• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study on the time-dependent dynamic mechanical behaviour of C60 concrete under high-temperatures

    2015-04-22 07:24:52LIHongchao李洪超LIUDianshu劉殿書ZHAOLei趙磊GregYOULIANGShufeng梁書鋒WANGYutao王宇濤
    關鍵詞:梁書趙磊

    LI Hong-chao(李洪超), LIU Dian-shu(劉殿書) ZHAO Lei(趙磊),Greg YOU, LIANG Shu-feng(梁書鋒) WANG Yu-tao(王宇濤)

    (1.School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;2.Faculty of Science and Technology, Federation University Australia, University Drive, Mt Helen, Ballarat,Victoria 3353, Australia)

    ?

    Experimental study on the time-dependent dynamic mechanical behaviour of C60 concrete under high-temperatures

    LI Hong-chao(李洪超), LIU Dian-shu(劉殿書)1, ZHAO Lei(趙磊)2,Greg YOU2, LIANG Shu-feng(梁書鋒)1, WANG Yu-tao(王宇濤)1

    (1.School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;2.Faculty of Science and Technology, Federation University Australia, University Drive, Mt Helen, Ballarat,Victoria 3353, Australia)

    To study the dynamic mechanical behavior of C60 concrete at high temperatures, impact tests under different steady-state temperature fields (100, 200, 300, 400 and 500 ℃) were conducted under a variety of durations at the corresponding constant high temperature, namely 0, 30, 60, 90 and 120 min, employing split Hopkinson pressure bar (SHPB) system. In addition, the impact tests were also conducted on the specimens cooled from the high temperature to the room temperature and the specimen under room temperature. From the analysis, it is found that C60 concrete has a time-dependent behavior under high-temperature environment. Under 100, 200, 300, 400 and 500 ℃ steady-state temperature fields respectively, as the duration at the corresponding constant high temperature increases, the dynamic compressive strength and the elastic modulus decrease but the peak strain generally ascends. After cooling to the room temperature, the dynamic compressive strength and the elastic modulus descend as well, but the peak strain increases first and then decreases slightly, when the duration increases. For specimens under and cooled from the high-temperature, as the temperature increases, the dynamic compressive strength and the peak strain raise first and then reduce gradually,and the dynamic compressive strength of specimen under high temperature is higher than that of the specimen cooled from the same high temperature.

    concrete; SHPB; high temperature; dynamic mechanical behavior

    Concrete-like material has been widely used in the construction industry as one of the most important building materials. Buildings collapse frequently due to fire hazards[1-3]. Moreover, fire disaster has become more dangerous in urban area due to high-density zones and high-rise buildings. Furthermore, progressive structure collapse could occur accompanied with explosion and fire caused by unexpected events, such as accidents in chemical plants or terrorists’ attacks[4]. It has been realised that steel structures have a low thermo tolerance, especially since the 9/11 Attacks, and concrete has been attracting more and more attentions for its superior thermo tolerance[5].

    Numerous studies on mechanical properties of concrete have been done in the world, and split Hopkinson pressure bar (SHPB) technique has been used widely to measure the dynamic strength of concrete-like materials at high strain-rate between 10-1and 10-3s-1[6]. Wang et al.[7]fabricated three types of steel fiber reinforced concrete (SFRC) specimens with 0, 3.0% and 6.0% (percentage by volume) of ultrashort steel fiberand employed the SHPB system to impacted the specimens, and found that both the volume fraction of steel-fiber and strain-rate of loading exert significant influences on the SFRC strength. Li et al.[8], Jia et al.[9-10]employed the SHPB system to conduct concrete impact-compression tests under different temperatures, finding the effects of strain rate and temperature on the mechanical properties of concrete. Su et al.[11]studied the dynamic compressive mechanical properties of concrete under high temperature by SHPB system, and found that the dynamic compressive strength and specific energy absorption of concrete increase with the strain rate under different temperatures and at 400 ℃ it is increased by 14%, but at 200, 600, 800 ℃, it is decreased by 20%, 16% and 48% respectively, comparing with that at room temperature. Li et al.[12]tested concrete’s dynamic mechanical property under comparative conditions between room temperature and post-high temperature using SHPB equipment, and found that between 400 ℃-800 ℃, the dynamic compressive strength drops and critical strain raised dramatically. Yang et al.[13]did some impact tests on steel fiber reinforced reactive powder concrete specimens under the temperature between 400 ℃-800 ℃, as a result, the dynamic compressive strength decreases to 62% and 27% and the elastic modulus reduces to 83% and 35.6% respectively. Kim et al.[14]found there is a close relationship between the increase of dynamic compressive strength and the strain rate through SHPB equipment.

    Above studies increase our understanding of the mechanical property of concrete, however, there is insufficient research on the dynamic mechanical behavior under different high temperatures and especially the effect of durations maintaining constant elevated temperature. This paper thereby discussed the law of dynamic mechanical properties by conducting impact tests on C60 concrete specimens through Φ75 mm SHPB equipment under a set of elevated temperatures and various durations of the specific constant temperature.

    1 Experiment

    1.1 Experimental apparatus and data processing

    The experimental apparatus was Φ75 mm SHPB system consisting of power unit, pressure bar and data acquisition unit (Fig.1). A ceramic fiber resistance furnace was used for heating with a rated temperature of 1 300 ℃.

