胡純純 劉春雪 徐 秀
?
·綜述·
孤獨癥譜系障礙動物模型的研究進展
胡純純 劉春雪 徐 秀
孤獨癥譜系障礙(ASD)是一種神經發(fā)育障礙性疾病[1],其核心癥狀為社交和(或)溝通障礙,狹隘興趣與刻板行為。目前,ASD的病因尚不明確。多數(shù)研究認為,遺傳[2]與發(fā)育的早期環(huán)境因素[3]共同作用,在ASD的病因中發(fā)揮了關鍵作用。
世界大范圍的流行病學調查中,ASD在人群中的發(fā)病率約為1%,男性是女性的2~3倍[4,5]。美國近期流行病學調查ASD的發(fā)病率達到1/68[6]。因此,深入了解ASD的病因和機制,尋求治療顯得尤為重要。目前,神經生物學研究已經明確了ASD的腦血流灌注模式和神經生化特點。此外,在ASD的神經系統(tǒng)連接特點、神經解剖和細胞與分子水平上也取得了一些進展[7]。然而,以ASD患兒為樣本的機制研究仍舊存在很多的局限性,①通常不能獲得高質量的尸檢腦組織資源,②神經影像學所能提供的信息非常有限,③各種基因型與表型的臨床資料非常零散等。因此,構筑動物模型可以更好地了解ASD的神經分子生物特性與腦解剖特點,以及明確各類不同的認知與行為亞型。
動物模型作為研究ASD的一個工具,其優(yōu)勢在于:①取得在活體中難以取得的神經組織標本;②便于控制變量,研究基因功能;③觀察生化或基因在ASD神經病理學中的作用;④觀察社會行為;⑤獲得干預療效等。動物模型也存在局限性:①無法完全模擬人類的病理生理機制,②動物社交行為與人存在差異等。
一個理想的動物模型需具備3種效度,①表面效度:需包含疾病的典型表現(xiàn);②構建效度:需與疾病的生物學機制類似;③預測效度:對疾病的有效干預能在模型中產生預期結果[8,9]?,F(xiàn)已用于ASD研究的動物模型有果蠅、斑馬魚、鼠和靈長類動物等,本文就生化作用誘導、基因分子缺陷和以生化作用為基礎的基因型建立的ASD動物模型進行文獻復習和歸納。
近年來的研究表明,環(huán)境因素在ASD病因學中起著重要作用[10~12]。而胎兒發(fā)育關鍵期(如胎兒期或圍生期)暴露于環(huán)境致病因素,致孕期感染或炎癥反應而導致ASD,也是其病因研究的重點[13,14]。通過動物模型,能夠得到生化因素誘導后其腦解剖與行為異常的結果,為研究神經系統(tǒng)功能、篩選新藥和探索治療方法提供新的思路。
VPA鼠模型是經典的ASD動物模型,而近期實驗研究則更注重VPA劑量及時間差異效應下的不同損害。
VPA的劑量研究實驗發(fā)現(xiàn)[18~21],孕期第12.5 d單次腹腔注射VPA 600 mg·kg-1可以誘發(fā)子鼠典型的ASD表現(xiàn)。此動物模型除有ASD的核心癥狀外,對疼痛敏感性降低而對非疼痛刺激敏感性增高。Banerjee等[22]通過對12.5 d的孕期母鼠注射不同劑量的VPA(500, 600 mg·kg-1),并運用條件恐懼裝置和社交互動裝置等測試子鼠,發(fā)現(xiàn)雖然劑量相似,但注射600 mg子鼠模型有更明顯的焦慮行為,在社交互動區(qū)域花費的時間更少,并且在社交情緒學習方面存在異常,這為ASD社交情緒學習的研究提供了方向。
Reynolds等[23]在VPA時間差異效應研究中發(fā)現(xiàn),在幼鼠出生后6~12 d注射VPA 150 mg·kg-1·d-1,此ASD幼鼠的聽覺敏感性低,與既往孕期母鼠注射VPA的ASD子鼠模型聽覺敏感性高不同,說明在大腦發(fā)育的不同階段暴露于VPA可能造成的不同損害。
而VPA對其他動物模型的影響,Lee等[24]也做過有趣的實驗。將受精5 d后的斑馬仔魚放置于含VPA 2 mmol·L-1的魚缸中急性處理3 h,與對照組比較,發(fā)現(xiàn)斑馬魚在發(fā)育過程暴露于VPA后出現(xiàn)短暫的部分神經細胞增殖減少,但未在實驗組成魚后觀察到與其他動物類似的行為缺陷。這種情況應與斑馬魚在發(fā)育過程中神經修復有關。Jacob
等[25]將斑馬魚的受精胚胎去卵膜后,分別在3~24 h、~48 h和~72 h用VPA 0.625 mmol·L-1處理,發(fā)現(xiàn)斑馬魚5-HT神經元分化受損,使其產生ASD樣癥狀,并且在~48 h的處理效果最為明顯,而在~72 h后則對5-HT的表達無影響。這些神經分子機制的研究將對未來分子靶向治療提供重要的線索。
2.2 丙酸(PPA)動物模型 PPA是一種短鏈的脂肪酸,作為腸道細菌的代謝終產物,常用作食品防腐劑。文獻報道存在胃腸紊亂的ASD兒童其短鏈脂肪酸等生物標志物存在異常[26],并伴免疫異常[27,28]。
PPA鼠模型分別從免疫生化及行為學方面的改變證明了PPA與ASD的相關性。Shultz等[29]報道鼠腦室內注射PPA可導致解剖和行為方面的異常,其腦室出現(xiàn)反應性角質化與活化的小膠質細胞,并通過行為學實驗,發(fā)現(xiàn)PPA鼠存在學習記憶障礙,刻板重復行為及感覺運動異常,類似于人類ASD。MacFabe等[30]也進一步證實了前者的實驗,連續(xù)3 d將PPA 250 mg·kg-1注射入雄性成鼠中,并對其腦組織做免疫組化分析,發(fā)現(xiàn)腦組織中膠質化反應性星形細胞和被激活的小膠質細胞,揭示了其最初的神經免疫性反應。El-Ansary等[31]將引起神經毒性的PPA劑量(250 mg·kg-1)注入成年白化鼠中,發(fā)現(xiàn)社交行為障礙、典型的認知功能損害和重復行為,并且伴隨氧化應激標志物的上升和谷胱甘肽的下降,其谷胱甘肽過氧化物酶和過氧化氫酶的活性也隨之降低。Foley等[27]對孕12~16 d的胎鼠每日注射PPA 500 mg·kg-1,與對照組比較,其尋巢反應能力減弱,提示在嗅覺誘導的社交認知中存在障礙,并且青春期的雄鼠相比于對照組有更多的探索行為,提示社交記憶的缺陷。因此,有研究者提出,在胎兒期PPA暴露可對新生鼠、青春期鼠和成年鼠社交行為產生一定的影響。PPA導致的神經毒性也許能作為一個重要的環(huán)境因素成為ASD的病因。
