• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical and Experimental Study of Nitrogen-rich Compounds of Biurea and 1-Amino-biurea

    2015-05-10 02:24:46-,-,-,-
    含能材料 2015年9期

    -, -, -, -

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

    1 Introduction

    Biurea is widely used in food additive and contamination analysis, researchers have conducted a study of this compound[1-3]. Biurea is also used industrially as a high-temperature blowing agent for expanding plastics such as polypropylene. The thermal decomposition of biurea is currently being studied and the crystal structure has been determined in order to provide evidence to explain the mechanism of the solid-state decomposition[4].

    1-Amino-biurea is that we have just synthesized, with the amino substituted biurea end-group hydrogen atom[5]. Biurea and 1-amino-biurea both are thought to be useful materials and intermediates. As derivatives of hydrazine, they possess strong coordination capacity and reduction ability, and also play an important role as reducing agent in the metal complexes[6-7]. Since they are interesting azotic chain ligands with several lone-pair electron pairs that may coordinate with many metal ions and oxidizing groups as mono-dentate or multi-dentate ligands[8-12]. In addition, since this kind of derivatives may design a variety of energetic coordination compounds with explosive properties, they have gained more and more attentions as ligand with transition-metals especially in recent years in the areas of primary explosives, propellants, and high explosive[13-18].

    This paper reports X-ray crystal of 1-amino-biurea, since the crystal structure of biurea has been determined[4]. To our knowledge, neither theoretical investigations nor comparison between the calculated and experimental results for the biurea and 1-amino-biurea compounds are available, which attract our attention and prompt us to make a study. Therefore, this paper reports the preparation and quantum chemical calculations of the two compounds. In addition, a comparison between the calculated results and experimental ones is performed, which may helpful for providing insight into the structures and properties of the title compounds and their derivatives.

    2 Experimental and Computational Section

    General caution:title compounds are energetic materials and tend to explode under certain conditions. Appropriate safety precautions should be taken, especially when these compounds are prepared on a larger scale.

    2.1 Materials and Instruments

    All the reagents used in the synthesis of title compounds were analytical grade and purchased commercially from Sinopharm Chemical Reagent Co., Ltd.

    2.2 Synthesis of 1-amino-biurea

    The urea (0.2 g, 20 mmol) was slowly added to a mixture of carbohydrazide(1.8 g, 20 mmol) and acetone (50 mL) at room temperature. After vigorous stirring in autoclave at 110 ℃ for 4 h, the resulting clear solvent was removed in vacuum. The product was recrystallized from water, in 65.3% yield. The slightly yellow single crystal with dimensions of 0.52 mm×0.28 mm×0.2 mm suitable for X-ray measurement were obtained by recrystallization of the products with distilled water at room temperature for 1 w.

    2.3 X-ray crystallography

    A Bruker Smart 1000 CCD diffractometer with graphite mono-chromated MoKαradiation (λ=0.071073 nm) was applied for structure analyses of the title compounds. The data were collected at 294(2) K usingφandωscan modes. A semi-empirical absorption correction was made using SADABS software[19]. The structure was solved using the direct methods and successive Fourier difference syntheses (SHELXS-97)[20], refined using full-matrix least-squares onF2with anisotropic thermal parameters for all non-hydrogen atoms (SHELXL-97)[21]. Hydrogen atoms were added theoretically and refined with riding model position parameters and fixed isotropic thermal parameters. Detailed information concerning crystallographic data collection and structure refinement is summarized in Table 1.

    Table1Crystal data and structure refinement details of 1-amino-biurea

    chemicalformulaC2H7N5O2formulamass133.13temperature/K294(2)crystalsystemOrthorhombicspacegroupP2(1)/nZ4a/?9.194(1)b/?4.756(1)c/?12.665(2)V/?3553.80(2)density(calculated)/g·cm-31.597absorptioncoefficient/mm-10.137F(000)/?280θrangefordatacollection/(°)3.22to29.25h,k,andlrange0to12,0to6,-17to1reflectionmeasured1050independentreflection(Rint)854refinementmethodFull-matrixleast-squaresonF2data/restraints/parameters854/3/96goodness-of-fitonF20.897finalR1andwR2[I>2σ(I)]R1=0.0385,wR2=0.08491)R1andwR2indices(alldata)R1=0.0588,wR2=0.09191)largestdiff.peakandhole/e,?-30.318,-0.211

    2.4 Computational methods

    Based on crystal data, the structure optimization on the biurea and 1-amino-biurea compounds were carried out using the density functional theory (DFT) with the B3LYP method[22-23]employing the 6-31G**and cc-pVTZ basis sets[24-26]. In addition, the harmonic vibrational frequencies and infrared intensity were predicted at the B3LYP/cc-pVTZ level of theory DFT-B3LYP denoted the combination of the Becke′s three parameters hybrid functional with the Lee-Yang-Parr (LYP) correlation functional. The DFT method deals with the electron correlation but is still computationally economic. Because the B3LYP method was more widely used and tested, the hybrid density functional of B3LYP with the cc-pVTZ basis set was used for the calculations. The structure of 1-amino-biurea was fully optimized and the natural bond orbital analysis was performed on the optimized structure. The crystal structure of 1-amino-biurea obtained from the X-ray diffraction was used for the computation. All electronic structure calculations were performed with the Gaussian 03 program package.

    3 Results and Discussion

    3.1 The crystal structure of 1-amino-biurea

    The crystal structure of 1-amino-biurea is shown in Fig.1. The shape of the 1-amino-biurea molecule can be explained by considering the following interactions. The repulsion of the lone pairs on the adjacent N atoms will be very strong due to theirp-πnature and a rotation about the N—N bond will reduce this interaction. However, as the N—N bond rotates the two C atoms start to approach each other. Thus final contact distance between these two C atoms was 3.380 ?(1-amino-biure), while 3.385 ? in biurea[4]. The further rotation about the N—C bonds may be imposed by the geometry of the hydrogen-bonding system.

