• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic modeling and simulation for the flexible spacecraft with dynamic stiffening

    2015-04-22 07:24:52LICuichun李崔春MENGXiuyun孟秀云LIUZaozhen劉藻珍

    LI Cui-chun(李崔春), MENG Xiu-yun(孟秀云), LIU Zao-zhen(劉藻珍)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education,Beijing Institute of Technology, Beijing 100081, China)

    ?

    Dynamic modeling and simulation for the flexible spacecraft with dynamic stiffening

    LI Cui-chun(李崔春), MENG Xiu-yun(孟秀云), LIU Zao-zhen(劉藻珍)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education,Beijing Institute of Technology, Beijing 100081, China)

    A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system, the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystem modeling framework. It is clearly elucidated for the first time that, dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. The modeling approach in this paper successfully avoids problems which are caused by other popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical explanation for dynamic stiffening can’t be provided. First, the continuous dynamic models of the flexible beam and the central rigid body are established via structural dynamics and angular momentum theory respectively. Then, based on the conclusions of orthogonalization about the normal constrained modes, the finite dimensional dynamic model suitable for controller design is obtained. The numerical simulation validations show that: dynamic stiffening is successfully incorporated into the dynamic characteristics of the first-order model established in this paper, which can indicate the dynamic responses of the rigid flexible coupling system with large overall motion accurately, and has a clear modeling mechanism, concise expressions and a good convergence.

    non-inertial coordinate system; large overall motion; rigid flexible coupling; dynamic stiffening; normal constrained mode

    In early times, a rigid model could be fairly accurate to describe the dynamic characteristics of a spacecraft. With the development of aerospace technology, the number of spacecraft with a variety of flexible appendages such as large area solar panel and large scale flexible antenna is increasing rapidly. While the system is undergoing a large overall motion, the coupling effect of the large overall motion and the elastic deformation of flexible appendage appears. Previous studies of the rigid flexible coupling system were based on the traditional zero-order approximate dynamic model[1-2], which ignored the coupling terms of the large overall motion and the elastic deformation. However, when the system is undergoing large overall motions, especially a motion of high velocity, it would provide a result of unlimited increasing of the deformation of flexible appendages, which is in contradiction with the reality. To solve this problem, based on the study of a cantilever beam attached to a moving platform, Kane put forward the concept of dynamic stiffening for the first time in 1987[3], and pointed out that the large rotation motion would increase the stiffness of the beam. From then on, many scholars started to pay a lot of attentions[4-8]. It becomes an engineering significance whether the dynamic stiffening is incorporated into the dynamic behavior of model established[9-14].

    To sum up, there are two key points lying in the dynamic modeling of the rigid flexible coupling system: ① the model established should contain the coupling of the rigid motion and the flexible deformation; ② the dynamic stiffening should be included in the dynamic characteristics of the model. The ideas in most previous papers are to regard the whole system as the research object, and the models are established by employing only one dynamic principle. There are mainly two drawbacks in these papers: ① the coupling degree of the dynamic equations established is too high, and the modeling process is too complex to be conducive for the numerical integration; ② the dynamic stiffening term is captured by truncating the high-order terms of the expansion of the flexible deformation filed, so a really rational explanation for dynamic stiffening is not provided. To solve problems referred, a rigid flexible coupling dynamic model (Hub-Beam) is studied in this paper by adopting the subsystem modeling technique. Firstly, the system is divided into two subsystems: a central rigid body (Hub) and a flexible beam (Beam). The continuous dynamic models are derived via structural dynamics and angular momentum theory respectively. Then, based on the conclusion of orthogonalization about the normal constrained modes of the flexible beam, a space state model is obtained. The numerical simulation shows that, the first-order model in this paper has considered dynamic stiffening, and can indicate the dynamic behavior of the flexible spacecraft with large overall motions accurately. It has a clear modeling mechanism, concise expressions and a good convergence.

    The main contribution of this paper is the introduction of the mechanics theory in the non-inertial coordinate system, which considers the dynamic stiffening as a mechanics phenomenon in a non-inertial system. As a result, a clearly theoretical explanation for dynamic stiffening is provided: it is produced by the coupling effect of the centrifugal inertial load distributed on the flexible beam with large overall motions and the transverse vibration deformation of the beam.