2.3 雙酚基丙烷(BPA)動物模型 BPA是重要的有機化工原料,是苯酚和丙酮的重要衍生物。被廣泛用于罐頭食品和飲料的包裝等。作為內分泌干擾物,胎兒期及圍生期的暴露將導致兒童神經發(fā)育的異常[32,33]及行為的改變[34~36]。很多研究都揭示了內分泌干擾素與ASD及注意力缺陷多動障礙的關系[37]。
Wolstenholme等[34]對孕期暴露BPA后的連續(xù)3代鼠行社會認知測試,與對照組比較,表現(xiàn)出更多的探索行為,不僅如此,3代鼠缺乏對新刺激(陌生鼠)的認知,說明在社交記憶中存在缺陷;而在曠場試驗中則表現(xiàn)過度活躍。證實了BPA對鼠的社會認知及行為等方面具有長期的影響。
而BPA對其它動物模型也存在影響。Kaurr等[38]運用黑腹果蠅作為BPA動物模型。給果蠅喂食不同劑量的BPA(0、0.1、0.5、1 mmol·L-1)食物,觀察果蠅在自主運動方面的差異,發(fā)現(xiàn)其較對照組有更多的重復行為(如梳理行為),且有非正常的社交互動(與周圍果蠅距離縮短),而喂食0.5 mmol·L-1的果蠅癥狀最具典型性。這些結論也證明了果蠅作為神經發(fā)育研究動物模型的可行性,均存在ASD相關行為。
2.4 其它生化模型 經過數(shù)十年的研究,各個學者均提出過不同的生化模型假說。比如抗體模型[39,40],通過誘導鼠模型的研究,證實了母體產生的特異性抗體(IgE13-IgE18及IgG),能夠影響胎兒的神經發(fā)育而產生ASD樣行為[41];博爾納病毒(BDV)模型[42],BDV感染后的成鼠表現(xiàn)出更多的社交障礙及刻板行為,類似于ASD患兒[43];氯蜱硫磷模型,雖未能證明對人類產生ASD樣癥狀[44],但在斑馬魚暴露于大劑量氯蜱硫毒藥的研究中[45],則證實能誘導其產生ASD樣行為;過量高頻射線模型[46],將恒河短尾猿在孕早期暴露于過度的X射線中,發(fā)現(xiàn)成年猿相較于對照組有重復刻板行為,重復語言及認知行為損害,而臨床研究證實,高頻射線能導致ASD發(fā)病率升高[47]。在人和動物模型的研究中,發(fā)現(xiàn)環(huán)境因素均占有非常重要的作用,因此,不同的生化模型對ASD的研究均具有非常重要的意義。表1總結生化誘導劑致鼠ASD表型及神經生化改變。
表1 生化誘導劑致鼠ASD表型及神經生化改變
注 PMID 為PubMed indexed唯一標識碼;+: 陽性,-: 陰性;1)注射VPA的時間差異性,其鼠的聽覺敏感性出現(xiàn)升高和降低;2)PPA效應存在性別差異,母鼠聽覺敏感性升高而雄鼠降低
近年來依靠基因組學研究的發(fā)展,ASD的遺傳學研究取得了巨大進展。通過不同的基因測序技術,鑒定了大批ASD的易感及致病基因位點。建立于基因突變之上,能夠獲得大量的ASD動物模型。目前熱門的動物模型突變基因包括Fmr1、Nlgn3、Shank3、Mecp2、Ube3a、Chd8、Foxp2、Kctd13和Cntnap2等。然而,ASD的遺傳異質性是研究機制及治療的主要瓶頸,這也為動物模型的研究提供了一個重點的方向。
3.1SHANK3模型 人類基因組中有三組SHANK基因,分別為SHANK1、SHANK2和SHANK3,表達在大腦的不同區(qū)域,并在興奮性突觸后膜致密區(qū)中編碼突觸支架蛋白。在部分ASD患者中,已證實檢測到SHANK基因的突變[48]。最近,SHANK3基因成為研究ASD基因的熱點。
Bangash等[49]構建的ASD鼠模型類似人類的SHANK3微缺失,即缺失羧基段。Shank3微缺失鼠表現(xiàn)為NMDA受體功能下降,使其神經發(fā)育受損及影響突觸的可塑性,使其學習記憶受損。Wang等[50]構建的Shank3缺陷鼠模型,通過分類Shank3相關的各個亞型,來評估Shank3的功能。不同外顯子缺失的鼠可導致不同程度的功能缺陷,比如自我傷害、重復梳毛和社交障礙等[50~54]。通過分類Shank3的不同基因缺失對小鼠表型的影響,可以闡述其ASD發(fā)生發(fā)展的分子機制,以期為分子靶向治療提供新思路。
除了鼠模型外,Gauthier等[55]在下調Shank3同源基因的斑馬魚模型中發(fā)現(xiàn),與對照組相比,表現(xiàn)為頭圍的減小、游動時對觸碰的反應下降等。由此證明了斑馬魚的Shank3基因在其中樞神經系統(tǒng)功能中所起的作用。
3.2FMR1模型 FMRP(Fragile X mental retardation protein)是脆性X相關蛋白(FXRP)的成員之一。其脆性X綜合征的發(fā)病被證明是由X染色體上的FMR1基因缺陷導致蛋白合成減少所致。部分破壞其分子通路的兒童有典型的ASD表現(xiàn)[56]。脆性X綜合征兒童的其他表現(xiàn)有認知障礙、特殊面容、多動和焦慮等[57~59]。
對于Fmr1缺陷的鼠模型,Hamilton等[60]將敲除Fmr1的鼠進行了認知、社交、學習能力和自主運動測試,發(fā)現(xiàn)Fmr1敲除鼠存在與人類ASD患者相似的行為學表現(xiàn),而其它研究也證明了此結果[61~63]。
果蠅Fmr1基因與人在其蛋白功能區(qū)域的同源性為35%,相似性為56%[64,65]。研究發(fā)現(xiàn)[66,67],F(xiàn)mr1突變果蠅存在行為學異常。Kanellopoulos等[68]發(fā)現(xiàn)果蠅dFmr下降后其突觸的mGluR水平上升,而使cAMP減少,可導致其聯(lián)合性的學習和記憶缺陷,從而闡述了Fmr1基因缺陷導致ASD樣反應的分子機制。
