蘭 延, 陸太進(jìn), 陳偉明, 劉 洋 , 梁 榕, 馬 瑛, 張小虎
(1.國土資源部珠寶玉石首飾管理中心深圳珠寶研究所, 廣東 深圳 518020; 2.國家珠寶玉石質(zhì)量監(jiān)督檢驗(yàn)中心, 北京 100013; 3.鑫瓏珠寶有限公司, 廣東 佛山 528251)
?
基于相對(duì)密度和X射線粉晶衍射技術(shù)測定硬玉巖中硬玉的含量
蘭 延1, 陸太進(jìn)2, 陳偉明3, 劉 洋2, 梁 榕1, 馬 瑛1, 張小虎1
(1.國土資源部珠寶玉石首飾管理中心深圳珠寶研究所, 廣東 深圳 518020; 2.國家珠寶玉石質(zhì)量監(jiān)督檢驗(yàn)中心, 北京 100013; 3.鑫瓏珠寶有限公司, 廣東 佛山 528251)
硬玉巖能否命名為寶石級(jí)“翡翠”,其硬玉的含量是關(guān)鍵參數(shù),目前測量巖石中礦物質(zhì)量分?jǐn)?shù)的方法多為有損分析,難以應(yīng)用于珠寶玉石檢測中。本文基于硬玉巖礦物組成及其質(zhì)量分?jǐn)?shù)的變化,建立了一種通過測量硬玉巖相對(duì)密度獲得硬玉質(zhì)量分?jǐn)?shù)的無損分析方法。對(duì)186件相對(duì)密度在3.30~2.88之間的硬玉巖樣品采用靜水稱重法測試,根據(jù)相對(duì)密度范圍進(jìn)行分組,利用X射線粉晶衍射、人工重砂分析、電子探針、紅外光譜、拉曼光譜等技術(shù)確定硬玉巖的主要礦物及其質(zhì)量分?jǐn)?shù),進(jìn)而統(tǒng)計(jì)分析硬玉質(zhì)量分?jǐn)?shù)與硬玉巖相對(duì)密度的線性關(guān)系。研究表明:硬玉巖的主要礦物為硬玉和雜質(zhì)礦物鈉長石、方沸石。隨著硬玉的質(zhì)量分?jǐn)?shù)(wA)下降,鈉長石、方沸石質(zhì)量分?jǐn)?shù)增加,硬玉巖實(shí)測相對(duì)密度(SG)發(fā)生相應(yīng)變化,兩者的線性方程為wA=1.3454×SG-3.4531(相關(guān)系數(shù)為0.9814),線性關(guān)系良好。由于本方法的硬玉巖實(shí)測相對(duì)密度近似等于理論相對(duì)密度,即可通過測量相對(duì)密度獲得硬玉的質(zhì)量分?jǐn)?shù),這種無損測試方法適用于相對(duì)密度在3.3~3.0,硬玉含量在95%~60%,硬玉與鈉長石的質(zhì)量分?jǐn)?shù)之和在90%~97%之間的硬玉巖樣品。
硬玉巖; 翡翠; 礦物組分; 相對(duì)密度; X射線粉晶衍射法; 電子探針; 紅外光譜法; 拉曼光譜法
硬玉巖產(chǎn)地相當(dāng)稀少,只分布在緬甸、危地馬拉、日本、俄羅斯、美國加州、哈沙克斯坦等少數(shù)幾個(gè)國家或地區(qū)[1-7],并且僅緬甸產(chǎn)出寶石級(jí)硬玉巖——翡翠。隨著我國玉石資源逐步枯竭,現(xiàn)每年約有數(shù)千噸的硬玉巖被當(dāng)作“翡翠”在市場上銷售,給市場帶來不小的沖擊,如何規(guī)范地利用好這一類含共生礦物的硬玉巖資源,成為當(dāng)前珠寶玉石行業(yè)亟需解決的問題。目前國內(nèi)外對(duì)進(jìn)入中國市場的硬玉巖研究甚少[8-12],尤其對(duì)此類硬玉巖的礦物組成、質(zhì)量分?jǐn)?shù)和材料工藝性能的研究更少。國家標(biāo)準(zhǔn)對(duì)于“翡翠”的分類命名方法主要是根據(jù)《翡翠分級(jí)》(GB/T 23885—2009)。