    Fig.1 Illustration of the Φ75 mm SHPB test apparatus

    Experimental data were processed employing the simplified three-wave equations[15]shown below, resulting in the strain-stress relation of concrete (strain rate range 73-117 s-1).

    (1)

    (2)

    (3)

    whereεi(t), εr(t)andεt(t)representthestrainsofincidentwave,reflectedwaveandtransmittedwaverespectively; A0iscross-sectionalarea; E0andC0areYoung’smodulusandelasticwavevelocityofrod’smaterial; AsandLstandfortheoriginalcross-sectionalareaandlengthofspecimen.

    1.2Testspecimenpreparation

    AccordingtothestudybyLietal.[16],foralargeΦ75 mm SHPB equipment, experimental data can accurately reveal the mechanical property of concrete specimen when the length of specimen is in the range of 30-75 mm (length-to-diameter ratio rangeL/D=0.4-1.0). C60 concrete specimens with a standard formulation (Tab.1) were placed in a standard curing room once the specimens were prepared. After 28 days’ standard curing, the concrete specimens were made into standard Φ75 mm×50 mm cylindrical specimens.

    Tab.1 C60 concrete formulation kg/m3

    1.3 Experimental procedure

    There were six different experimental temperatures, e.g. room temperature, 100, 200, 300, 400, and 500 ℃. To make internal and external temperature of specimen’s uniform by homogeneous heating, ANSYS software was used to calculate and analyze the temperature field in the furnace and to calculate the required heating time. SOLID70 Unit of ANSYS was employed to calculate steady-state temperature field of the specimen with the following settings: specimen radius of 37.5 mm; length of 50 mm; heat exchange coefficientkof 50 W(m2·K); 20 ℃ initial temperature and 500 ℃ target temperature;concrete heat conduction coefficient of 1.335 when below 293 ℃ and 0.001 241T+1.716 2 when above 293 ℃; concrete density of 2 300 kg/m3, concrete specific capacity of 840+420T/85.

    From above result, the heating-up time to reach the steady-state temperature fields of 100, 200, 300, 400, 500 ℃ in fire-port, are 50, 60, 75, 80, 130 min, respectively. To study how the maintaining duration at constant temperature influence the mechanical property of concrete, five durations, namely 0, 30, 60, 90 and 120 min,are used and designated as 0, 1, 2, 3, 4 in Tab.2. Shown in Tab.2 is the total time including both the heating-up time and the maintaining duration at constant temperature.

    Tab.2 Heating period allocation table min

    2 Experimental result analysis

    2.1 Impact wave curves and failure pattern of concrete specimens under different temperature conditions

    According to Ref.[17], the measurement error of SHPB equipment is no more than 3%. Besides the temperature drop is below 10% during the period between after heating and impacting experiment due to the thermal transmission.

    Fig.2a is the incident wave and reflected wave curves tested three times cooled from 100 ℃ with duration of 120 min at 100 ℃ constant temperature. The incident waves are steady and approximate rectangle. The reflected waves of broken specimens are approximate ‘W’ shape. Fig.2b is the transmitted wave curves tested three times cooled from 100 ℃ with duration of 120 min at 100 ℃ constent temperature. The more serious the damage degree of specimen is; the deeper the wave trough is; the higher the energy of reflected wave is; the lower the energy of transmitted wave is.

    Under each experimental condition, test was done three times (Fig.3). Here only take the tests cooled from 100 ℃.

    Fig.2 Incident wave and reflected wave curves and transmitted wave curves of specimens cooled from 100 ℃ constant temperature with duration of 120 min at 100 ℃ constant

    Fig.3 Failure patterns of specimens cooled from 100 ℃ with duration of 120 min at 100 ℃ constant temperature

    2.2 Dynamic mechanical property analysis under and cooled from high temperature of different durations

    2.2.1 Under and cooled from 100 ℃ steady-state temperature field of different durations at 100 ℃

    From Fig.4, for the specimens under 100 ℃ steady-state temperature field as the duration at 100 ℃ increases, the dynamic compressive strength decreases; the elastic modulus goes down; and the peak strain ascends overall. At the durations of 0, 30 and 60 min at 100 ℃ constant temperature, the dynamic compressive strength is higher than that under the room temperature; in contrast it is lower at durations of 90 min and 120 min.

    In Fig.5, for the specimens cooled from 100 ℃ constant temperature field, as the increase of the duration at 100 ℃, the dynamic compressive strength decreases; the elastic modulus goes down; and the peak strain ascends. In this case, the dynamic compressive strength is higher than that under room temperature for all durations except for 60 min.

    Fig.4 Stress-strain curves of specimens with different durations at 100 ℃ constant temperature field

    Fig.5 Stress-strain curves of specimens cooled from 100 ℃ to the room temperature, with different durations at 100 ℃

    2.2.2 Under and cooled from 200 ℃ steady-state temperature field of different durations at 200 ℃

    From Fig.6, for the specimens in 200 ℃ constant temperature field as the duration at 200 ℃ increases, the dynamic compressive strength goes down; the peak strain generally ascends; the elastic modulus decreases. The dynamic compressive strength is higher than that under the room temperature for all durations at 200 ℃.

