry and accumulation of marine petroleum around the Halahatang Depression of Tarim Basin[J].Science in China(D Series),2007,47(SⅡ):167-176.
[15] 朱光有,劉興旺,朱永峰,等.塔里木盆地哈拉哈塘地區(qū)復(fù)雜油氣藏特征及其成藏機(jī)制[J].礦物巖石地球化學(xué)通報(bào),2013,32(2):231-242. Zhu Guangyou,Liu Xingwang,Zhu Yongfeng,et al.The characteristics and the accumulation mechanism of complex reservoirs in the Hanilcatam area,Tarim Basin[J].Acta Petrologica Sinica,2013,32(2):231-242.
[16] 朱光有,楊海軍,朱永峰,等.塔里木盆地哈拉哈塘地區(qū)碳酸鹽巖油氣地質(zhì)特征與富集成藏研究[J].巖石學(xué)報(bào),2012,27(3):827-844. Zhu Guangyou,Yang Haijun,Zhu Yongfeng,et al.Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area,Tarim Basin[J].Acta Petrologica Sinica,2012,27(3):827-844.
[17] 張麗娟,范秋海,朱永峰,等.塔北哈6區(qū)塊奧陶系油藏地質(zhì)與成藏特征[J].中國石油勘探,2013,18(2):7-12. Zhang Lijuan,Fan Qiuhai,Zhu Yongfeng,et al.Geological and accumulations characteristics of Ordovician oil reservoir in Ha 6 block of Tabei[J].China Petroleum Exploration,2013,18(2):7-12.[18] Chang Xiangchun,Wang Tieguan,Li Qiming,et al.Geochemistry and possible origin of petroleum in Palaeozoic reservoirs from Halahatang Depression[J].Journal of Asian Earth Sciences,2013,74:129-141.
[19] 廖澤文,張綠惠,楊楚鵬,等.塔里木盆地哈拉哈塘凹陷東西兩側(cè)海相稠油地球化學(xué)特征:以LG9井和DH1-6-9井稠油為例[J].地球化學(xué),2010,39(2):149-153. Liao Zeweng,Zhang Lvhui,Yang Chupeng,et al.Geochemical characteristics of heavy oils from the east and west sides of Halahatang Depression,Tarim Basin,China:exemplified by the oils of LG7 and DH1-6-9[J].Geochimica,2010,39(2):149-153.
[20] 崔海峰,鄭多明,滕團(tuán)余.塔北隆起哈拉哈塘凹陷石油地質(zhì)特征與油氣勘探方向[J].巖性油氣藏,2009,21(2):54-58. Cui Haifeng,Zheng Duoming,Teng Yuanyu.Petroleum geologic characteristics and exploration orientation in Halahatang Depression of Tabei uplift[J].Lithologic Reservoirs,2009,21(2):54-58.
[21] 黃太柱,蔣華山,馬慶佑.塔里木盆地下古生界碳酸鹽巖油氣成藏特征[J].石油與天然氣地質(zhì),2014,35(6):780-787. Huang Taizhu,Jiang Huashan,Ma Qingyou.Hydrocarbon accumulation characteristics in Lower Paleozoic carbonate reservoirs in Tarim Basin[J].Oil & Gas Geology,2014,35(6):780-787.
[22] Tissot B P,Welte D H.Petroleum formation and occurrence[M].Berlin:Springer,1984.
[23] Aarssen B G K,Bastow T P,Alexander R et al.Distributions of methylated naphthalenes in crude oils:indicators of maturity,biodegradation and mixing[J].Organic Geochemistry,1999,30:1213-1227.
[24] Puttmann W,Villar H.Occurrence and geochemical significance of 1,2,5,6-tetra-methylnaphthalene[J].Geochimica et Cosmochimica Acta,1987,51:3023-3029.
[25] Strachan M G,Alexander R,Kagi R I.Trimethylnaphthalenes in crude oils and sediments:effects of source and maturity[J].Geochimca et Cosmochimca Acta,1988,52:1255-1264.