然而,市場上部分硬玉巖的相對(duì)密度、折射率不在國標(biāo)GB/T 23885—2009規(guī)定范圍內(nèi),對(duì)于這類樣品是否能稱為“翡翠”無法據(jù)此判斷。另一種觀點(diǎn)認(rèn)為可依據(jù)《巖石分類和命名方案》(GB/T 17412.3—1998)對(duì)這類硬玉巖進(jìn)行命名,那么該類硬玉巖能否命名為“翡翠”,其中硬玉的含量(質(zhì)量分?jǐn)?shù))是關(guān)鍵參數(shù)[13-14]。目前對(duì)于測量礦物質(zhì)量分?jǐn)?shù)的方法均是基于巖石學(xué)研究方面,多為有損測試方法,例如巖石薄片分析、X射線粉晶衍射分析、礦物重砂分析、巖石化學(xué)成分結(jié)合礦物分子量計(jì)算等[15-22]。鑒于寶石材料檢驗(yàn)的特殊性,一般使用無損法進(jìn)行檢驗(yàn),只有極少數(shù)樣品需進(jìn)行有損法檢驗(yàn),但其結(jié)果是嚴(yán)重?fù)p壞樣品,導(dǎo)致樣品的經(jīng)濟(jì)價(jià)值喪失。目前已有部分實(shí)驗(yàn)室進(jìn)行了一些無損方法的嘗試[23-24],但實(shí)際測試結(jié)果仍不理想。
礦物玉石的無損測試方法,如折射率測試、相對(duì)密度測試、紫外-可見-近紅外測試及能譜測試等已廣泛用于珠寶檢測,其中相對(duì)密度測試是研究礦物主要組分和次要組分質(zhì)量分?jǐn)?shù)及其變化規(guī)律的方法之一。本文選取186件相對(duì)密度在3.30~2.88之間的硬玉巖樣品,利用靜水稱重法進(jìn)行相對(duì)密度測試;然后利用X射線粉晶衍射、單礦物相對(duì)密度分析、紅外光譜、拉曼光譜、電子探針分析等手段確定硬玉巖的物質(zhì)(礦物)組分;再利用X射線粉晶衍射、重砂礦物質(zhì)量分?jǐn)?shù)分析、巖石薄片測量3種測試手段相互驗(yàn)證定量分析硬玉巖樣品中各礦物的質(zhì)量分?jǐn)?shù);進(jìn)而統(tǒng)計(jì)分析硬玉巖的實(shí)測相對(duì)密度和硬玉質(zhì)量分?jǐn)?shù)的線性關(guān)系,獲得兩者的線性方程,建立了一種通過測量硬玉巖樣品的相對(duì)密度獲得硬玉質(zhì)量分?jǐn)?shù)的無損鑒定方法。
1.1 靜水稱重法測量硬玉巖樣品的相對(duì)密度和折射率特征
本文研究的硬玉巖樣品收集自廣東省佛山市平洲玉器市場。實(shí)驗(yàn)中對(duì)86件塊狀樣品、100件手鐲樣品采用靜水稱重法[25]進(jìn)行相對(duì)密度(SG)測試,測試結(jié)果獲得硬玉巖樣品的相對(duì)密度范圍為3.30~2.88。在此基礎(chǔ)上,依據(jù)翡翠分級(jí)標(biāo)準(zhǔn)(GB/T 23885—2009)和《巖石分類和命名方案》(GB/T 17412.3—1998)及顯微鏡下觀察到的主要礦物含量差異,將樣品分為A、B、C、D四組進(jìn)行進(jìn)一步詳細(xì)研究。
(1)A組樣品相對(duì)密度>3.25,50件。
(2)B組樣品相對(duì)密度為3.25~3.19,46件。
(3)C組樣品相對(duì)密度為3.19~3.10,45件。
(4)D組樣品相對(duì)密度為3.10~2.88,45件。
折射率測試在折射儀上進(jìn)行,測試結(jié)果得到A組、B組、C組樣品折射率為1.66,D組樣品折射率為1.65,在其他礦物分布較多部位折射率為1.56。
1.2 偏光顯微鏡分析硬玉巖主要礦物組成及結(jié)構(gòu)