    Fig.1Molecular structure and atom label of 1-amino-biurea

    Fig.2The packing of the molecule of 1-amino-biurea in crystal lattice

    The obtained selected bond lengths and bond angles of 1-amino-biurea are summarized in Table 2. According to the bond lengths data of the compound, it can be concluded that the bond lengths of the N—N and C—N of the compounds are 1.386-1.409? and 1.330-1.364?, which are shorter than the general lengths (1.450 and 1.470?). At the same time, the bond lengths of CO of 1-amino-biurea are the same 1.247?, which are longer than the general length (1.230?). So, the bond lengths of N—N, C—N, and CO tend to a homogeneous value, which is the result from thep-πconjugate effect between double bond of CO and thepelectronics of N atoms. From the data of bond angles, we can find that N(2)—N(1)—H(1A), N(2)—N(1)—H(1B) bond angles of 1-amino-biurea are close to 109°28′, so N(1) atom adoptssp3hybridized and H(1A), H(1B), N(2) form chemical bonds, and the othersp3hybrid orbital on a pair of lone pair electrons. Else N, C atoms of 1-amino-biurea are adoptedsp2hybridized, since the other bond angles are close to 120°.

    Table2Selected bond lengths and bond angles of 1-amino-biurea

    bondlength/?crystaldataB3LYP/6-31G**B3LYP/cc-pVTZO(1)—C(1)1.247(3)1.2231.217O(2)—C(2)1.247(3)1.2201.214N(1)—N(2)1.409(4)1.4071.403N(2)—C(1)1.337(4)1.3651.360N(3)—N(4)1.391(3)1.3931.388N(3)—C(1)1.364(4)1.4071.405N(4)—C(2)1.364(4)1.4101.404N(5)—C(2)1.330(4)1.3261.359bondangle/(°)crystaldataB3LYP/6-31G**B3LYP/cc-pVTZC(1)—N(2)—N(1)122.18(2)120.74121.55C(1)—N(3)—N(4)119.93(3)119.89120.77C(2)—N(4)—N(3)121.53(2)120.11121.08O(1)—C(1)—N(2)122.93(3)124.25124.49O(1)—C(1)—N(3)119.25(3)120.57120.32N(2)—C(1)—N(3)117.69(2)115.16115.18O(2)—C(2)—N(4)118.33(3)119.95119.98O(2)—C(2)—N(5)123.22(3)125.29125.03N(5)—C(2)—N(4)118.45(2)114.76114.92C(1)—N(3)—N(4)—C(2)109.6(3)133.63127.77N(1)—N(2)—C(1)—N(3)-177.8(3)-170.54-171.89N(4)—N(3)—C(1)—N(2)-13.7(4)-16.97-15.99N(3)—N(4)—C(2)—N(5)-10.6(4)-16.86-19.06N(1)—N(2)—C(1)—O(1) 0.1(5) 7.81 6.54N(4)—N(3)—C(1)—O(1)168.3(3)164.61165.51N(3)—N(4)—C(2)—O(2)168.8(3)163.86163.83

    Table3H-bond lengths and bond angles of 1-amino-biurea

    D—H…Ad(D—H)/?d(H…A)/?d(D…A)/?∠DHA/(°)N(1)—H(1B)…N(5)0.8866(10)2.274(18)3.095(4)158(4)N(2)—H(2)…O(1)0.8762.102.905156.2N(3)—H(3)…O(2)0.862.022.839(3)159.2N(4)—H(4)…O(1)0.862.082.877(3)153.6N(5)—H(5A)…N(1)0.862.253.056(4)155.9N(5)—H(5B)…O(2)0.862.162.957(3)154.9

    3.2 Quantum chemical calculation of biurea and 1-amino-biurea

    The calculated data of 1-amino-biurea and biurea from B3LYP methods are shown in Table 2 and Table 4, respectively. The molecular structure and atom labels of biurea are shown in Fig.3. We can find the computational results obtained at B3LYP/6-31G**and B3LYP/cc-pVTZ level of theories are very similar. The B3LYP/ cc-pVTZ calculations give a remarkably good description of both of the molecular geometry, in which all bond distances of biurea deviate by less than 0.124 ? from experimental values, and the largest bond-angle error of biurea is 6.9°, while all bond distances of 1-amino-biurea deviate by less than 0.153 ? from experimental values, and the largest bond-angle error of 1-amino-biurea is 18.17°. These tiny differences are because that the gaseous molecule have been calculated in an ideal state of the most stable structure, and the calculation process does not take into account the interaction between molecules, while in the crystal structure exists in intermolecular hydrogen bonding, van der Waals effect.

    The preferable sites for coordination in the title compounds are investigated from the theoretical results of Mulliken populations, NBO atomic charges and MESP under level of B3LYP/cc-pVTZ. These methods are proved to be accurate to predict to preferable coordination positions[27-29].

    Fig.3The molecular structure and atom label of biurea

    Table4Selected bond lengths and bond angles of biurea

    bondlength/?crystaldataB3LYP/6-31G**B3LYP/cc-pVTZO(1)—C(1)1.248(17)1.2211.215N(1)—C(1)1.362(2)1.4121.405N(1)—N(1A)1.386(2)1.3931.387N(2A)—C(1A)1.324(2)1.3601.357bondangle/(°)crystaldataB3LYP/6-31G**B3LYP/cc-pVTZN(2A)—C(1A)—N(1A)117.96(13)114.55114.91O(1A)—C(1A)—N(2A)123.19(13)125.45125.10O(1)—C(1)—N(1)118.84(14)119.93119.93C—N(1)—N(1A)120.93(14)120.03121.05N(1A)—N(1)—C(1)—O(1)169.25(12)161.59163.65N(1)—N(1A)—C(1A)—N(2A)-12.2(2)-21.41-19.10

    The harmonic vibrationalfrequencies and their infrared intensity of biurea and 1-amino-biurea are predicted at the B3LYP/ cc-pVTZ level of theory mentioned above, which all yield real frequencies for it. The predicted frequencies and intensities for biurea and 1-amino-biurea are listed in Table 5 and Table 6, respectively. All theoretical frequencies reported here are listed as calculated. Only the main vibrational frequencies of some functional groups have been assigned.

    According toTable 5, the vibrational frequencies can be divided into three main absorption regions. Low frequency of less than 700 cm-1is the N—H bond of the rocking vibration absorption; medium frequency range of 900 cm-1to 1800 cm-1is N(2)—H bond of the swing plane symmetry vibration at approximately 900 cm-1, N(1)—H bond of the rocking vibration at about 1500 cm-1, N(2)—H bond of the shear vibration at about 1700 cm-1, as well as CO stretching vibration around 1800 cm-1; high frequency area of 3450 cm-1to 3650 cm-1is the N—H bond stretching vibration absorption area.