    In Fig.7, for the specimens cooled from 200 ℃ constant temperature field, as the increase of the duration at 200 ℃, the dynamic compressive strength and elastic modulus reduce, but peak strain generally increases. For the cooled specimens undergone the durations of 0 min, 30 min, 60 min and 90 min at 200 ℃, the dynamic compressive strength is higher than that under the room temperature, while it is lower at the duration of 120 min at 200 ℃.

    Fig.6 Stress-strain curves of specimens with different durations at 200 ℃ constant temperature field

    Fig.7 Stress-strain curves of specimens cooled from 200 ℃ to the room temperature, with different durations at 200 ℃

    2.2.3 Under and cooled from 300 ℃ steady-state temperature field of different durations at 300 ℃

    From Fig.8, for the specimens under 300 ℃ steady-state temperature field, as the duration at 300 ℃ ascends, the dynamic compressive strength and the elastic modulus decreases but the peak strain increases. In this case, the dynamic compressive strength is higher than that under the room temperature for all durations at 300 ℃.

    From Fig.9, for the specimen cooled from 300 ℃, as the increase of the duration at 300 ℃, the dynamic compressive strength and the elastic modulus decrease; the peak strain increases first and then decreases. The dynamic compressive strength of the cooled specimens at the durations of 0, 30, 60 and 90 min at 300 ℃ is higher than that under room temperature, by contrast it reverses at the duration of 120 min at 300 ℃.

    Fig.8 Stress-strain curves of specimens with different durations at 300 ℃ constant temperature field

    Fig.9 Stress-strain curves of specimens cooled from 300 ℃ to the room temperature, with different durations at 300 ℃

    2.2.4 Under and cooled from 400 ℃ steady-state temperature field of different durations at 400 ℃

    From Fig.10, for the specimens under 400 ℃ steady-state temperature field as the duration at 400 ℃ rises, the dynamic compressive strength and the elastic modulus reduce, but the peak strain increases. At the durations of 0, 30 and 60 min under 400 ℃ constant temperature field, the dynamic compressive strength is higher than that under room temperature, but it is lower at the durations of 90 min and 120 min at 400 ℃.

    From Fig.11, for the specimens cooled from 400 ℃, as the duration at 400 ℃ increases, the dynamic compressive strength and the elastic modulus decrease, and the peak strain increases first and then decreases lightly. For the cooled specimens at the durations of 30 min and 60 min at 400 ℃, the dynamic compressive strength is higher than that under the room temperature, but the trend reverses at the durations of 0, 90 and 120 min at 400 ℃.

    Fig.10 Stress-strain curves of specimens with different durations at 400 ℃ constant temperature field

    Fig.11 Stress-strain curves of specimens cooled from 400 ℃ to the room temperature, with different durations at 400 ℃

    2.2.5 Under and cooled from 500 ℃ steady-state temperature field of different durations at 500 ℃

    From Fig.12, for specimens in 500 ℃ steady-state temperature field as the duration at 500 ℃ increases, the dynamic compressive strength decreases first and then tends to stable; the elastic modulus reduces; the peak strain increases first and then maintains stable. The dynamic compressive strength of specimen without duration under 500 ℃ constant temperature is higher than that under room temperature, but it is opposite for the other durations at 500 ℃ constant temperature, e.g. 30, 60, 90 and 120 min.

    From Fig.13, for specimens cooled from 500 ℃ as the duration at 500 ℃ constant temperature increases, the dynamic compressive strength and the elastic modulus decrease,and the peak strain reduces first and then goes up. The dynamic compressive strength of specimens cooled is lower than that under the room temperature for all durations at 500 ℃.

    Fig.12 Stress-strain curves of specimens with different durations at 500 ℃ constant temperature field

    Fig.13 Stress-strain curves of specimens cooled from 500 ℃ to the room temperature, with different durations at 500 ℃

    2.3 Dynamic mechanical property analysis under and cooled from high temperature without temperature maintaining time

    Fig.14 is a comparison of specimens under and cooled from high-temperature without temperature maintaining time, as the temperature increases (before cooling), the dynamic compressive strength increases till about 200 ℃ where the maximum value occurs, and then it decreases. The above phenomenon is resulted from the loss of free water of inside concrete at 200 ℃ which enhances the interlock capacity of concrete and lead the strength of concrete to reach the top. The dynamic compressive strength of specimen under higher temperatures is higher than that cooled from that high temperature, except at 500 ℃ where they are about same.

    Fig.15 is a comparison of specimens under and cooled from high-temperature without temperature maintaining time, the peak strain rises firstly and then descends as temperature increase and the peak strain are same at about 270 ℃. Before 270 ℃ the peak strain under high temperature is higher than that cooled, which reverses after 270 ℃.

    Fig.14 Dynamic compressive strength- temperature curves of specimens under and cooled from high temperature

    Fig.15 Peak strain-temperature curves of specimens under and cooled from high temperature

    3 Conclusions

    This impact tests on C60 concrete specimens were conducted under different steady-state temperature fields (room temperature, 100, 200, 300, 400 and 500 ℃) after the specimen was maintained for a duration of 0, 30, 60, 90 or 120 min, respectively and after the specimen was cooled from the elevated temperatures to the room temperature, using Φ75 mm split Hopkinson pressure bar (SHPB) system. From the experimental data, the following conclusions can be made:

    ① Under the same steady-state temperature field, when the duration for maintaining the elevated temperature rises, the dynamic compressive strength of concrete specimen decreases. Under the 500 ℃ steady-state temperature field, when the total time exceeds 190 min, the dynamic compressive strength stops to descend and tends towards stable. For specimens cooled from the elevated temperature, as total time increases, the dynamic compressive strength decreases.