對(duì)186張樣品巖石薄片在偏光顯微鏡下進(jìn)行觀察,分析主要礦物組成及結(jié)構(gòu),并測算各礦物的質(zhì)量分?jǐn)?shù)見表1。
1.3 X射線粉晶衍射-人工重砂-電子探針-紅外光譜-拉曼光譜分析硬玉巖的礦物組成
采用X射線粉晶衍射、人工重砂、電子探針、紅外光譜、拉曼光譜等[26-29]5種分析手段確定硬玉巖的主要礦物為硬玉、硬玉-透輝石過渡礦物,次要礦物有鈉長石、方沸石,并含少量鈉云母、黑云母、鉀長石、綠泥石、簾石族礦物等。
采用X射線粉晶衍射分析、重砂礦物分析、巖石薄片測算3種定量分析測試手段相互驗(yàn)證,結(jié)果表明樣品的礦物組分相對(duì)簡單,其中硬玉和鈉長石的質(zhì)量分?jǐn)?shù)總和在90%~97%之間。樣品中礦物質(zhì)量分?jǐn)?shù)的變化是造成相對(duì)密度變化的主要影響因素,隨著硬玉組分質(zhì)量分?jǐn)?shù)下降,雜質(zhì)礦物鈉長石、
方沸石質(zhì)量分?jǐn)?shù)增加,其相對(duì)密度相應(yīng)變化:硬玉含量約98%~91%時(shí),SG>3.25;硬玉含量約91%~83%時(shí),SG=3.25~3.19;硬玉含量約88%~68%時(shí),SG=3.19~3.10;硬玉含量約68%~37%時(shí),SG=3.09~2.88。部分樣品的測試數(shù)據(jù)見表2。
表1 四組不同相對(duì)密度樣品的偏光顯微鏡下特征對(duì)比
注:測試單位為國土資源部珠寶玉石首飾管理中心深圳珠寶研究所。
2.1 硬玉巖中單礦物的相對(duì)密度測試結(jié)果
為獲取合理的理論相對(duì)密度值,對(duì)兩塊相對(duì)密度分別為3.28、3.08的塊狀樣品,采用重液法[25]進(jìn)行單礦物的相對(duì)密度測試,結(jié)果見表3。
2.2 硬玉巖理論相對(duì)密度與實(shí)測相對(duì)密度的關(guān)系
利用186個(gè)樣品的各礦物質(zhì)量分?jǐn)?shù)和單礦物相對(duì)密度數(shù)據(jù),按以下公式計(jì)算理論相對(duì)密度(SG*):
(1)
wA+wB+wC+…=100%
(2)
式中:wA、wB、wC…為單礦物占總體的質(zhì)量分?jǐn)?shù);SGA、SGB、SGC…為單礦物A、B、C…的相對(duì)密度。
利用EXCEL統(tǒng)計(jì)理論相對(duì)密度與實(shí)測相對(duì)密度的相關(guān)關(guān)系,得到兩者的相關(guān)系數(shù)r=0.9931,線性關(guān)系良好,即實(shí)測相對(duì)密度近似等于理論相對(duì)密度。
表2 各組典型樣品的礦物質(zhì)量分?jǐn)?shù)與相對(duì)密度
注:①硬玉巖的理論相對(duì)密度按照各單礦物的理論密度計(jì)算,各單礦物的理論密度為:硬玉3.33 ~3.31 g/cm3,沸石2.26 g/cm3,鈉長石2.62 g/cm3,鈉云母2.88 g/cm。②測試單位:國土資源部珠寶玉石首飾管理中心深圳珠寶研究所。
表3 樣品中單礦物的相對(duì)密度測試結(jié)果
注:測試單位為河北廊坊峰澤源巖礦檢測技術(shù)實(shí)驗(yàn)室。
2.3 硬玉巖相對(duì)密度與硬玉質(zhì)量分?jǐn)?shù)的關(guān)系
硬玉是硬玉巖的主要礦物,通過對(duì)186個(gè)樣品數(shù)據(jù)(實(shí)測相對(duì)密度與硬玉質(zhì)量分?jǐn)?shù))的統(tǒng)計(jì)結(jié)果分析,利用EXCEL統(tǒng)計(jì)出硬玉質(zhì)量分?jǐn)?shù)與硬玉巖實(shí)測相對(duì)密度的關(guān)系。硬玉質(zhì)量分?jǐn)?shù)與實(shí)測相對(duì)密度關(guān)系統(tǒng)計(jì)擬合的一次線性方程為:
wA=1.3454×SG -3.4531
(3)
式中:wA為樣品中硬玉的質(zhì)量分?jǐn)?shù),SG為樣品的實(shí)測相對(duì)密度。
樣品的實(shí)測相對(duì)密度與硬玉的質(zhì)量分?jǐn)?shù)線性相關(guān)性r=0.9814。當(dāng)硬玉質(zhì)量分?jǐn)?shù)在95%~60%,樣品相對(duì)密度在3.3~3.0時(shí),線性關(guān)系較好;當(dāng)硬玉質(zhì)量分?jǐn)?shù)小于60%(40%~60%),樣品相對(duì)密度小于3.0時(shí),線性關(guān)系較差。即樣品的實(shí)測相對(duì)密度愈高,兩者的線性關(guān)系愈好;實(shí)測相對(duì)密度愈低,兩者的線性關(guān)系愈差。這是由于在相對(duì)密度較高的硬玉巖樣品中,成分較為單一,主要由硬玉和鈉長石、方沸石組成,并且其中硬玉質(zhì)量分?jǐn)?shù)較高(95%~60%),其對(duì)樣品的相對(duì)密度有重要的影響。而在相對(duì)密度較低的樣品中,鈉長石與硬玉的含量相當(dāng),或高于硬玉含量,并且方沸石、鈉云母、簾石族礦物等次要礦物含量也增多,這使得其他礦物對(duì)樣品相對(duì)密度的影響程度(權(quán)重)增大或大于硬玉,導(dǎo)致硬玉質(zhì)量分?jǐn)?shù)與實(shí)測相對(duì)密度的線性關(guān)系變差。
因此,式(3)的線性方程適用于相對(duì)密度在3.3~3.0、主要含鈉長石和方沸石的硬玉巖樣品(硬玉與鈉長石的質(zhì)量分?jǐn)?shù)總和在90%~97%之間)。
2.4 理論計(jì)算曲線驗(yàn)證實(shí)測工作曲線的有效性
通常情況下,影響巖石相對(duì)密度的主要因素是:①礦物組成和質(zhì)量分?jǐn)?shù);②巖石結(jié)構(gòu)的緊密程度[30]。從樣品實(shí)測相對(duì)密度和依據(jù)礦物組成質(zhì)量分?jǐn)?shù)計(jì)算的理論相對(duì)密度結(jié)果來看(r=0.9931),說明巖石結(jié)構(gòu)的緊密程度對(duì)相對(duì)密度的影響是很穩(wěn)定的。因此,樣品的礦物組成和質(zhì)量分?jǐn)?shù)的變化對(duì)實(shí)測相對(duì)密度的影響是本文討論的重點(diǎn)之一。由于硬玉巖樣品的理論密度與巖石中的硬玉質(zhì)量分?jǐn)?shù)密切相關(guān),通過硬玉質(zhì)量分?jǐn)?shù)是可以計(jì)算出理論密度的。因此,利用理論密度作為橋梁,尋找出硬玉質(zhì)量分?jǐn)?shù)和實(shí)測密度的關(guān)系,對(duì)鑒定樣品中硬玉質(zhì)量分?jǐn)?shù)有重要的意義。
要獲得上述關(guān)系,需符合以下2個(gè)條件。
(1)首先硬玉巖樣品中的礦物成分相對(duì)簡單,且硬玉巖中硬玉的質(zhì)量分?jǐn)?shù)一般超過50%,多數(shù)在95%~60%之間,對(duì)樣品的相對(duì)密度具有重要的影響,這主要是由于硬玉質(zhì)量分?jǐn)?shù)愈高,對(duì)相對(duì)密度的貢獻(xiàn)率愈大,例如當(dāng)硬玉質(zhì)量分?jǐn)?shù)達(dá)到90%時(shí),其對(duì)相對(duì)密度的貢獻(xiàn)率(權(quán)重)能達(dá)到92.5%。