    These characteristic absorption bandsshowed in Table 6 are shifted to lower wave number compared to the free ligand, and this indicates that the N atom of the hydrazine group and the carbonyl atom coordinate to the center cation. The important bands observed in the range of 1797 cm-1to 1358 cm-1and 783 cm-1to 634 cm-1are assigned to the symmetric stretching vibration and deformation vibration of the C—O bond. There are absorption peaks around 913 cm-1and 951 cm-1, which are assigned to the symmetric vibration of the C—N bond.

    Table5A full vibrational assignment of biurea based on the B3LYP/ cc-pVTZ level of theory

    frequency/cm-1Intensity/km·mol-1frequency/cm-1Intensity/km·mol-167 3.995123.581 3.31082 3.3100 0.11094 0.113440.21198 4.6235307.81385334.030215.31402108.1310 3.61438 6.3430 8.9148047.152054.61589246.5539 5.9160698.555070.41797803.3566 8.0179781.6577113.4354229.0651 6.9354413.074155.3360620.277364.9360856.177916.33742148.5950 0.1374211.8

    Table6A full vibrational assignment of 1-amino-biurea based on the B3LYP/ cc-pVTZ level of theory

    frequency/cm-1intensity/km·mol-1frequency/cm-1intensity/km·mol-156 1.6102633.777 0.91090 2.978 1.91189 7.399 1.2122313.019227.71299116.9222114.51358 1.724045.91394225.231513.9142831.232316.4147534.342815.61523257.847592.21599153.152497.2170925.054032.61776363.9574110.31797427.863431.03461 1.1703 2.03526 3.773166.9353420.477665.0354621.078312.4360535.491343.0364046.795116.2373879.6

    Thecorrected factor of the vibrational frequencies calculated based on B3LYP/ cc-pVTZ level is 0.9614[30]. The corrected values of the calculated vibrational frequencies are basically in accordance with the experimental ones (biurea: 1570, 1660, 3160, 3430 cm-1)[31].

    The selected Mulliken charge distribution data of biurea and 1-amino-biurea crystal are listed in Tables 7 and 8, respectively. Charge distribution of the carbon and hydrogen atoms are positively charged, nitrogen and oxygen atoms with a negative charge. This is mainly due to nitrogen and oxygen atoms of electro-negativity are relatively large, more capable to attract electrons. Since every N and O atom of biurea and 1-amino-biurea have a lone electron pair, all of them may be a potential coordination site. In biurea molecule, O atoms of the CO(N)-group have the most Mulliken charge of -0.3470e, followed by N(2A) atoms of the NH2(C)-group (-0.2371e) and the next is N(2) atom (-0.2371e). While, O(1) atom (-0.3700e) has the most Mulliken charge, secondly O(2) atoms(-0.3449e) of the CO(N) group and thirdly N(5) atoms (-0.2399e) of the NH2(C) group of 1-amino-biurea. Herein, O, N(2A) and N(2) atoms of biurea and O(1), O(2) and N(5) atoms of 1-amino-biurea are the most probable coordination sites. Expressed as bi-dentate ligand, which is nitrogen atom and carbonyl oxygen atom also participates in coordination.

    Table7Selected Mulliken charge of biurea crystal at the B3LYP/ cc-pVTZ level

    atomcharge/eatomcharge/eO(1)-0.3469N(1)-0.1613N(2)-0.2371C(1)0.2435H(1)0.1644H(2A)0.1662H(2B)0.1712O(1A)-0.3470N(1A)-0.1613N(2A)-0.2371C(1A)0.2435H(1A)0.1644H(2AA)0.1662H(2BA)0.1712

    Table8Selected Mulliken charge of 1-amino-biurea crystal at the B3LYP/ cc-pVTZ level

    atomcharge/eatomcharge/eO(1)-0.3700O(2)-0.3449N(1)-0.2382N(2)-0.1213N(3)-0.1665N(4)-0.1599N(5)-0.2399C(1)0.2557C(2)0.2434H(1A)0.1508H(1B)0.1557H(2)0.1723H(3)0.1619H(4)0.1650H(5A)0.1715H(5B)0.1645

    The structures optimized by natural bond orbital (NBO) analysis, its atomic charge distribution of biurea in Table 9 and 1-amino-biurea in Table 10 are obtained. NBO atomic theory of orthogonal approach to determine the asymmetry between the atomic orbitals[22, 32], as compared with the Mulliken charge that it is given nothing to do with the basis set of basic NBO charge. Charge distribution was the same as the above-mentioned compounds, namely carbon, hydrogen atoms are positively charged, nitrogen and oxygen atoms with a negative charge. According to Table 9, all the N atoms in biurea molecule, NH2(C) based on the N (2) and N(2A) atom have the most NBO charge (-0.8159e), followed by O atoms of the CO(N)-group of biurea(-0.6339e). From Table 10, we can see that of all the atoms of 1-amino-biurea, N(5) atoms of the NH2(C)-group has the most NBO charge (-0.8172e), secondly O(1) atom (-0.6449e) and thirdly O(2) atoms(-0.6314e) of the CO(N)-group of 1-amino-biurea. O(1), O(2) and N(5) atoms of 1-amino-biurea are the most probable coordination sites. Therefore, NBO charge conformed the biurea ligand with metal ions of coordination is O, N(2), N(2A) atoms while, O(1), O(2) and N(5) atoms of 1-amino-biurea are the most probable coordination sites.