    ② Under the same steady-state temperature field of different temperature maintaining durations, as the duration increases, the peak strain of specimen generally rises; the elastic modulus reduces; and the toughness becomes stronger. For specimens cooled from the elevated temperature, with the increase of total time, the peak strain typically increases first and then decreases slightly, and the elastic modulus decreases.

    ③ For both specimens under and cooled from high-temperature without temperature maintaining time, as the temperature increases (before cooling),the dynamic compressive strength raises slightly till around 200 ℃ where the maximum point occurs and then descends after 200 ℃, and the peak strain ascends first and then goes down. The dynamic compressive strength of specimens under high temperature is higher than that of specimens cooled from that high temperature, except at 500 ℃ where they are nearly the same.

    [1] Majid A, Li Xiaoyang, Nawawi C. Experimental investigations on bond strength between coconut fibre and concrete[J]. Material and Design, 2013, 44: 596-605.

    [2] Le T T, Austin S A, Lim S, et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42(3): 558-566.

    [3] Toledo Filho R D, Koenders E A B, Formagini S, et al. Performance assessment of ultrahigh performance fiber reinforced cementitious composites in view of sustainability[J]. Material and Design, 2012, 36: 880-888.

    [4] He Yuanming, Huo Jingsi, Chen Baisheng, et al. Impact tests on dynamic behavior of concrete at elevated temperature[J]. Engineering Mechanics, 2012, 29(9): 200-208. (in Chinese)

    [5] Li Zhiwu, Xu Jinyu, Bai Erlei, et al. SHPB test for post-high-temperature concrete[J]. Journal of Vibration and Shock, 2012, 31(8): 143-147. (in Chinese)

    [6] Li Qingming, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2): 43-360.

    [7] Wang Zhiliang, Liu Yongsheng, Shen R F.Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials, 2008, 22(5): 1-819.

    [8] Li Kui, Tao Junlin. Research on impact compressive experiment and dynamic mechanic behavior of cement mortar at high temperature[J]. Journal of Wuhan University of Technology, 2010, 32(24): 2-27. (in Chinese)

    [9] Jia, Bin, Li, Zhengliang, Tao Junlin, et al. SHPB test on high temperature dynamical mechanical behavior of concrete[J]. Journal of Wuhan University of Technology, 2010, 32(21): 34-37. (in Chinese)

    [10] Jia Bin, Yang Fang, Sun Kunlin, et al. SHPB test on dynamical mechanical behavior of concrete with high temperature[J]. Applied Mechanics and Materials, 2014, 528: 61-69.

    [11] Su Haoyang, Xu Jinyu, Ren Weibo. Experimental study on the dynamic compressive mechanical properties of concrete at elevated temperature[J]. Materials and Design, 2014, 56: 579-588.

    [12] Li Zhiwu, Xu Jinyu, Bai Erlei. Static and dynamic mechanical properties of concrete after high temperature exposure[J]. Materials Science and Engineering A, 2012, 544: 27-32.

    [13] Yang Shaowei, Liu Limei, Wang Yongwei. SHPB experiment of steel fiber reactive powder concrete exposed to high temperature[J]. Journal of Sichuan University, 2010, 42(1): 25-34. (in Chinese)

    [14] Kim D J, Sirijaroonchai K, EI-Tawil S, et al. Numerical simulation of the split Hopkinson pressure bar test technique for concrete under compression[J]. International Journal of Impact Engineering, 2010, 37: 141-149.

    [15] Hu Shisheng. Experimental techniques for studying dynamic mechanical behaviors of concrete[J]. Journal of University of Science and Technology of China, 2007, 37(10): 312-1319. (in Chinese)

    [16] Li Shenglin, Liu Dianshu, Li Xianglong, et al. The effect of specimen length in Φ75 mm split Hopkinson pressure bar experiment[J]. Journal of China University of Mining & Technology, 2010, 39(1): 93-97. (in Chinese)

    [17] Shi Shaoqiu, Gan Sun. The error analysis of resistance strain measure system on SHPB test unit[J]. Journal of Ningbo University, 1989, 2(2): 48-58. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0305