(2)硬玉巖樣品主要由硬玉、鈉長石、方沸石和鈉云母組成,從變質(zhì)生長過程來看,方沸石和鈉云母可能是硬玉、鈉長石的退變質(zhì)產(chǎn)物[4,31]。因此,可將原始巖石視為主要由硬玉和鈉長石組成,通過數(shù)理統(tǒng)計(jì)擬合得到其理論計(jì)算工作曲線為:
wA=(3.33-8.7246/SG*)/0.71
(SG*=2.62~3.33)
(4)
式中:wA為硬玉理論質(zhì)量分?jǐn)?shù),SG*為理論相對(duì)密度。
將式(3)和式(4)進(jìn)行線性比較,見圖1,可以看出兩條曲線幾乎平行,并且主要的硬玉質(zhì)量分?jǐn)?shù)值點(diǎn)幾乎是重合的,說明實(shí)測工作曲線和理論計(jì)算曲線具有一致性,從而驗(yàn)證了實(shí)測工作曲線的有效性。
圖1 實(shí)測擬合出的硬玉巖相對(duì)密度-硬玉質(zhì)量分?jǐn)?shù)曲線與硬玉+鈉長石理論相對(duì)密度-硬玉質(zhì)量分?jǐn)?shù)曲線Fig.1 The fitted curves between measured specific gravities of jadeitite-mass fraction of jadeite and theoretical specific gravities of jadeite+feldspar-mass fraction of jadeite
本文研究的硬玉巖樣品的礦物組分相對(duì)簡單,主要為硬玉、硬玉-透輝石過渡礦物,次要為鈉長石、方沸石,并含少量鈉云母、黑云母、鉀長石、綠泥石、簾石族礦物等,其中硬玉和鈉長石的質(zhì)量分?jǐn)?shù)總和為90%~97%。樣品中礦物組成和質(zhì)量分?jǐn)?shù)的變化是造成相對(duì)密度變化的主要因素,利用測試數(shù)據(jù)統(tǒng)計(jì)得到硬玉質(zhì)量分?jǐn)?shù)與硬玉巖實(shí)測相對(duì)密度的線性方程:wA=1.3454×SG-3.4531。對(duì)于相對(duì)密度在3.3~3.0,硬玉質(zhì)量分?jǐn)?shù)在95%~60%,主要含鈉長石、方沸石的硬玉巖樣品(硬玉與鈉長石的質(zhì)量分?jǐn)?shù)總和為90%~97%)可利用該線性方程,通過測量硬玉巖的相對(duì)密度獲得硬玉的質(zhì)量分?jǐn)?shù)。
本次研究查明了硬玉巖樣品的礦物組分,并提供了一種適用于分析成分相對(duì)簡單的硬玉巖中硬玉質(zhì)量分?jǐn)?shù)的無損檢測方法,可以判斷硬玉巖是否是寶石級(jí)翡翠。對(duì)于礦物組成較為簡單的巖石樣品,例如含角閃石、霞石硬玉巖等也可參照本研究方法進(jìn)行無損測試。但由于硬玉巖成礦過程的復(fù)雜性,不同產(chǎn)區(qū)硬玉巖所含的礦物種類和含量有所不同,對(duì)于其他成分復(fù)雜硬玉巖的相對(duì)密度與硬玉質(zhì)量分?jǐn)?shù)之間是否也存在線性關(guān)系還需進(jìn)一步驗(yàn)證。
[1] Shi G H, Harlow G E, Wang J, et al. Mineralogy of Jadeitite and Related Rocks from Myanmar: A Review with New Data[J].European Journal of Mineralogy,2012,24:345-370.