    1 Continuous dynamic modeling based on mechanics problems in non-inertial system

    1.1 Rigid flexible coupling physical model

    The rigid flexible coupling physical model (Hub-Beam) is shown in Fig.1. This model can represent a large class of spacecrafts, such as a satellite with solar panel, etc. The effect of orbit maneuver on attitude motion is ignored here. The system shown in Fig.1 consists of a central rigid body (Hub) and a cantilever flexible beam (Beam) attached to Hub. The flexible beam is assumed to be a uniform Euler-Bernoulli beam with the assumption of small deformation and small strain, and the material is assumed to be homogeneous and isotropic.

    Fig.1 Rigid flexible coupling physical model (Hub-Beam)

    The inertial coordinate systemOIXIYIis built with the center of the central rigid body as the origin. The floating coordinate systemOXYis built on the flexible beam. The deflection curvey=y(x,t) describes the transverse vibration deformation of Beam. The angular rotation of Hub isθ(t). The rigid flexible coupling system shown in Fig.1 is divided into two subsystems. Subsystem 1 is Beam.lis the length,ρbis the mass per unit length,Eis the Young’s modulus of elasticity, andIis the rotary inertia of cross section. Subsystem 2 is Hub.Jstaris the rotary inertia about an axis of rotationOI,bis the radius, andThis the applied torque.

    1.2 Modeling of Beam based on structural dynamics

    The deformation field of Beam with large overall motions is shown in Fig.2. As a result of the motion of Hub,OXYbecomes a non-inertial coordinate system. Therefore, the research purpose on the dynamic characteristics of the transverse vibration of Beam is to solve a typical mechanics problem in a non-inertia coordinate system. According to structural dynamics, the transverse vibration of Beam is determined by the external distributed load which is perpendicular to the Beam. The corresponding equation is in the form of

    (1)

    whereq(x,t) is the external vertical distributed load. Therefore, the key to establish the dynamic equation of the transverse vibration of Beam is to obtain the expression of the external vertical distributed load acting on Beam.

    Fig.2 Deformation field of Beam with large overall motion

    (2)

    BasedonthegeometricrelationsshowninFig.2andtheassumptionaboutalittledisplacementandalittleangle,andmeanwhile,thesecond-orderofseriesoftrigonometricfunctionsareomitted,thesimplifiedformoftheexternalverticaldistributedloadactingonBeamcanbewrittenas

    (3)

    SubstitutingEq. (3)intoEq. (1),thecontinuousdynamicequationofBeamwithlargeoverallmotionsisobtainedintheformof

    (4)

    1.3 Modeling of Hub based on angular momentum theory

    The applied forces related to the attitude motion of Hub are shown in Fig.3.Th(t) is the applied torque.Fs(0,t) andM(0,t) are the force and the torque of Beam acting on Hub at the joint respectively.

    Fig.3 Forces and torques acting on Hub

    (5)

    Thus,thedistributionfunctionsoftheshearforceandthebendingmomentare

    (6)

    (7)

    BasedonEqs. (5)-(7),thecontinuousdynamicequationofHubisintheformof

    (8)

    2 Discrete dynamic modeling based on the conclusions of orthogonalization about normal constrained modes

    The expansion about the firstN-orders of the normal constrained modes is utilized to describe the transverse vibration deformation of Beam approximately as following:

    (9)

    (10)

    (11)

    BasedonEqs. (10) (11),thefinitedimensionaldynamicequationofBeamisobtainedasfollowing

    (12)

    where

    q=[q1(t)q2(t)q3(t) …qN(t)]T

    (13)

    ΛN=diag[ω1ω2ω3…ωN]

    (14)

    (15)

    (16)

    Similarly, the finite dimensional dynamic equation of Hub is

    (17)

    where

    (18)

    Eqs. (12)-(18) constitute theN-dimensional dynamic model of a flexible spacecraft. With the consideration of dynamic stiffening, the first-order dynamic model is not only suitable for the engineering background of a small angular maneuver, but also meets the requirements of a large angular maneuver in the complex aerospace missions nowadays. According to Eqs. (12)-(18), the state space equations of the system are

    (19)

    where

    (20)

    3 Numerical simulation validation

    The validations of the rigid flexible coupling dynamic model of a flexible spacecraft are carried out in 2 aspects: ① the validation of dynamic stiffening when the large overall motion is known; ② the validation of the convergence of the first-order model with dynamic stiffening when the large overall motion is unknown.