    O 347; TU 528.1 Document code: A Article ID: 1004- 0579(2015)03- 0313- 08

    Received 2015- 03- 15

    E-mail: l_hongchao@yahoo.com

    猜你喜歡
    梁書趙磊
    藝術檔案
    ——畫家趙磊博采眾長成大道
    寫給舅舅的一封信
    回答
    《囍》
    炎黃地理(2021年5期)2021-09-10 01:32:23
    A GPU accelerated finite volume coastal ocean model*
    拍賣
    兒媳婦計劃
    故事會(2015年23期)2015-12-01 06:07:32
    Runge-Kutta Multi-resolution Time-Domain Method for Modeling 3DDielectric Curved Objects
    Lagrangian methods for water transport processes in a long-narrow bay-Xiangshan Bay, China*
    從《重答劉秣陵沼書》看《梁書·文學傳》之失
    名作欣賞(2014年29期)2014-02-28 11:24:31
    亚洲av成人av| 午夜影院日韩av| h日本视频在线播放| 啦啦啦观看免费观看视频高清| 久久久久性生活片| 夜夜爽天天搞| 欧美黑人欧美精品刺激| 国产av在哪里看| 9191精品国产免费久久| 欧美中文日本在线观看视频| 十八禁人妻一区二区| 久久久精品大字幕| 国产精品免费一区二区三区在线| 欧美精品啪啪一区二区三区| 国产激情欧美一区二区| 观看免费一级毛片| 级片在线观看| 人妻久久中文字幕网| 欧美绝顶高潮抽搐喷水| 午夜激情福利司机影院| 99国产精品一区二区蜜桃av| 深夜精品福利| 欧美在线黄色| 国产视频一区二区在线看| 色综合婷婷激情| 国产成人av教育| 女生性感内裤真人,穿戴方法视频| 日本 av在线| 人人妻,人人澡人人爽秒播| 在线观看免费视频日本深夜| 在线观看舔阴道视频| 国产精品一区二区免费欧美| 免费看日本二区| 在线观看日韩欧美| 欧美xxxx黑人xx丫x性爽| 极品教师在线免费播放| АⅤ资源中文在线天堂| 九九久久精品国产亚洲av麻豆| av天堂在线播放| 国产不卡一卡二| 国产成年人精品一区二区| 国产国拍精品亚洲av在线观看 | 又紧又爽又黄一区二区| 日日夜夜操网爽| 国产精品国产高清国产av| 精品国产超薄肉色丝袜足j| 亚洲一区二区三区色噜噜| 好男人电影高清在线观看| 午夜福利在线在线| 中文字幕人成人乱码亚洲影| 亚洲美女视频黄频| 久久久久久久久大av| 亚洲成人精品中文字幕电影| 91久久精品电影网| 午夜福利高清视频| 在线观看av片永久免费下载| ponron亚洲| 精品电影一区二区在线| 午夜福利18| 久久久久久久久久黄片| 亚洲内射少妇av| 在线观看美女被高潮喷水网站 | 又粗又爽又猛毛片免费看| 国产乱人视频| 好男人电影高清在线观看| 亚洲欧美日韩无卡精品| 一a级毛片在线观看| 国产精品免费一区二区三区在线| 国产精品三级大全| 国产伦人伦偷精品视频| 久久性视频一级片| 无人区码免费观看不卡| 亚洲精品乱码久久久v下载方式 | 国产黄a三级三级三级人| 日本免费a在线| 日本一二三区视频观看| 国产日本99.免费观看| 丰满人妻熟妇乱又伦精品不卡| av专区在线播放| 又黄又爽又免费观看的视频| 日日夜夜操网爽| 欧美在线一区亚洲| 黄片大片在线免费观看| 久久久国产成人免费| 免费看日本二区| 亚洲欧美精品综合久久99| 国产色爽女视频免费观看| 特级一级黄色大片| 久久精品国产亚洲av涩爱 | 黄片小视频在线播放| 波多野结衣高清作品| 三级国产精品欧美在线观看| 精品久久久久久久末码| 国产精品久久久久久人妻精品电影| 母亲3免费完整高清在线观看| 美女cb高潮喷水在线观看| 免费观看的影片在线观看| 在线免费观看的www视频| 一级毛片女人18水好多| 亚洲男人的天堂狠狠| 国产在视频线在精品| 亚洲男人的天堂狠狠| 一个人看的www免费观看视频| 久久精品91蜜桃| 99国产极品粉嫩在线观看| 国产精品av视频在线免费观看| 天堂动漫精品| 我要搜黄色片| 亚洲av免费高清在线观看| x7x7x7水蜜桃| 国产av一区在线观看免费| 欧美最黄视频在线播放免费| 亚洲在线观看片| 亚洲在线自拍视频| xxx96com| 99热精品在线国产| 日韩精品中文字幕看吧| 欧美区成人在线视频| 午夜免费成人在线视频| 丰满人妻一区二区三区视频av | 夜夜爽天天搞| 美女 人体艺术 gogo| 99久久成人亚洲精品观看| 