[26] 朱揚(yáng)明,張洪波,傅家謨,等.塔里木不同成因原油芳烴組成和分布特征[J].石油學(xué)報(bào),1998,19(3): 33-37. Zhu Yangming,Zhang Hongbo,Fu Jiamo,et al.Distribution and composition of aromatic hydrocarbon in various oils from Tarim Basin[J].Acta Petrolei Sinica,1998,19(3):33-37.
[27] Alexander R,Kagi R I,Sheppard P N.1,8-Dimethylnaphthalene as an indicator of petroleum maturity[J].Nature,1984,308:442-443.
[28] 梁狄剛,郭彤樓,陳建平,等.中國南方海相生烴成藏研究的若干新進(jìn)展(二):南方四套區(qū)域性海相烴源巖的地球化學(xué)特征[J].海相油氣地質(zhì),2009,14(1):1-15. Liang Digang,Guo Tongluo,Chen Jianping,et al.Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions,Southern China(Part 2):Geochemical characteristics of four suits of regional marine source rocks,South China[J].Marine Origin Petroleum Geology,2009,14(1):1-15.
[29] 張敏,張俊.塔里木盆地原油噻吩類化合物的組成特征及地球化學(xué)意義[J].沉積學(xué)報(bào),1999,17(1): 121-125. Zhang Min,Zhang Jun.Composition characteristics and geochemical significance of thiophene-type compounds for crude oils in Tarim Basin[J].Acta Sedimentol Sinica,1999,17(1):121-126.
[30] 林壬子,王培榮,戴允鍵,等.礦物燃料中多環(huán)芳烴的石油地球化學(xué)意義[C]∥有機(jī)地球化學(xué)論文集,北京:地質(zhì)出版社,1987:129-140. Lin Renzi,Wang Peirong,Dai Yunjian,et al.Petroleum geochemical significance of polycyclic aromatic hydrocarbons in fossil fuels[C]∥Collection on Organic Geochemistry,Beijing:Geological Press,1987:129-140.
[31] Li J G,Li M,Wang Z Y.Dibenzofuran series in terrestrial source rocks and crude oils and applications to oil-source rock correlations in the Kuche Depression of Tarim Basin,NW China[J].Chinese Journal of Geochemistry,2004,23:113-123.
[32] Didyk B M,Simoneit B R T,Brassell S C,et al.Organic geochemical indicators of palaeo-environmental conditions of sedimentation[J].Nature,1978,272:216-222.
[33] Haven H L,Leeuw J W,Sinninghe D J S,et al.Application of biological markers in the recognition of palaeo-hypersaline environments in lacustrine petroleum source rocks[C].Geological Society Special Publication,1988.
[34] Boreham C J,Crick I H,Powell T G.Alternative calibration of the methyl phenanthrene index against vitrinite reflectance:application to maturity measurements on oils and sediments[J].Organic Geochemistry,1988,12:289-294.
[35] Chakhmakhchev A,Suzukf N.Aromatic sulfur compounds as maturity indicators for petroleums from the Buzuluk Depression,Russia[J].Organic Geochemistry,1995,23:617-625.
[36] 羅健,程克明,付立新,等.烷基二苯并噻吩——烴源巖熱演化新指標(biāo)[J].石油學(xué)報(bào),2001,22(3):27-31. Luo Jian,Cheng Keming,Fu Lixin,et al.Alkylated dibenzothiophene index:a new method to assess thermal maturity of source rocks[J].Acta Petrolei Sinica,2001,22(3):27-31.
[37] Li S M,Pang X Q,Jin Z J,et al.Petroleum source in the Tazhong Uplift,Tarim Basin:New insights from geochemical and fluid inclusion data[J].Organic Geochemistry,2010,41:531-553.
[38] Hanson A D,Zhang S C,Moldowan J M.Molecular organic geochemistry of the Tarim Basin,northwest China[J].AAPG Bulletin,2000,84:1109-1128.
[39] Zhang S C,Hanson A D,Moldowan J M,et al.Paleozoic oil-source rock correlations in the Tarim Basin,NW China[J].Organic Geochemistry,2000,31:273-286.
[40] Zhang S C,Huang H P.Geochemistry of Palaeozoic marine petroleum from the Tarim Basin,NW China[J].Organic Geochemistry,2005,36:1204-1214.