    Table9Selected NBO charge of biurea crystal at the B3LYP/cc-pVTZ level

    atomcharge/eatomcharge/eO(1)-0.6339N(1)-0.4937N(2)-0.8159C(1)0.7646H(1)0.3801H(2A)0.3995H(2B)0.3992O(1A)-0.6339N(1A)-0.4937N(2A)-0.8159C(1A)0.7646H(1A)0.3801H(2AA)0.3995H(2BA)0.3992

    Table10Selected NBO charge of 1-amino-biurea crystal at the B3LYP/cc-pVTZ level

    atomcharge/eatomcharge/eO(1)-0.6449O(2)-0.6314N(1)-0.6183N(2)-0.4575N(3)-0.4889N(4)-0.4917N(5)-0.8172C(1)0.7421C(2)0.7644H(1A)0.3466H(1B)0.3453H(2)0.3941H(3)0.3792H(4)0.3814H(5A)0.3991H(5B)0.3978

    The molecular electrostatic potential (MESP) surface for biurea and 1-amino-biurea molecules calculated at B3LYP/cc-pVTZ level of theory, are given in Fig.4 and Fig.5, respectively. The red and blue color means positive and negative molecular electrostatic potential. It should be noted that the largest negative value of MESP does not necessarily correspond to the atom with the largest negative charge. In some cases, calculations of MESP allow to predict successfully the coordination sites in molecules[33]. From Fig.4 and Fig.5, it can be seen that, the nuclei naturally display the positive electrostatic potential (shown in red) on all molecules. The strong negative electrostatic potential (shown in blue) region associates with the lone pair of the carbonylgroup, which keep with the preceding NBO charges on atoms. In Fig.4, the highest negative values of the electrostatic potential are located near the N(2), N(2A) and O atoms of the carbonyl group of the biurea, and only a shallow minimum appears between the nitrogen atoms of the two amino groups. Again the negative potential occupies mainly on O(1), O(2) and N(5) atoms of the 1-amino-biurea, which may be attracted to the electrophiles. Therefore, the possible coordination sites in biurea molecule would be the O, N(2) and N(2A) atoms, while, O(1), O(2) and N(5) atoms of 1-amino-biurea are the most probable coordination site.

    In order to study the possible coordination sites in biurea and 1-amino-biurea molecule under formation of complex compounds, three calculations have been carried out, what we can obtain that O, N(2) and N(2A) atoms of biurea are the most probable coordination sites, while O(1), O(2) and N(5) atoms of 1-amino-biurea are the most probable coordination site.

    Fig.4MESP surface for biurea molecule calculated at B3LYP/cc-pVTZ level of theory

    Fig.5MESP surface for 1-amino-biurea molecule calculated at B3LYP/cc-pVTZ level of theory

    4 Conclusion

    (1) The single crystal of 1-amino-biurea is cultured with slow evaporation method. The molecular structure and crystal structure of 1-amino-biurea are determined by X-ray single crystal diffraction analysis.

    (2) DFT B3LYP method with cc-pVTZ basis set is employed to optimize the geometries of biurea and 1-amino-biurea compounds for the first time. The crystal structures of title compounds obtained from the X-ray diffraction are used for the computation with the Gaussian 03 program package. The computational results obtained at B3LYP/cc-pVTZ level of theories give a remarkably good description of the molecular geometry.

    (3) Quantum-chemical calculations of Mulliken charge distribution and the NBO analysis result and molecular electrostatic potential for title compounds using B3LYP/ cc-pVTZ levels of theory show that the O, N(2) and N(2A) atoms of biurea are the most probable coordination site, while O(1), O(2) and N(5) atoms of 1-amino-biurea are preferable sites for metal coordination.

    [1] Anklam E, Callede M B de la. Semicarbazide: occurrence in food products and state-of-the-art in analytical methods used for its determination[J].AnalBioanalChem, 2005, 382(4): 968-977.

    [2] Pereira A S, Donato J L, Nucci G D. Implications of the use of semicarbazide as a metabolic target of nitrofurazone contamination in coated products[J]FoodAdditivesandContaminants, 2004(1), 21: 63-69.

    [3] Mulder P P J, Beumera B, Van Rhijn J A. The determination of biurea: A novel method to discriminate between nitrofurazone and azodicarbonamide use in food products[J].AnalyticaChimicaActa,2007, 586(1-2) : 366-373.

    [4] Brown B S, Russell P R. The crystal and molecular structure of biurea[J].ActaCryst, 1976, B32: 1056-1058.

    [5] Gehlen L H, Dase G. Eine einfache synthese von 1-acyl-5-aminoformyl-carbohydraziden[J].EurJOrgChem, 1961, 646(1): 78-81.

    [6] Wu B D, Li Y, Wang S W, et al. Preparation, crystal structure, thermal decomposition, and explosive properties of a novel energetic compound [Zn(N2H4)2(N3)2]n: a new high-nitrogen material (N=65.60%)[J].ZAnorgAllgChem, 2011, 637(3-4): 450-455.

    [7] Qi S Y, Li Z M, Zhang T L, et al. Crystal Structure, thermal analysis and sensitivity property of [Zn(CHZ)3](ClO4)2[J].ActaChimSinica, 2011, 69(8): 987-992.

    [8] Talawar M B, Agrawal A P, Chhabra J S, et al. Studies on lead-free initiators: synthesis, characterization and performance evaluation of transition metal complexes of carbohydrazide[J].JHazardMater, 2004(1-3), 113: 57-65.

    [9] Wu B D, Zhang J G, Zhang T L, et al. Two environmentally friendly energetic compounds, [Mn(AZT)4(H2O)2](PA)2·4H2O and [Co(AZT)2(H2O)4](PA)2, based on 3-Azido-1,2,4-triazole (AZT) and picrate (PA) [J].EurJInorgChem, 2012, 8: 1261-1268.

    [10] Sun Y H, Zhang T L, Zhang J G, et al. Kinetics of flash pyrolysis of [Co(CHZ)3](ClO4)2and [Ni(CHZ)3](ClO4)2[J].ActaPhysChimSin, 2006, 22(6): 649-652.

    [11] Li Z M, Zhang G T, Zhang T L, et al. Synthesis, structural investigation and properties of a novel energetic coordination polymer [Pb(tza)2]n[J].ActaChimSinica, 2011, 69(10): 1253-1258.

    [12] Liang Y H, Zhang J G, Cui Y, et al. Two novel nitrogen-rich energetic coordination compounds M2(DAT)5(H2O)3(TNR)2(M=Zn and Co): synthesis, characterization, thermal properties and sensitivity[J].ChinJStructChem, 2013, 31(3): 327-338.