成人精品一区二区免费| 一个人看的www免费观看视频| 大型黄色视频在线免费观看| 国产精品av视频在线免费观看| 丰满乱子伦码专区| 成人午夜高清在线视频| 亚洲人成电影免费在线| 欧美成人免费av一区二区三区| 精品久久久久久久久久免费视频| 国产免费男女视频| 国内少妇人妻偷人精品xxx网站| 在线观看av片永久免费下载| 淫妇啪啪啪对白视频| 亚洲va日本ⅴa欧美va伊人久久| 国产视频一区二区在线看| 1000部很黄的大片| 91字幕亚洲| 精品国产亚洲在线| 日韩欧美精品v在线| 国产精品一及| 亚洲无线在线观看| 我要搜黄色片| 中亚洲国语对白在线视频| 午夜激情欧美在线| 一级毛片女人18水好多| 手机成人av网站| 亚洲 国产 在线| 九九久久精品国产亚洲av麻豆| 中文字幕人妻丝袜一区二区| 日本精品一区二区三区蜜桃| 最近视频中文字幕2019在线8| 狠狠狠狠99中文字幕| 国产伦人伦偷精品视频| 高清毛片免费观看视频网站| 中出人妻视频一区二区| 国产69精品久久久久777片| 一区二区三区国产精品乱码| 人妻夜夜爽99麻豆av| 久久这里只有精品中国| АⅤ资源中文在线天堂| 99riav亚洲国产免费| 夜夜夜夜夜久久久久| 欧美中文综合在线视频| 18+在线观看网站| av在线蜜桃| 3wmmmm亚洲av在线观看| 日韩欧美精品v在线| 国产欧美日韩一区二区三| 成人国产一区最新在线观看| 91久久精品电影网| 精品电影一区二区在线| 啦啦啦免费观看视频1| 国产精品,欧美在线| 国产国拍精品亚洲av在线观看 | a级毛片a级免费在线| 国产精品一区二区三区四区久久| 亚洲国产欧洲综合997久久,| 国产精品一及| 国产蜜桃级精品一区二区三区| 午夜a级毛片| 免费av毛片视频| 亚洲七黄色美女视频| 免费在线观看亚洲国产| 中文字幕久久专区| 国产老妇女一区| 热99在线观看视频| 亚洲av熟女| 欧美黄色淫秽网站| 人人妻人人看人人澡| 韩国av一区二区三区四区| 国产99白浆流出| 久久亚洲精品不卡| 长腿黑丝高跟| 久久6这里有精品| 国产69精品久久久久777片| 看片在线看免费视频| 又紧又爽又黄一区二区| 欧美又色又爽又黄视频| 亚洲欧美日韩无卡精品| 亚洲无线在线观看| 成人无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 91九色精品人成在线观看| 精品人妻1区二区| 免费av毛片视频| 日本免费a在线| 亚洲av免费高清在线观看| 国产午夜精品论理片| 国产欧美日韩一区二区精品| 亚洲 国产 在线| 全区人妻精品视频| 激情在线观看视频在线高清| 毛片女人毛片| 欧美在线黄色| 女人高潮潮喷娇喘18禁视频| 99国产精品一区二区三区| 99国产极品粉嫩在线观看| 在线观看av片永久免费下载| 熟妇人妻久久中文字幕3abv| 别揉我奶头~嗯~啊~动态视频| 深爱激情五月婷婷| 中文字幕人妻丝袜一区二区| 一区福利在线观看| 日韩欧美精品v在线| 在线观看av片永久免费下载| 亚洲人成网站在线播放欧美日韩| 波多野结衣巨乳人妻| 亚洲在线观看片| 97超视频在线观看视频| 久久精品91无色码中文字幕| av片东京热男人的天堂| 亚洲av日韩精品久久久久久密| 国产真实乱freesex| 日日夜夜操网爽| 天天一区二区日本电影三级| 老汉色∧v一级毛片| 国产成人福利小说| 国产麻豆成人av免费视频| 亚洲无线观看免费| 亚洲国产精品999在线| 国产黄色小视频在线观看| 亚洲人成电影免费在线| 国产又黄又爽又无遮挡在线| 亚洲中文日韩欧美视频| 日本免费一区二区三区高清不卡| 一a级毛片在线观看| 午夜福利欧美成人| 九九热线精品视视频播放| 色精品久久人妻99蜜桃| 99riav亚洲国产免费| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品合色在线| 午夜免费观看网址| 三级毛片av免费| 亚洲av五月六月丁香网| 欧美乱码精品一区二区三区| 三级国产精品欧美在线观看| 波多野结衣巨乳人妻| 国内精品美女久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 香蕉av资源在线| 丰满乱子伦码专区| 国产高清视频在线播放一区| 欧美性感艳星| 亚洲成a人片在线一区二区| 老司机午夜福利在线观看视频| 国语自产精品视频在线第100页| 日韩 欧美 亚洲 中文字幕| 一区二区三区免费毛片| 欧美国产日韩亚洲一区| 亚洲成人久久性| 精品久久久久久久毛片微露脸| 国产麻豆成人av免费视频| 午夜精品久久久久久毛片777| 人人妻人人看人人澡| 国产不卡一卡二| 久久性视频一级片| 18+在线观看网站| 亚洲国产精品999在线| 嫩草影院精品99| 国产真实乱freesex| 日本三级黄在线观看| 精品福利观看| 3wmmmm亚洲av在线观看| 