3.3NLGN3模型NLGN基因編碼的蛋白是后突觸的細胞黏附蛋白成員之一。它的功能是調控海馬神經元的形成,以及谷氨酸能后突觸蛋白的形成,并與ASD相關[69]。
Nlgn突變鼠模型在感官行為和感覺加工方面存在缺陷,并且行為方面的缺陷與ASD患者的特征有著驚人的一致性[39]。Radyushkin等[70]報道敲除Nlgn3的鼠模型在腦的不同結構上存在差異:在灰質結構,如海馬,紋狀體,丘腦較正常個體為小。這種突變體的表型在人類的ASD中也有發(fā)現(xiàn)。
基因誘導ASD動物模型總結見表2。
基因與環(huán)境的相互作用已成為ASD研究的熱點[85,86]。部分研究認為,環(huán)境造成基因表達差異的差異,是最終導致動物模型產生ASD表型的原因。Jacob等[25]發(fā)現(xiàn)由于VPA導致斑馬魚模型ascl1b/Ascl1基因表達的下降,從而導致血清胺能分化的下降。同樣,Kolozsi等[87]的實驗將VPA與Nlgn3相結合,發(fā)現(xiàn)胎兒期暴露VPA后的小鼠Nlgn3 mRNA的表達明顯低于對照組,并認為VPA小鼠的ASD樣行為亞型可能由于Nlgn3的低表達導致。這些實驗均證明了環(huán)境與基因相互作用下的表觀遺傳學機制在疾病發(fā)生發(fā)展中的作用。
動物模型對于研究ASD至關重要。生化誘導ASD動物模型,能夠控制變量,探索不同的環(huán)境毒素(生化因素)在ASD發(fā)病中的作用。通過生化作用誘導動物模型,還可研究環(huán)境影響下神經發(fā)育特點和環(huán)境生化因素影響下的表觀遺傳機制。當動物模型在去除環(huán)境毒素(生化)的條件后出現(xiàn)癥狀的可逆性,為研究ASD的治療提供了更多的方向。基因分子缺陷ASD動物模型,其優(yōu)勢在于目標明確,可通過誘導單一基因分子缺陷來研究ASD。由于ASD基因分子缺陷的臨床資料較為零散,通過復制大量動物樣本,能夠提高可信度。通過動物模型,能將ASD基因型與不同表型關聯(lián)性進行總結,以探究不同基因型的最佳干預療效。
目前,ASD運用的動物模型種類多種多樣 。 不同種類動物模型也存在其各自的優(yōu)缺點 。 果蠅模型, 其繁殖周期短、多產、經濟環(huán)保和基因較簡單,但它與人類親緣關系較遠[38]。斑馬魚模型,作為新興模型,其具有繁殖快、交配行為受光周期控制、產卵量多、受精卵在體外受精、前期胚胎整體透明、便于使用藥物和易于飼養(yǎng)等優(yōu)勢[84]。鼠模型是ASD研究的經典模型,其基因型與人同源性較高,較為經濟,而對其行為觀察及學習記憶的技術條件也較成熟[88]。靈長類動物,與人同源性最高,并在情緒、社交等方面與人類最為類似,但存在研究周期長、耗費較高和動物倫理等問題??傊?,鼠模型經濟成本、時間成本、技術條件、同源性和行為學觀察總體評估最優(yōu)??筛鶕?jù)不同實驗需要,選擇最優(yōu)的動物模型。
未來動物模型研究的重點應建立在其ASD基因型與表型關聯(lián)性的基礎上,從而能為更有效地研發(fā)和選擇治療方案打下基礎。目前ASD的干預療法多建立在改善行為的基礎上,未來的治療方向應更傾向于分子療法。目前,針對Mecp2突變鼠,運用基因修復技術能使其神經損傷得到修復[88~90],并且運用病毒轉染Ube3a能使Angelman綜合征鼠模型的異常行為得到改善[91]。隨著越來越多ASD臨床資料的收集,并對ASD癥狀規(guī)范性的總結,輔之更深入地了解神經系統(tǒng)的機制,再具備更理想的動物模型,ASD將會被更加透徹的研究。
[1]Association AP. Diagnostic and Statistical Manual of Mental Disorders. 5th edn (DSM-5). Arlington, VA: American Psychiatric Publishing, 2013:55-59
[2]Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics, 2004,113(5):472-486
[3]Rai D, Lee BK, Dalman C, et al. Parental depression, maternal antidepressant use during pregnancy, and risk of autism spectrum disorders: population based case-control study. BMJ, 2013,346:2059
[4]Wingate M, Kirby RS, Pettygrove S, et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2010. MMWR Surveillance Summaries, 2014,63:2
[5]Mattila ML, Kielinen M, Linna SL, et al. Autism Spectrum Disorders According to DSM-IV-TR and Comparison With DSM-5 Draft Criteria: An Epidemiological Study. J Am Acad Child Psy, 2011,50(6):583-592
[6]Kim YS, Leventhal BL, Koh YJ, et al. Prevalence of Autism Spectrum Disorders in a Total Population Sample. Am J Psychiatr, 2011,168(9):904-912