    [13] Zhang T L, Yang Y M, Zhang J G, et al. Preparation and molecular structure of [Pb2(TNR)(NO3)2(H2O)] [J].ChinJInorgChem, 2002, 18: 305-308

    [14] Zhang J G, Li Z M, Zang Y, et al. Synthesis, structural investigation and thermal properties of a novel manganese complex Mn2(DAT)2Cl4(H2O)4(DAT=1,5-diaminotetrazole)[J].JHazardMater, 2010, 178(1-3): 1094-1099.

    [15] Bushuyev O S, Brown P, Maiti A, et al. Ionic polymers as a new structural motif for high-energy-density materials[J].JAmChemSoc, 2012, 134(3): 1422-1425.

    [16] Bushuyev O S, Peterson G R, Brown P, et al. Metal-organic frameworks (MOFs) as safer, structurally reinforced energetics[J].ChemEurJ, 2013, 19(5): 1706-1711.

    [17] Wang S J, Tian Y W, You L X, et al. Synthesis, crystal structure and properties of a novel coordination polymer based on a trinuclear Mn(Ⅱ) cluster: [Mn3(bpta)2(bip)2]n[J].ChinJStructChem, 2013, 32(11): 1633-1638.

    [18] Li Z M, Zhang T L, Zhang J G, et al. Synthesis, structure and thermal behaviors of a magnesium(Ⅱ) complex with tetrazole-1-acetic acid[J].ChinJStructChem, 2013, 32(7): 981-988.

    [19] Sheldrick G M, ADABS, Version 2.03[CP]. University of G?ttingen: Germany, 1996.

    [20] Sheldrick G M, SHELXS-97, Program for the solution of crystal structure[CP]. University of Gottingen: Germany, 1997.

    [21] Sheldrick G M, SHELXL-97, Program for the solution of crystal structure[CP]. University of Gottingen: Germany, 1997.

    [22] Becke A D, Density-functional thermochemistry 3. The role of exact exchange[J].JChemPhys, 1993, 98: 5648-5652.

    [23] Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J].PhysRevB, 1988, 37(2): 785-789.

    [24] Dunning T H. Gaussian-basis sets for use in correlated molecular calculations .1. the atoms boron through neon and hydrogen[J].JChemPhys, 1989, 90(2): 1007-1023.

    [25] Kendall R A, Dunning T J, Harrison R J. Electron-affinities of the 1st-row atoms revisited-systematic basis-sets and wave-fuctions[J].JChemPhy, 1992, 96: 6796-6806.

    [26] Woon D E, Dunning T J. Gaussian-basis sets for use in correlated molecular calculations 3. the atoms aluminum through argon [J].JChemPhys, 1993, 98(2): 1358-1371.

    [27] Zhang J G, Zhang T L, Yu K B. The preparation, molecular structure, and theoretical study of carbohydrazide (CHZ)[J].StructChem, 2006, 17(3): 249-254.

    [28] Zhang J G, Zhang T L, Ma G X, et al. The crystal and computed structures of 1,2,4-triazol-5-one (TO)[J].JHeterocyclicChem, 2006, 43(2): 53-508.

    [29] Xu C X, Yin X, Jin X, et al. Two coordination polymers with 3-hydrazino-4-amino-1,2,4-triazole as ligand: synthesis, crystal structures, and non-isothermal kinetic analysis[J].JCoordChem, 2014, 67(11): 2004-2015.

    [30] Anthony P S, Leo R. Harmonic vibrational frequencies: an evaluation of hartree-fock, m?ller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors[J].JPhysChem, 1996, 100 (41): 16502-16513.

    [31] Kirilin A D, Belova L O, Knyazev S P, et al. Organosilyl isocyanates. reactions with hydrazine, 1,1-dimethylhydrazine, and 1-methyl-1-[2-(1-methylhydrazino)-ethyl]-hydrazine and structural and electronic characteristics[J].RussJGeneChem, 2005, 75(12) : 1930-1934.

    [32] Reed A E, Weinstock R B, Weinhold F. Natural- population analysis[J].JChemPhys,1985, 83: 735-746.

    [33] Alcami M, Mo O, Yanez M. Enhanced Al+binding-energies of Some azoles-a theoretical-study of azole-X+(X=Na, K, Al) Complexes[J].JPhysChem, 1992, 96(7): 3022-3029.