性色av乱码一区二区三区2| 国产精品久久电影中文字幕| 身体一侧抽搐| 丰满乱子伦码专区| 国产淫片久久久久久久久 | a级一级毛片免费在线观看| 久久精品国产亚洲av涩爱 | 日韩国内少妇激情av| 日本免费一区二区三区高清不卡| 欧美日韩中文字幕国产精品一区二区三区| 国产成人av教育| 亚洲精品456在线播放app | 嫩草影院精品99| 最近在线观看免费完整版| av片东京热男人的天堂| 欧美性猛交╳xxx乱大交人| 99riav亚洲国产免费| 亚洲欧美精品综合久久99| 精品久久久久久久久久免费视频| 一本综合久久免费| 99视频精品全部免费 在线| 日本与韩国留学比较| 亚洲熟妇中文字幕五十中出| 日韩av在线大香蕉| 欧美中文日本在线观看视频| 精品福利观看| 成人国产一区最新在线观看| 看免费av毛片| 三级男女做爰猛烈吃奶摸视频| 国产欧美日韩精品亚洲av| 久久久国产成人免费| 国产在视频线在精品| 搡老熟女国产l中国老女人| 一卡2卡三卡四卡精品乱码亚洲| 日韩国内少妇激情av| 日韩欧美精品v在线| 亚洲五月天丁香| 国产精品一区二区免费欧美| 香蕉久久夜色| 一进一出好大好爽视频| 啪啪无遮挡十八禁网站| 国内揄拍国产精品人妻在线| 亚洲精品色激情综合| 最近在线观看免费完整版| 久久久精品大字幕| 此物有八面人人有两片| 色综合站精品国产| 成人无遮挡网站| 午夜福利欧美成人| 久久久久久久精品吃奶| 国产极品精品免费视频能看的| 国产精品98久久久久久宅男小说| 香蕉av资源在线| tocl精华| 丁香六月欧美| 亚洲精品在线观看二区| 欧美性猛交╳xxx乱大交人| 一进一出抽搐动态| 99精品在免费线老司机午夜| 黄色成人免费大全| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av一区综合| 最新在线观看一区二区三区| 午夜日韩欧美国产| av天堂在线播放| 亚洲狠狠婷婷综合久久图片| tocl精华| 99热这里只有精品一区| 99国产精品一区二区三区| 日本与韩国留学比较| 亚洲av日韩精品久久久久久密| 一区二区三区免费毛片| 亚洲avbb在线观看| 搡老熟女国产l中国老女人| 又紧又爽又黄一区二区| 一区福利在线观看| 欧美激情在线99| 丰满人妻熟妇乱又伦精品不卡| 少妇高潮的动态图| 啦啦啦免费观看视频1| 欧美xxxx黑人xx丫x性爽| 国产美女午夜福利| 亚洲av成人精品一区久久| 欧洲精品卡2卡3卡4卡5卡区| 婷婷亚洲欧美| 国内揄拍国产精品人妻在线| 午夜免费激情av| 午夜福利视频1000在线观看| 最新在线观看一区二区三区| 一区二区三区国产精品乱码| 国产99白浆流出| 99热只有精品国产| 搡老妇女老女人老熟妇| 久久精品国产99精品国产亚洲性色| 欧美日本视频| 精品一区二区三区视频在线观看免费| 亚洲成人中文字幕在线播放| 亚洲精品国产精品久久久不卡| 嫁个100分男人电影在线观看| 国产成人a区在线观看| 不卡一级毛片| 国产av不卡久久| 男人和女人高潮做爰伦理| 久久国产精品人妻蜜桃| 国产精品久久久久久久电影 | 日日干狠狠操夜夜爽| 亚洲第一欧美日韩一区二区三区| 久久精品国产综合久久久| 午夜免费成人在线视频| 精品久久久久久久毛片微露脸| 国产美女午夜福利| 精品久久久久久久人妻蜜臀av| 在线观看av片永久免费下载| 国产成人福利小说| 成人av在线播放网站| 国产av麻豆久久久久久久| ponron亚洲| 欧美一区二区国产精品久久精品| 久99久视频精品免费| 韩国av一区二区三区四区| 亚洲精品日韩av片在线观看 | 欧美色视频一区免费| 国产精品 欧美亚洲| 国产熟女xx| 国产精品野战在线观看| 成人三级黄色视频| 成人性生交大片免费视频hd| 国产老妇女一区| 男女之事视频高清在线观看| 一区二区三区国产精品乱码| 亚洲国产欧洲综合997久久,| 一本精品99久久精品77| 国产精品香港三级国产av潘金莲| 欧美色欧美亚洲另类二区| 国产精品99久久99久久久不卡| 90打野战视频偷拍视频| 国产精品久久久久久久久免 | 免费在线观看成人毛片| 搡老熟女国产l中国老女人| 亚洲欧美日韩高清在线视频| 亚洲成av人片在线播放无| 日韩免费av在线播放| 亚洲狠狠婷婷综合久久图片| 桃色一区二区三区在线观看| www日本在线高清视频| 欧美bdsm另类| 午夜福利视频1000在线观看| 亚洲最大成人中文| 乱人视频在线观看| 久久久精品大字幕| 久久久久久久久中文| av福利片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品乱码久久久v下载方式 | 亚洲av美国av| 久久午夜亚洲精品久久| 欧美激情久久久久久爽电影| 99精品欧美一区二区三区四区| 亚洲成a人片在线一区二区| 悠悠久久av| 亚洲国产精品合色在线| 91麻豆精品激情在线观看国产| 久久久久国内视频| 欧美激情久久久久久爽电影| 日本a在线网址| 欧美日本视频| 草草在线视频免费看| 国产欧美日韩一区二区精品| 91九色精品人成在线观看| 亚洲精品色激情综合| 成年免费大片在线观看| 国产精品1区2区在线观看.