[7]Baruth JM, Wall CA, Patterson MC, et al. Proton magnetic resonance spectroscopy as a probe into the pathophysiology of autism spectrum disorders (ASD): A Review. Autism Res, 2013,6(2):119-133
[8]Tania M, Khan MA, Xia K. Recent advances in animal model experimentation in autism research. Acta Neuropsychiatr, 2014,26(5):264-271
[9]Crawley JN. Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev, 2004,10(4):248-258
[10]Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiat, 2014,4
[11]Berg R. Autism-an environmental health issue after all? J Environ Health, 2009,71(10):14-18
[12]Deth R, Muratore C, Benzecry J, et al. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology, 2008,29(1):190-201
[13]Meldrum SJ, Strunk T, Currie A, et al. Autism spectrum disorder in children born preterm-role of exposure to perinatal inflammation. Front Neurosci, 2013,7,123
[14]Zerbo O, Iosif AM, Walker C, et al. Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) study. J Autism Dev Disord, 2013,43(1):25-33
[15]Gentile S. Drug treatment for mood disorders in pregnancy. Curr Opin Psychiatr, 2011,24(1):34-40
[16]Rasalam AD, Hailey H, Williams J, et al. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol, 2005,47(8):551-555
[17]Gentile S. Risks of neurobehavioral teratogenicity associated with prenatal exposure to valproate monotherapy: a systematic review with regulatory repercussions. CNS Spectr, 2014,19(4):305-315
[18]Kuwagata M, Ogawa T, Shioda S, et al. Observation of fetal brain in a rat valproate-induced autism model: a developmental neurotoxicity study. Int J Dev Neurosci, 2009,27(4):399-405
[19]Schneider T, Roman A, Basta-Kaim A, et al. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrino, 2008,33(6):728-740
[20]Stanton ME, Peloso E, Brown KL, et al. Discrimination learning and reversal of the conditioned eyeblink reflex in a rodent model of autism. Behav Brain Res, 2007,176(1):133-140
[21]Schneider T, Turczak J, Przewlocki R. Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: Issues for a therapeutic approach in autism. Neuropsychopharmacol, 2006,31(1):36-46
[22]Banerjee A, Engineer CT, Sauls BL, et al. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero. Front Behav Neurosci, 2014,8:378
[23]Reynolds S, Millette A, Devine DP. Sensory and Motor Characterization in the Postnatal Valproate Rat Model of Autism. Dev Neurosci-Basel, 2012,34(2-3):258-267
[24]Lee Y, Kim Y, Yun J, et al. Valproic acid decreases the proliferation of telencephalic cells in zebrafish larvae. Neurotoxicol Teratol, 2013,39:91-99