    欧美激情 高清一区二区三区| 日韩欧美一区二区三区在线观看 | 久久ye,这里只有精品| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av日韩精品久久久久久密| videosex国产| 男女免费视频国产| 最近最新中文字幕大全免费视频| 高清毛片免费观看视频网站 | 欧美黑人精品巨大| 国产伦人伦偷精品视频| 性少妇av在线| 国产成+人综合+亚洲专区| 久久久久久人人人人人| 99re6热这里在线精品视频| 久久久久久久久久久久大奶| 成人18禁在线播放| 欧美成人午夜精品| 美女高潮喷水抽搐中文字幕| 青草久久国产| 日日夜夜操网爽| 欧美日韩av久久| 亚洲精品成人av观看孕妇| 日韩一区二区三区影片| 亚洲国产欧美日韩在线播放| 一个人免费看片子| kizo精华| 捣出白浆h1v1| 免费高清在线观看日韩| 亚洲性夜色夜夜综合| 欧美日韩亚洲综合一区二区三区_| 99国产精品一区二区蜜桃av | 在线观看免费午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片精品| 日韩制服丝袜自拍偷拍| 俄罗斯特黄特色一大片| 中文字幕色久视频| 成年版毛片免费区| 蜜桃在线观看..| 中亚洲国语对白在线视频| 国产97色在线日韩免费| 国产亚洲精品一区二区www | 纵有疾风起免费观看全集完整版| 色尼玛亚洲综合影院| 激情在线观看视频在线高清 | 老鸭窝网址在线观看| 欧美一级毛片孕妇| av免费在线观看网站| 精品一品国产午夜福利视频| 汤姆久久久久久久影院中文字幕| 久久99热这里只频精品6学生| 热re99久久精品国产66热6| 亚洲成人国产一区在线观看| 久久香蕉激情| 99久久99久久久精品蜜桃| 国产深夜福利视频在线观看| 日本a在线网址| 久久久久国产一级毛片高清牌| 欧美日韩国产mv在线观看视频| 欧美+亚洲+日韩+国产| 国产亚洲欧美在线一区二区| 久久久久久亚洲精品国产蜜桃av| 一边摸一边抽搐一进一出视频| 精品一区二区三卡| 中国美女看黄片| 高清在线国产一区| 亚洲国产成人一精品久久久| 国产av精品麻豆| 免费不卡黄色视频| a级毛片黄视频| 久久狼人影院| 亚洲av电影在线进入| 久久久水蜜桃国产精品网| 在线观看舔阴道视频| 欧美性长视频在线观看| 一二三四在线观看免费中文在| 免费在线观看影片大全网站| 免费在线观看日本一区| 一本久久精品| 在线观看www视频免费| 99国产精品免费福利视频| 欧美日韩视频精品一区| 午夜日韩欧美国产| 欧美在线黄色| 18在线观看网站| 国产一区二区 视频在线| 动漫黄色视频在线观看| 国产真人三级小视频在线观看| 午夜福利视频在线观看免费| 国产精品一区二区免费欧美| 男女高潮啪啪啪动态图| 国产在线精品亚洲第一网站| 午夜福利视频精品| 自线自在国产av| 老司机影院毛片| 操美女的视频在线观看| 9热在线视频观看99| 人妻 亚洲 视频| 麻豆av在线久日| 国产日韩一区二区三区精品不卡| 久久精品国产a三级三级三级| 亚洲性夜色夜夜综合| 亚洲第一欧美日韩一区二区三区 | 久久狼人影院| 欧美日韩视频精品一区| 又黄又粗又硬又大视频| 两个人免费观看高清视频| av超薄肉色丝袜交足视频| 成人影院久久| 少妇粗大呻吟视频| 国产精品一区二区在线观看99| av片东京热男人的天堂| 欧美 亚洲 国产 日韩一| 一区福利在线观看| 免费看十八禁软件| 亚洲国产欧美网| 国产成人系列免费观看| 桃红色精品国产亚洲av| 亚洲av成人一区二区三| 人妻 亚洲 视频| 欧美精品一区二区免费开放| 搡老熟女国产l中国老女人| 在线观看一区二区三区激情| 桃红色精品国产亚洲av| 亚洲中文日韩欧美视频| 成年动漫av网址| 十八禁人妻一区二区| 免费在线观看日本一区| 国产xxxxx性猛交| 一级,二级,三级黄色视频| 久久人人爽av亚洲精品天堂| videos熟女内射| 狠狠狠狠99中文字幕| 色尼玛亚洲综合影院| 999久久久精品免费观看国产| 五月开心婷婷网| 亚洲成国产人片在线观看| 女性被躁到高潮视频| 久久亚洲精品不卡| 男女下面插进去视频免费观看| 精品欧美一区二区三区在线| 中文字幕最新亚洲高清| 自拍欧美九色日韩亚洲蝌蚪91| 狠狠狠狠99中文字幕| 国产av又大| 大片电影免费在线观看免费| 美女福利国产在线| 另类精品久久| 国产xxxxx性猛交| 久久中文字幕人妻熟女| 免费人妻精品一区二区三区视频| 久9热在线精品视频| 久久精品熟女亚洲av麻豆精品| 精品人妻1区二区| 亚洲精品在线观看二区| 一级毛片精品| 免费在线观看视频国产中文字幕亚洲| 在线观看免费视频日本深夜| 丁香六月天网| 啦啦啦 在线观看视频| 日韩大码丰满熟妇| www.精华液| 黄色视频在线播放观看不卡| 亚洲熟女毛片儿| 十八禁网站免费在线| 久久久久久亚洲精品国产蜜桃av| 黑人巨大精品欧美一区二区mp4| 美女高潮喷水抽搐中文字幕| 亚洲免费av在线视频| 久久精品亚洲精品国产色婷小说| 久久久久久久国产电影| 一区福利在线观看| 亚洲 国产 在线| 欧美日本中文国产一区发布| 一级片免费观看大全| 国产精品亚洲av一区麻豆| 99精品在免费线老司机午夜| 丝袜在线中文字幕| 考比视频在线观看| 国产黄色免费在线视频| 国产高清videossex| 美女国产高潮福利片在线看| 久久毛片免费看一区二区三区| 久久精品亚洲av国产电影网| 亚洲精品av麻豆狂野| 久久久久久久国产电影| 亚洲熟妇熟女久久| 一级,二级,三级黄色视频| 成人三级做爰电影| 亚洲精品一卡2卡三卡4卡5卡| 亚洲男人天堂网一区| 欧美日韩成人在线一区二区| 美女扒开内裤让男人捅视频| 欧美精品啪啪一区二区三区| 欧美精品高潮呻吟av久久| 叶爱在线成人免费视频播放| 两人在一起打扑克的视频| 一级毛片精品| 伊人久久大香线蕉亚洲五| 午夜福利免费观看在线| 三级毛片av免费| 亚洲国产欧美网| 国产男靠女视频免费网站| 精品国产一区二区三区久久久樱花| 