[41] 張水昌,梁狄剛,黎茂穩(wěn),等.分子化石與塔里木盆地油源對(duì)比[J].科學(xué)通報(bào),2002,47 (增刊):16-23. Zhang Shuichang,Liang Digang,Li Maowen,et al.Molecular fossils and oil-source rock correlations in Tarim Basin,NW China[J].Chinese Science Bulletin,2002,47(S):16-23.
[42] 王招明,肖中堯.塔里木盆地海相原油的油源問題的綜合評(píng)述[J].科學(xué)通報(bào),2004,49(增I):1-8. Wang Zhaoming,Xiao Zhongyao.Comprehensive discussion on the source rocks of marine oils in Tarim Basin[J].Chinese Science Bulletin,2004,49(SI):1-8.
[43] 馬安來,張水昌,張大江,等.輪南、塔河油田稠油油源對(duì)比[J].石油與天然氣地質(zhì),2004,25(1):31-38. Ma Anlai,Zhang Shuichang,Zhang Dajiang,et al.Oil and source correlation in Lunnan and Tahe heavy oil fields[J].Oil & Gas Geology,2004,25(1):31-38.
[44] 鄭朝陽,柳益群,段毅,等.塔里木盆地塔河油田原油芳烴地球化學(xué)特征及其成因[J].地質(zhì)科技情報(bào),2011,30(1):96-102. Zheng Zhaoyang,Liu Yiqun,Duan Yi,et al.Geochemical characteristics of aromatic compounds and genesis of crude oils from Tahe oilfield[J].Geological Science and Technology Information,2011,30(1):96-102.
(編輯 張玉銀)
Aromatic biomarkers and oil source of the Ordovician crude oil in the Halahatang Sag,Tarim Basin
Chang Xiangchun1,Wang Tieguan2,Tao Xiaowan3,Cheng Bin2
(1.ShandongProvincialKeyLaboratoryofDepositionalMineralizationandSedimentaryMinerals,ShandongUniversityofScienceandTechnology,Qingdao,Shandong266590,China;2.StateKeyLaboratoryofPetroleumResourcesandProspecting,ChinaUniversityofPetroleum,Beijing102249,China;3.ResearchInstituteofPetroleumExplorationandDevelopment,PetroChina,Beijing100083,China)
Halahatang Sag has been one of the focuses for petroleum exploration in recent years.In order to confirm its oil source,depositional environment,thermal maturity and possible source rocks,systematic aromatic biomarkers analyses were performed on 26 oil samples from the Halahatang Sag and the Ordovician in Tahe oilfield as well as 4 potential source rock samples from the unmodified foreland region of the Tarim Basin.The results show that the Halahatang oil samples are characterized by high contents of naphthalenes and phenanthrenes,low content of biphenyl,low abundance of 1,2,5-TMN,high abundance of 1,3,6-TMN,high ratios of 4-MDBT/DBT and(2+3)-MDBT/DBT,and light carbon isotope of aromatics,which are similar to those of oil samples from the Tahe oilfield,indicating typical marine origin with contribution of lower algae and bacteria in predominance.High relative content of dibenzothiophene and low values of DBT/P and Pr/Phinfer a strong reducing depositional environment and carbonate lithology for the source rock.The equivalent vitrinite reflectances,i.e.Rc1 and Rc2,reveal a moderate to high maturity.Comparison of methyl triaromatic sterane isomeride shows that the Halahatang and Tahe oils correlate well with the Middle-Upper Ordovician source rocks,indicating a genetic affinity.
oil source,depositional environment,thermal maturity,oil-source correlation,aromatic,biomarker,crude oil,Halahatang Sag
2014-10-03;
2014-11-25。
常象春(1974—),男,教授、博士,油氣地質(zhì)與地球化學(xué)。E-mail:xcchang@sina.com。
國家自然科學(xué)基金項(xiàng)目(41272139);山東省自然科學(xué)杰出青年基金項(xiàng)目(JQ201311);山東科技大學(xué)科技計(jì)劃項(xiàng)目(2012KYJQ101)。
0253-9985(2015)02-0175-08
10.11743/ogg20150201
TE122.1
A