[25]Jacob J, Ribes V, Moore S, et al. Valproic acid silencing of ascl1b/Ascl1 results in the failure of serotonergic differentiation in a zebrafish model of fetal valproate syndrome. Dis Model Mech, 2014,7(1):107-117
[26]Wang L, Conlon MA, Christophersen CT, et al. Gastrointestinal microbiota and metabolite biomarkers in children with autism spectrum disorders. Biomark Med, 2014,8(3):331-344
[27]Foley KA, MacFabe DF, Vaz A, et al. Sexually dimorphic effects of prenatal exposure to propionic acid and lipopolysaccharide on social behavior in neonatal, adolescent, and adult rats: Implications for autism spectrum disorders. Int J Dev Neurosci, 2014,39(S1):68-78
[28]Al-Owain M, Kaya N, Al-Shamrani H, et al. Autism spectrum disorder in a child with propionic acidemia. JIMD Rep, 2013,7:63-66
[29]Shultz SR, MacFabe DF, Martin S, et al. Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat: Further development of a rodent model of autism. Behav Brain Res, 2009,200(1):33-41
[30]MacFabe DF, Cain NE, Boon F, et al. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res, 2011,217(1):47-54
[31]El-Ansary AK, Ben Bacha A, Kotb M. Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflamm, 2012,9(74)
[32]Elsworth JD, Jentsch JD, VandeVoort CA, et al. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. Neurotoxicology, 2013,35:113-120
[33]Golub MS, Wu KL, Kaufman FL, et al. Bisphenol A: Developmental Toxicity from Early Prenatal Exposure. Birth Defects Res B, 2010,89(6):441-466
[34]Wolstenholme JT, Goldsby JA, Rissman EF. Transgenerational effects of prenatal bisphenol A on social recognition. Horm Behav, 2013,64(5):833-839
[35]Itoh K, Yaoi T, Fushiki S. Bisphenol A, an endocrine-disrupting chemical, and brain development. Neuropathology, 2012,32(4):447-457
[36]Nakamura K, Itoh K, Dai HM, et al. Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior. Brain Dev-Jpn, 2012,34(1):57-63
[37]de Cock M, Maas Y, van de Bor M. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatr, 2012,101(8):811-818
[38]Kaur K, Simon AF, Chauhan V, et al. Effect of bisphenol A on Drosophila melanogaster behavior - A new model for the studies on neurodevelopmental disorders. Behav Brain Res, 2015,284:77-84
[39]Camacho J, Jones K, Miller E, et al. Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like stereotypical behaviors in offspring mice. Behav Brain Res, 2014,266:46-51
[40]Singer HS, Morris C, Gause C, et al. Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: A pregnant dam mouse model. J Neuroimmunol, 2009,211(1-2):39-48