[2] Marroni M,Pandolfi L,Principi G,et al.Deformation History of the Eclogite- and Jadeitite-bearing Mélange from North Motagua Fault Zone,Guatemala: Insights in the Processes of a Fossil Subduction Channel[J].Geological Journal,2009,44:167-190.
[3] Harlow G E.Jadeitites,Albitites and Related Rocks from the Motagua Fault Zone[J].Journal of Metamorphic Geology,1994,12:49-68.
[4] Shigeno M,Mori Y,Nishyama T.Reaction Microtextures in Jadeitites from the Nishisonogi Metamorphic Rock,Kyushu,Japan[J].Journal of Mineralogical and Petrological Sciences,2005,100:237-246.
[5] 趙玥.俄羅斯翡翠的礦物學(xué)特征研究[D].石家莊:石家莊經(jīng)濟(jì)學(xué)院,2014.
Zhao Y.The Research on Mineralogy Features of Russian Jadeite[D].Shijiazhuang: Shijiazhuang University of Economics,2014.
[6] Sorensen S,Harlow G E,Rumble D.The Origin of Jadeitite-forming Subduction-zone Fluids: CL-guided SIMS Oxygen-isotope and Trace-element Evidence[J].American Mineralogist,2006,91:979-996.
[7] 張睿.哈薩克斯坦翡翠的礦物學(xué)研究及成因解析[D].北京:中國地質(zhì)大學(xué),2014.
Zhang R.Analyze on the Mineralization and Mineralogical Characteristics of Kazakhstan Jadeite Jade[D].Beijing: China University of Geosciences,2014.
[8] 何為.翡翠及其過渡類型的礦物學(xué)特征研究[D].上海:華東理工大學(xué),2011.
He W.The Research of Mineralogical Characteristics of Jadeite and Its Transitional Type[D].Shanghai: East China University of Science and Technology,2011.
[9] 鄒澤李,胡林玉,殷小玲.與翡翠伴生鈉長石的礦物學(xué)特征研究[J].超硬材料工程,2013,25(1):57-62.
Zou Z L,Hu L Y,Yin X L.Mineralogical characteristics of the associated albite of jadeite[J].Superhard Material Engineering,2013,25(1):57-62.
[10] 陳秀英,袁心強(qiáng),林嵩山.危地馬拉紫色翡翠的礦物組成特征及意義[J].巖石礦物學(xué)雜志,2011,30(增刊):1-7.
Cheng X Y,Yuan X Q,Lin S S.Mineral Composition of the Purple Jadeite from Guatemala and Its Significane[J].Acta Petrologica et Mineralogica,2011,30(Supplement):1-7.
[11] 黃德晶,熊威.與翡翠伴生的含鈉長石質(zhì)玉石的鑒別及定名探討[J].山東國土資源,2011,27(5):17-19.
Huang D J,Xiong W.Study on Identification and Naming of Jade Sodium Feldspathic Associated with Jade Stone[J].Land and Resources in Shandong Province,2011,27(5):17-19.
[12] 周艷,劉嶸,曹姝旻.關(guān)于翡翠研究中幾個(gè)重要問題的思考[J].巖石礦物學(xué)雜志,2009,28(1):88-91.
Zhou Y,Liu R,Cao S M.A Preliminary Discussion on Some Important Problems in Jadeite Research[J].Acta Petrologica et Mineralogica,2009,28(1):88-91.
[13] 韓辰婧,王雅玫,劉洋.翡翠中共生礦物含量對(duì)翡翠命名的影響[J].寶石和寶石學(xué)雜志,2013,15(1):28-36.
Han C J,Wang Y M,Liu Y.Influence of Associated Minerals on Jadeite Naming[J].Journal of Gems and Gemmology,2013,15(1): 28-36.
[14] 袁心強(qiáng)編著.應(yīng)用翡翠寶石學(xué)[M].武漢:中國地質(zhì)大學(xué)出版社,2009.
Yuan X Q.Application of Jade Gemology[M].Wuhan:China University of Geosciences Press,2009.
[15] 曾廣策,朱云海,葉德隆編著.透明造巖礦物與寶石晶體光學(xué)[M].武漢:中國地質(zhì)大學(xué)出版社,1997.