中亚洲国语对白在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美国产精品va在线观看不卡| 亚洲成人免费av在线播放| 99精国产麻豆久久婷婷| 欧美黄色淫秽网站| 精品久久久精品久久久| 丁香六月天网| 亚洲欧美一区二区三区黑人| 91麻豆av在线| 97人妻天天添夜夜摸| 久久久精品免费免费高清| 麻豆av在线久日| 91大片在线观看| 一边摸一边做爽爽视频免费| 欧美黄色片欧美黄色片| 香蕉国产在线看| 高潮久久久久久久久久久不卡| 999精品在线视频| 女人久久www免费人成看片| 国产一区二区在线观看av| 王馨瑶露胸无遮挡在线观看| 免费看a级黄色片| 一夜夜www| 老司机福利观看| 亚洲色图av天堂| 久久精品国产亚洲av香蕉五月 | 少妇裸体淫交视频免费看高清 | 国产精品久久久久久精品电影小说| 久久毛片免费看一区二区三区| 中亚洲国语对白在线视频| 欧美精品av麻豆av| 亚洲三区欧美一区| 男女床上黄色一级片免费看| 午夜精品久久久久久毛片777| 在线观看免费高清a一片| 99久久人妻综合| 久久中文字幕人妻熟女| av又黄又爽大尺度在线免费看| 美女国产高潮福利片在线看| 久久久欧美国产精品| 免费人妻精品一区二区三区视频| 一级毛片女人18水好多| 久久久久久久国产电影| 久久中文字幕人妻熟女| 欧美成人免费av一区二区三区 | 午夜福利影视在线免费观看| 日本欧美视频一区| 久久免费观看电影| 久久影院123| 中文字幕制服av| 极品教师在线免费播放| 亚洲第一欧美日韩一区二区三区 | 99re6热这里在线精品视频| 国产极品粉嫩免费观看在线| 亚洲午夜理论影院| 国产又爽黄色视频| 十八禁人妻一区二区| 精品少妇久久久久久888优播| 女人被躁到高潮嗷嗷叫费观| 黄色毛片三级朝国网站| 在线观看www视频免费| 日韩三级视频一区二区三区| 1024视频免费在线观看| 老鸭窝网址在线观看| 久久影院123| 大型黄色视频在线免费观看| 午夜福利免费观看在线| 亚洲精品乱久久久久久| 色婷婷久久久亚洲欧美| 天天躁狠狠躁夜夜躁狠狠躁| 老司机影院毛片| 最新的欧美精品一区二区| 黑丝袜美女国产一区| 国产麻豆69| 午夜91福利影院| 99re在线观看精品视频| 视频在线观看一区二区三区| 一级毛片女人18水好多| 男女午夜视频在线观看| 人成视频在线观看免费观看| 精品第一国产精品| 男人舔女人的私密视频| 久久精品国产亚洲av高清一级| 少妇猛男粗大的猛烈进出视频| 一进一出好大好爽视频| 亚洲精品国产色婷婷电影| 天天影视国产精品| 成年女人毛片免费观看观看9 | 成人特级黄色片久久久久久久 | 高清欧美精品videossex| 国产午夜精品久久久久久| 国产aⅴ精品一区二区三区波| 男女无遮挡免费网站观看| 免费不卡黄色视频| 免费看a级黄色片| 国产极品粉嫩免费观看在线| 999久久久国产精品视频| 91国产中文字幕| 9热在线视频观看99| 国产亚洲精品久久久久5区| 精品高清国产在线一区| 美女高潮到喷水免费观看| 国产精品一区二区免费欧美| 深夜精品福利| 国产在线精品亚洲第一网站| 高清视频免费观看一区二区| 人人妻人人添人人爽欧美一区卜| 高清视频免费观看一区二区| 国产成人av激情在线播放| 亚洲视频免费观看视频| 国产精品一区二区在线不卡| 久久中文看片网| 国产精品 欧美亚洲| 国产日韩欧美在线精品| 精品午夜福利视频在线观看一区 | 无人区码免费观看不卡 | 久久精品国产99精品国产亚洲性色 | 日韩制服丝袜自拍偷拍| 国产麻豆69| 午夜精品国产一区二区电影| 欧美日韩一级在线毛片| 男人舔女人的私密视频| 日本wwww免费看| 久久久久久久国产电影| 最新的欧美精品一区二区| 国产成人精品久久二区二区免费| 悠悠久久av| 亚洲午夜精品一区,二区,三区| 国产精品久久久人人做人人爽| 高清毛片免费观看视频网站 | 精品福利永久在线观看| 久久ye,这里只有精品| 欧美日韩亚洲高清精品| 男女免费视频国产| 亚洲欧美日韩高清在线视频 | 最新在线观看一区二区三区| 欧美乱码精品一区二区三区| 法律面前人人平等表现在哪些方面| 老司机在亚洲福利影院| 91精品三级在线观看| 精品国产一区二区久久| 一区二区三区乱码不卡18| 国产淫语在线视频| 电影成人av| 亚洲欧美日韩高清在线视频 | 在线看a的网站| 国产精品一区二区免费欧美| 十八禁高潮呻吟视频| 视频在线观看一区二区三区| 亚洲中文日韩欧美视频| 捣出白浆h1v1| 日日摸夜夜添夜夜添小说| 91精品三级在线观看| 91老司机精品| 国产一区二区三区综合在线观看| 99精品在免费线老司机午夜| 色94色欧美一区二区| 少妇猛男粗大的猛烈进出视频| av有码第一页| 天天躁日日躁夜夜躁夜夜| 天天添夜夜摸| 一本久久精品| 亚洲精品中文字幕一二三四区 | 香蕉国产在线看| 激情视频va一区二区三区| 嫁个100分男人电影在线观看| 日韩一区二区三区影片| 性色av乱码一区二区三区2| 脱女人内裤的视频| 99re在线观看精品视频| 18在线观看网站| 男男h啪啪无遮挡| 男女午夜视频在线观看| 亚洲av国产av综合av卡| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久成人aⅴ小说| 国产国语露脸激情在线看| 亚洲精品一卡2卡三卡4卡5卡| 日韩人妻精品一区2区三区| 老司机在亚洲福利影院| 嫁个100分男人电影在线观看| 日本黄色视频三级网站网址 | 黄色a级毛片大全视频| 99精品欧美一区二区三区四区| 黑人欧美特级aaaaaa片| 国产一区二区三区综合在线观看| 色综合婷婷激情| 亚洲av电影在线进入| 女人爽到高潮嗷嗷叫在线视频| 国产有黄有色有爽视频| 老熟妇乱子伦视频在线观看| 嫁个100分男人电影在线观看| 另类精品久久| 热99re8久久精品国产| 韩国精品一区二区三区| 亚洲成国产人片在线观看| 国产真人三级小视频在线观看| 免费久久久久久久精品成人欧美视频| 1024香蕉在线观看| 亚洲色图综合在线观看| 大陆偷拍与自拍| 一本综合久久免费| 久久亚洲真实| 建设人人有责人人尽责人人享有的| 