[41]Croonenberghs J, Wauters A, Devreese K, et al. Increased serum albumin, gamma globulin, immunoglobulin IgG, and IgG2 and IgG4 in autism. Psychol Med, 2002,32(8):1457-1463
[42]Lancaster K, Dietz DA, Moran TH, et al. Abnormal social behaviors in young and adult rats neonatally infected with Borna disease virus. Behav Brain Res, 2007,176(1):141-148
[43]Hornig M, Lipkin WI. Infectious and immune factors in the pathogenesis of neurodevelopmental disorders: epidemiology, hypotheses, and animal models. Ment Retard Dev Disabil Res Rev, 2001,7(3):200-210
[44]Williams AL, DeSesso JM. Gestational/perinatal chlorpyrifos exposure is not associated with autistic-like behaviors in rodents. Crit Rev Toxicol, 2014,44(6):523-534
[45]Richendrfer H, Pelkowski SD, Colwill RM, et al. Developmental sub-chronic exposure to chlorpyrifos reduces anxiety-related behavior in zebrafish larvae. Neurotoxicol Teratol, 2012,34(4):458-465
[46]Selemon LD, Friedman HR.Motor stereotypies and cognitive perseveration in non-human primates exposed to early gestational irradiation. Neuroscience, 2013,248:213-224
[47]Kane RC. A possible association between fetal/neonatal exposure to radiofrequency electromagnetic radiation and the increased incidence of autism spectrum disorders (ASD). Med Hypotheses, 2004,62(2):195-197
[48]Jiang YH, Ehlers MD. Modeling autism by SHANK gene mutations in mice. Neuron, 2013,78(1):8-27
[49]Bangash MA, Park JM, Melnikova T, et al. Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism. Cell, 2011,145(5):758-772
[50]Wang XM, McCoy PA, Rodriguiz RM, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet, 2011,20(15):3093-3108
[51]Johnson RA, Lam M, Punzo AM, et al. 7,8-dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome. J Appl Physiol, 2012,112(5):704-710
[52]Schmeisser MJ, Ey E, Wegener S, et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 2012,486(7402):256-260
[53]Bozdagi O, Sakurai T, Papapetrou D, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism, 2010,1(15)
[54]Han K, Holder JJ, Schaaf CP, et al. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature, 2013,503(7474):72-77
[55]Gauthier J, Champagne N, Lafreniere RG, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. P Natl Acad Sci USA, 2010,107(17):7863-7868
[56]Iossifov I, Ronemus M, Levy D, et al. De novo gene disruptions in children on the autistic spectrum. Neuron, 2012,74(2):285-299