Zeng G C,Zhu Y H,Ye D L.Crystal Optics of Transparent Rock-forming Minerals and Gems[M].Wuhan:China University of Geosciences Press,1997.
[16] 占蓉,鄒筱春,李芳.隨鉆X射線衍射分析錄井技術(shù)應(yīng)用研究[J].錄井工程,2012,23(4):1-5.
Zhan R,Zou X C,Li F.Application and Research of the Logging Technology for LWD X-ray Diffraction Analysis[J].Mud Logging Engineering,2012,23(4):1-5.
[17] Hestnes K H,Sorensen B E.Quantitative Mineral Charact-erization of Granitic Pegmatite Using Topas Rietveld XRD Refinement[C]//Proceedings of the 10th International Congress for Applied Mineralogy,2012:335 -343.
[18] Pawloski G A.Quantitative Determination of Mineral Content of Geological Samples by X-ray Diffraction[J].American Mineralogist,1985,70:66-667.
[19] 郝立波,趙洪振,陸繼龍,等.中酸性火山巖中造巖礦物含量的定量計(jì)算方法[J].巖石學(xué)報(bào),2006,22(2):480-484.
Hao L B,Zhao H Z,Lu J L,et al.The Quantitative Method of The Petrogenetic Mineral Content in Intermediate-acid Volcanic Rock[J].Acta Petrological Sinica,2006,22(2):480-484.
[20] 黃智龍,朱丹.云南鎮(zhèn)沉金礦區(qū)煌斑巖礦物含量統(tǒng)計(jì)及其意義[J].地質(zhì)地球化學(xué),1997(3):19-23.
Huang Z L,Zhu D.The Statistics and Significance of Mineral Contents for Lamprophyres in Zhenyuan Dold Orefield,Yunnan Province[J].Geology-Geochemistry,1997(3):19-23.
[21] 王文廣.一種計(jì)算巖石中礦物組成的新方法[J].鈾礦地質(zhì),2009,25(6):344-348.
Wang W G.A New Method for Calculating Mineral Composition of Rocks with Microscopic Observing and Molecular Mass Counting[J].Uranium Geology,2009,25(6):344-348.
[22] Büttner S H.Rock Maker: An MS ExcelTMSpreadsheet for the Calculation of Rock Compositions from Proportional Whole Rrock Analyses,Mineral Compositions,and Modal Abundance[J].Mineralogy and Petrology,2012,104(1-2):129-135.
[23] 孫訪策,趙虹霞,干福熹.翡翠成分、結(jié)構(gòu)和礦物組成的無損分析[J].光譜學(xué)與光譜分析,2011,31(11):3134-3139.
Sun F C,Zhao H X,Gan F X.Nondestructive Analysis of Chemical Composition,Structure and Mineral Constitution of Jadeite Jade[J].Spectroscopy and Spectral Analysis,2011,31(11):3134-3139.
[24] 葉潤青,牛瑞卿,張良培,等.基于圖像分類的礦物含量測定及精度評(píng)價(jià)[J].中國礦業(yè)大學(xué)學(xué)報(bào),2011,40(5):810-822.
Ye R Q,Niu R Q,Zhang L P,et al.Mineral Contents Determination and Accuracy Evaluation Based on Classification of Petrographic Images[J].Journal of China University of Mining & Technology,2011,40(5):810-822.
[25] 張培莉,王曼君編著.系統(tǒng)寶石學(xué)[M].北京:地質(zhì)出版社,2006:103-107.
Zhang P L,Wang M J.Systematic Gemmology[M].Beijing:Geological Publishing House,2006:103-107.
[26] 趙寶,張麗華,薛光和,等.翡翠檢測技術(shù)的研究現(xiàn)狀與進(jìn)展[J].中國寶玉石,2013(增刊):142-147.
Zhao B,Zhang L H,Xue G H,et al.Present Situation and Research Progress of Jadeite Jades Measurement Technique[J].China Gems,2013(Supplement):142-147.
[27] 顧麗鳳,王志恒,張?jiān)疲?基于拉曼光譜對(duì)翡翠的模式識(shí)別研究[J].分析試驗(yàn)室,2013,32(12):22-26.