亚洲色图 男人天堂 中文字幕| 纯流量卡能插随身wifi吗| 日本一区二区免费在线视频| 免费看a级黄色片| 精品欧美一区二区三区在线| 丁香六月天网| 亚洲国产av新网站| 精品卡一卡二卡四卡免费| 天堂8中文在线网| 一个人免费看片子| 女警被强在线播放| 久热爱精品视频在线9| 国产有黄有色有爽视频| 久久人妻av系列| 乱人伦中国视频| 日韩有码中文字幕| 欧美性长视频在线观看| 国产亚洲精品久久久久5区| 搡老乐熟女国产| 国产日韩欧美亚洲二区| 18禁黄网站禁片午夜丰满| 妹子高潮喷水视频| 男女下面插进去视频免费观看| 欧美性长视频在线观看| 欧美激情高清一区二区三区| 美国免费a级毛片| 久久中文字幕人妻熟女| 丝袜美足系列| 99精品欧美一区二区三区四区| 成人影院久久| 午夜福利一区二区在线看| 亚洲成国产人片在线观看| 精品人妻1区二区| 一边摸一边抽搐一进一小说 | 成人18禁高潮啪啪吃奶动态图| 欧美黄色片欧美黄色片| 大片免费播放器 马上看| 免费女性裸体啪啪无遮挡网站| 一边摸一边抽搐一进一出视频| 高清毛片免费观看视频网站 | 国产成人精品久久二区二区免费| 亚洲七黄色美女视频| 一边摸一边抽搐一进一出视频| 超色免费av| 亚洲全国av大片| 女人精品久久久久毛片| 一区二区日韩欧美中文字幕| 91老司机精品| 极品教师在线免费播放| 一二三四在线观看免费中文在| 制服诱惑二区| 丁香六月天网| 高清在线国产一区| 国产精品.久久久| 成人永久免费在线观看视频 | 亚洲专区中文字幕在线| 国产单亲对白刺激| a级片在线免费高清观看视频| 亚洲色图综合在线观看| 精品免费久久久久久久清纯 | a级片在线免费高清观看视频| 黄色毛片三级朝国网站| 亚洲一码二码三码区别大吗| 黄网站色视频无遮挡免费观看| 18禁黄网站禁片午夜丰满| 国产成人系列免费观看| 黑人欧美特级aaaaaa片| 俄罗斯特黄特色一大片| 在线观看免费视频日本深夜| 国产成人一区二区三区免费视频网站| 成年动漫av网址| 色视频在线一区二区三区| 国产精品自产拍在线观看55亚洲 | 久久久欧美国产精品| 丁香六月欧美| 久久久久久久精品吃奶| 12—13女人毛片做爰片一| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三| 国产精品电影一区二区三区 | 免费久久久久久久精品成人欧美视频| 十八禁网站免费在线| 日韩免费高清中文字幕av| 视频在线观看一区二区三区| 嫩草影视91久久| 国产男女内射视频| 岛国毛片在线播放| 曰老女人黄片| 在线观看免费午夜福利视频| 国产不卡一卡二| 看免费av毛片| 久久99一区二区三区| 色综合欧美亚洲国产小说| 亚洲第一青青草原| 欧美乱码精品一区二区三区| 99riav亚洲国产免费| 黑人巨大精品欧美一区二区蜜桃| 午夜成年电影在线免费观看| 五月开心婷婷网| 老熟妇乱子伦视频在线观看| 日韩有码中文字幕| h视频一区二区三区| 精品少妇久久久久久888优播| 国产伦人伦偷精品视频| 国产一区二区三区视频了| 亚洲成国产人片在线观看| 日韩欧美三级三区| 一区二区三区乱码不卡18| 国产成人影院久久av| 老熟女久久久| 免费av中文字幕在线| 19禁男女啪啪无遮挡网站| 欧美激情久久久久久爽电影 | 涩涩av久久男人的天堂| 最新美女视频免费是黄的| 99国产综合亚洲精品| 少妇 在线观看| 视频区图区小说| 日韩精品免费视频一区二区三区| 啦啦啦视频在线资源免费观看| 亚洲精品中文字幕一二三四区 | 18禁裸乳无遮挡动漫免费视频| 久久中文看片网| 一本综合久久免费| 日本av免费视频播放| 国产男靠女视频免费网站| 国产高清国产精品国产三级| 久久中文字幕一级| 999久久久精品免费观看国产| 国产单亲对白刺激| 国产欧美日韩精品亚洲av| 欧美人与性动交α欧美软件| 成人黄色视频免费在线看| 国产xxxxx性猛交| 精品国内亚洲2022精品成人 | 波多野结衣一区麻豆| 国产一区有黄有色的免费视频| 精品国产乱子伦一区二区三区| 亚洲国产精品一区二区三区在线| 飞空精品影院首页| 欧美中文综合在线视频| 日韩熟女老妇一区二区性免费视频| 九色亚洲精品在线播放| 亚洲伊人久久精品综合| 久久av网站| 热99国产精品久久久久久7| 1024视频免费在线观看| 999精品在线视频| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美在线精品| 欧美激情 高清一区二区三区| 亚洲欧洲日产国产| av欧美777| 欧美大码av| 十八禁网站免费在线| 一区二区三区国产精品乱码| 国产男女超爽视频在线观看| 国产在视频线精品| 最近最新中文字幕大全免费视频| 水蜜桃什么品种好| 国产精品偷伦视频观看了| 国产成人欧美| 女警被强在线播放| 国产亚洲精品第一综合不卡| 高清av免费在线| 久久中文看片网| 黄色毛片三级朝国网站| 中文字幕另类日韩欧美亚洲嫩草| 精品福利观看| 成年人黄色毛片网站| 99久久人妻综合| 美女扒开内裤让男人捅视频| 亚洲av美国av| 精品少妇内射三级| 亚洲国产精品一区二区三区在线| 亚洲精品成人av观看孕妇| 精品熟女少妇八av免费久了| 新久久久久国产一级毛片| 免费av中文字幕在线| 国产精品av久久久久免费| 久久婷婷成人综合色麻豆| 国产精品 欧美亚洲| 国产有黄有色有爽视频| 欧美日韩亚洲高清精品| 亚洲精品国产色婷婷电影| 久久人妻熟女aⅴ| 亚洲全国av大片| 国产日韩一区二区三区精品不卡| 国产福利在线免费观看视频| 乱人伦中国视频| 亚洲欧美日韩高清在线视频 | 不卡av一区二区三区| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久人人做人人爽| 一本大道久久a久久精品| 国产精品美女特级片免费视频播放器 | 国产极品粉嫩免费观看在线| 亚洲精品一二三| 美女福利国产在线| 在线看a的网站| 热re99久久精品国产66热6| 黑丝袜美女国产一区| www.熟女人妻精品国产| 99国产精品免费福利视频|