[57]Budimirovic DB, Kaufmann WE. What can we learn about autism from studying fragile X syndrome? Dev Neurosci-Basel, 2011,33(5):379-394
[58]Bailey DB, Raspa M, Olmsted M, et al. Co-occurring conditions associated with FMR1 gene variations: Findings from a national parent survey. Am J Med Genet A, 2008,146A(16):2060-2069
[59]Bernardet M, Crusio WE. Fmr1 KO mice as a possible model of autistic features. Scientific World Journal, 2006,6:1164-1176
[60]Hamilton SM, Green JR, Veeraragavan S, et al. Fmr1 and Nlgn3 knockout rats: novel tools for investigating autism spectrum disorders. Behav Neurosci, 2014,128(2):103-109
[61]Udagawa T, Farny NG, Jakovcevski M, et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med, 2013,19(11):1473
[62]Krueger DD, Osterweil EK, Chen SP, et al. Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. P Natl Acad Sci USA, 2011,108(6):2587-2592
[63]Rogoz Z, Skuza G. Anxiolytic-like effects of olanzapine, risperidone and fluoxetine in the elevated plus-maze test in rats. Pharmacol Rep, 2011,63(6):1547-1552
[64]Gao FB. Understanding fragile X syndrome: Insights from retarded flies. Neuron, 2002,34(6):859-862
[65]Zhang YQ, Bailey AM, Matthies H, et al. Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell, 2001,107(5):591-603
[66]Bolduc FV, Valente D, Nguyen AT, et al. An assay for social interaction in Drosophila fragile X mutants. Fly, 2010,4(3):216-225
[67]Dockendorff TC, Su HS, McBride S, et al. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron, 2002,34(6):973-984
[68]Kanellopoulos AK, Semelidou O, Kotini AG, et al. Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in drosophila. J Neurosci, 2012,32(38):13111-13124
[69]Chadman KK, Gong SC, Scattoni ML, et al. Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res, 2008,1(3):147-158
[70]Radyushkin K, Hammerschmidt K, Boretius S, et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav, 2009,8(4):416-425
[71]Jana NR. Understanding the pathogenesis of angelman syndrome through animal models. Neural Plast, 2012,7,10943
[72]Derecki NC, Cronk JC, Lu ZJ, et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 2012,484(7392):105
[73]Pearson BL, Defensor EB, Pobbe R, et al. Mecp2 truncation in male mice promotes affiliative social behavior. Behav Genet, 2012,42(2):299-312
[74]Bernier R, Golzio C, Xiong B, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell, 2014,158(2):263-276
[75]Fischer J, Hammerschmidt K. Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: insights into the evolution of vocal communication. Genes Brain Behav, 2011,10(1):17-27