| АⅤ资源中文在线天堂| 桃色一区二区三区在线观看| 精品福利观看| 国产黄a三级三级三级人| 狂野欧美激情性xxxx| 欧美日韩综合久久久久久 | 欧美成人性av电影在线观看| 色综合婷婷激情| 色噜噜av男人的天堂激情| 精品熟女少妇八av免费久了| 日韩大尺度精品在线看网址| 午夜福利在线观看免费完整高清在 | 国产黄色小视频在线观看| a级一级毛片免费在线观看| 天堂动漫精品| 男女那种视频在线观看| 18禁国产床啪视频网站| 高清在线国产一区| 一a级毛片在线观看| 久久草成人影院| 在线视频色国产色| 成人鲁丝片一二三区免费| 男女午夜视频在线观看| 亚洲欧美激情综合另类| 久久久久亚洲av毛片大全| 三级毛片av免费| 久久精品人妻少妇| 亚洲人成电影免费在线| 亚洲成人久久性| 国产淫片久久久久久久久 | 欧美精品啪啪一区二区三区| 极品教师在线免费播放| 在线观看舔阴道视频| 嫩草影院精品99| 午夜免费男女啪啪视频观看 | 国产成人av教育| 欧美一区二区精品小视频在线| 1024手机看黄色片| 综合色av麻豆| 国产美女午夜福利| 中文字幕av成人在线电影| 成人性生交大片免费视频hd| 国产高清视频在线播放一区| 国产精品嫩草影院av在线观看 | 色综合站精品国产| 亚洲中文日韩欧美视频| a级毛片a级免费在线| 欧美日本视频| 我要搜黄色片| 久久精品国产亚洲av涩爱 | 男女床上黄色一级片免费看| 99热这里只有是精品50| 国产高清视频在线观看网站| 中文字幕久久专区| 亚洲内射少妇av| 丁香六月欧美| 国产亚洲欧美在线一区二区| 成人精品一区二区免费| 欧美一区二区国产精品久久精品| 国产激情偷乱视频一区二区| 中文字幕高清在线视频| 日韩免费av在线播放| 一边摸一边抽搐一进一小说| 在线十欧美十亚洲十日本专区| 我要搜黄色片| 看黄色毛片网站| 综合色av麻豆| 一本综合久久免费| 真实男女啪啪啪动态图| 欧美日本亚洲视频在线播放| 久久性视频一级片| 少妇人妻精品综合一区二区 | 久9热在线精品视频| 好男人电影高清在线观看| 亚洲成a人片在线一区二区| 亚洲欧美日韩无卡精品| 国产v大片淫在线免费观看| 少妇人妻一区二区三区视频| 熟女少妇亚洲综合色aaa.| 国产伦精品一区二区三区视频9 | av在线蜜桃| 午夜精品久久久久久毛片777| 99久久久亚洲精品蜜臀av| 男人的好看免费观看在线视频| 一区二区三区激情视频| 久久天躁狠狠躁夜夜2o2o| 免费av不卡在线播放| 桃红色精品国产亚洲av| 成年女人看的毛片在线观看| 给我免费播放毛片高清在线观看| 国产精品久久久久久久电影 | 亚洲成人免费电影在线观看| 最后的刺客免费高清国语| 搞女人的毛片| 午夜亚洲福利在线播放| 啦啦啦韩国在线观看视频| 亚洲午夜理论影院| 久久久久久久午夜电影| 黄色丝袜av网址大全| 免费一级毛片在线播放高清视频| 久久久久久久久大av| 国产成人啪精品午夜网站| 久久亚洲精品不卡| 精品午夜福利视频在线观看一区| 亚洲成人久久性| 一个人观看的视频www高清免费观看| 午夜精品久久久久久毛片777| 国产视频一区二区在线看| 久久亚洲真实| 亚洲国产精品合色在线| 男女之事视频高清在线观看| 亚洲一区二区三区不卡视频| 99国产综合亚洲精品| 亚洲无线观看免费| 国产精品女同一区二区软件 | 丰满人妻一区二区三区视频av | 国产精品99久久久久久久久| 欧美性猛交╳xxx乱大交人| 天堂av国产一区二区熟女人妻| 久久精品影院6| 久久久精品大字幕| 丰满人妻一区二区三区视频av | 天天一区二区日本电影三级| 嫩草影院精品99| 亚洲国产色片| 日本 欧美在线| 国产毛片a区久久久久| 制服丝袜大香蕉在线| netflix在线观看网站| 琪琪午夜伦伦电影理论片6080| 免费观看精品视频网站| 国产高清视频在线观看网站| 观看免费一级毛片| 国产91精品成人一区二区三区| 高清在线国产一区| 久久99热这里只有精品18| www.熟女人妻精品国产| 亚洲激情在线av| 欧美国产日韩亚洲一区| 国产91精品成人一区二区三区| 一本精品99久久精品77| 97超视频在线观看视频| 九色国产91popny在线| 欧美黄色片欧美黄色片| 免费在线观看日本一区| 国产av不卡久久| 窝窝影院91人妻| 亚洲国产欧美人成| 国产伦精品一区二区三区四那| 十八禁网站免费在线| av专区在线播放| 欧美日韩中文字幕国产精品一区二区三区| 天堂网av新在线| 亚洲国产欧洲综合997久久,| 人妻丰满熟妇av一区二区三区| 亚洲熟妇熟女久久|