Gu L F,Wang Z H,Zhang Y,et al.Pattern Recognition for Jadeites by Raman Spectroscopy[J].Chinese Journal of Analysis Laboratory,2013,32(12):22-26.
[28] 陳木子.利用拉曼光譜快速無損鑒定翡翠[J].光譜實(shí)驗(yàn)室,2013,30(3):1234-1237.
Chen M Z.Fast and Non-destructive Analysis of Jadeite by Raman Spectra[J].Chinese Journal of Spectroscopy Laboratory,2013,30(3):1234-1237.
[29] 于吉順,雷新榮,張錦化等編著.礦物X射線粉晶鑒定手冊[M].武漢:華中科技大學(xué)出版社,2011:609,628.
Yu J S,Lei X R,Zhang J H,et al.X-ray Diffraction Identification of Mineral Handbook[M].Wuhan:Huazhong University of Science and Technology Press,2011:609,628.
[30] 孫建國編著.巖石物理學(xué)基礎(chǔ)[M].北京:地質(zhì)出版社,2006:30-80.
Sun J G.The Basic Physics of Rock[M].Beijing:Geological Publishing House,2006:30-80.
[31] Harlow G E,Sisson V B,Sorensen S S.Jadeitite from Guatemala: New Observations and Distinctions among Multiple Occurrences[J].Geologica Acta,2011,9(3-4):363-387.
A Non-destructive Measurement Method of Gem Jadeite Content in Jadeitite Based on Specific Gravity and X-ray Powder Diffraction
LANYan1,LUTai-jin2,CHENWei-ming3,LIUYang2,LIANGRong1,MAYing1,ZHANGXiao-hu1
(1.Gem & Jewelry Institute of Shenzhen, National Gem & Jewelry Technology Administrative Center, Ministry of Land and Resources, Shenzhen 518020, China; 2.National Gemstone Testing Center, Beijing 100013, China; 3.Xinlong Jewelry Co., LTD, Fushan 528251, China)
The key parameter to determine whether jadeitite can be named gem grade jadeitite ‘jadeite jade’ or not is the content (the mass fraction) of jadeite in jadeitite. So far, most methods to determine the mass fraction of mineral in rock are destructive, which is not suitable in gem detection. Based on the changes of mineral composition and mass fraction of mineral in jadeitite, a non-destructive method by measuring the relative density of jadeitite was established in order to get the mass fraction of jadeite. By Static Water Density Method, 186 pieces of jadeitite samples with relative densities of 3.30-2.88 were divided into groups according to different densities. The main mineral composition and mass fraction of minerals in jadeitite were analyzed by X-ray Powder Diffraction, Manual Heavy-sand Analysis, Electron Probe Microanalysis, Infrared Spectrometry and Raman Spectrometry. The linear relationship between the mass fraction of jadeite and the relative density of jadeitite was statisticstically analyzed. Results show that the main minerals in jadeitite are jadeite, albite, and analcite. As the mass fraction (wA) of jadeite decreases, those of albite and analcime increase, and the measured specific gravities (SG) of jadeitite change accordingly. The relationship between them iswA=1.3454 SG-3.4531 (r=0.9814), showing a good linear dependence relation. Because the measured specific gravity of jadeitite is approximately equal to the theoretical one, mass fraction of jadeite is obtained by measuring the specific gravity of jadeitite. This non-destructive method applies to jadeitite with a specific gravity of 3.3-3.0, jadeite content of 95%-60%, and sum mass fractions of jadeite and albite of 90%-97%.
jadeitite; jadeite jade; mineral composition; specific gravity; X-ray Powder Diffraction; Electron Probe; Infrared Spectroscopy; Raman Spectroscopy
2014-09-18;
2015-03-05; 接受日期: 2015-03-08
蘭延,碩士,高級(jí)工程師,主要從事珠寶玉石與貴金屬首飾的研究和鑒定工作。E-mail: 858lan@163.com。
0254-5357(2015)02-0207-06
10.15898/j.cnki.11-2131/td.2015.02.009
P575.5
A