[76]Shu WG, Cho JY, Jiang YH, et al. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. P Natl Acad Sci USA, 2005,102(27):9643-9648
[77]Pucilowska J, Vithayathil J, Tavares EJ, et al. The 16p11.2 Deletion mouse model of autism exhibits altered cortical progenitor proliferation and brain cytoarchitecture linked tothe ERK MAPK pathway. J Neurosci, 2015,35(7):3190-3200
[78]Golzio C, Willer J, Talkowski ME, et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature, 2012,485(7398):111-363
[79]Rodenas-Cuadrado P, Ho J, Vernes SC. Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Hum Genet, 2014,22(2):171-178
[80]Penagarikano O, Geschwind DH. What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol Med, 2012,18(3):156-163
[81]O′Roak BJ, Vives L, Girirajan S, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 2012,485(7397):136-246
[82]Bowers JM, Konopka G. The role of the FOXP family of transcription factors in ASD. Dis Markers, 2012,33(5):251-260
[83]Blaker-Lee A, Gupta S, McCammon JM, et al. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. Dis Model Mech, 2012,5(6):834-851
[84]Bruneel B, Matha M, Paesen R, et al. Imaging the zebrafish dentition: from traditional approaches to emerging technologies. Zebrafish, 2015,12(1):1-10
[85]Kim YS, Leventhal BL. Genetic Epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. Biol Psychiat, 2015,77(1):66-74
[86]Meek SE, Lemery-Chalfant K, Jahromi LB, et al. A review of gene environment correlations and their implications for autism: a conceptual model. Psychol Rev, 2013,120(3):497-521
[87]Kolozsi E, Mackenzie RN, Roullet FI, et al. Prenatal exposure to valproic acid leads to reduced expression of synaptic adhesion molecule neuroligin 3in mice. Neuroscience, 2009,163(4):1201-1210
[88]Guy J, Gan J, Selfridge J, et al. Reversal of neurological defects in a mouse model of Rett syndrome. Science, 2007,315(5815):1143-1147
[89]Kerr B, Soto C J, Saez M, et al. Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. Eur J Hum Genet, 2012,20(1):69-76
[90]Giacometti E, Luikenhuis S, Beard C, et al. Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. P Natl Acad Sci USA, 2007,104(6):1931-1936
[91]Daily JL, Nash K, Jinwal U, et al. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for angelman syndrome. Plos One, 2011,6(e2722112)
(本文編輯:張崇凡)
10.3969/j.issn.1673-5501.2015.06.013
復旦大學附屬兒科醫(yī)院 上海,201102
徐秀,E-mail:xuxiu@shmu.edu.cn
2015-07-15
2015-11-20)