    3.1 Validation of dynamic stiffening

    Refer to the system parameters in Ref. [16]: Beam of lengthl=8 m, Young’s modulus of elasticityE=6.895 2×1010N/m2, sectional areaA=7.296 8×10-5m2, bulk densityρ=2.766 7×103kg/m3, rotary inertia of cross sectionI=8.218 9×10-9m4; Hub of radiusb=0.5 m, rotary inertiaJstar=300 kg·m2. The regular pattern of the known large overall motion is

    (21)

    whereωmis the final angular velocity of Hub. The value ofωmequals to 0.5 rad/s, 2 rad/s and 4 rad/s respectively in the simulation. Fig.4 is the response of the tip transverse vibration displacement of Beam with large overall motions defined in Eq. (21). Hereinto, the dotted lines correspond to the responses of ZDM, and the solid lines correspond to the responses of FDM. By analyzing the natural frequencies of Beam, the first-order and the second-order natural frequencies are respectively 2.91 rad/s and 18.24 rad/s.

    Fig.4 Responses of tip displacement of Beam with known large overall motions

    To sum up, with the increasing of the final velocity (ωm), the simulation results of ZDM start to become invalid, until divergent. According to analyses about the dynamic terms in Eq. (12), the dynamic softening effect plays a great role in the dynamic behaviors of system at this moment, so the larger the value ofωmis, the more obvious the softening effect is. It should be noticed that, even though the angular velocity of the motion of Hub is quite large, FDM can still predict the dynamic behaviors of the system with a convergent simulation result. It just corresponds to the analysis conclusion about the positive definitiveness of the stiffness matrix of FDM. Thus, FDM has successfully incorporated dynamic stiffening into the dynamic behavior of the system, and could meet the requirements of practical engineering.

    3.2 Validation of the convergence of first-order model

    Set the parameters of Beam: lengthl=5 m, sectional areaA=4×10-4m2, rotary inertia of cross sectionI=1.333×10-8m4, bulk densityρ=2.766 7×103kg/m3, Young’s modulus of elasticityE=6.895 2×1010N/m2. Ignore the central rigid body (Hub), that is to sayJstar=0 andb=0. The external torque is

    Fig.5 Responses of the first-order model when Thm=50 N·m

    (22)

    whereTm=2 s, andThmis the maximum of torque, which equals 50 N·m.

    Fig.5 corresponds to the simulation results whenThm=50 N·m. The tip maximum response amplitude is 0.42 m, and when the system reaches the steady state, the amplitude of the micro continuous oscillation of Beam is about 0.07 m. It can be seen from Fig.5 that, although the torque is very large, the simulation results are still convergent. It should be pointed out that, in the same simulation condition, the simulation results of the first-order approximate coupling dynamic model presented in general papers are rapidly divergent[19]. Thus, the model established in this paper (FDM) not only has a clear modeling mechanism and concise expressions, but also has a good convergence. Even if the simulation conditions are very harsh, FDM can still indicate the dynamic responses of the system accurately.

    4 Conclusions

    A rigid flexible coupling physical model is investigated in this paper.To simplify complex modeling process, this paper applys the mechanics theory in a non-inertial coordinate system, then the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystem modeling technique. According to the modeling process, theoretical analyses and numerical simulation validations, the following conclusions are obtained:

    ① By applying the subsystem modeling technique, the models are established via structural dynamics and angular momentum theory. The modeling approach in this paper successfully solves problems caused by other popular modeling methods, and the modeling process is simplified here. Meanwhile, it meets the requirement about the coupling of the rigid motion and the flexible deformation in the dynamic behavior of the flexible spacecraft.

    ② Dynamic stiffening is considered as a typical mechanics phenomenon in a non-inertial system. By introducing the mechanics theory in a non-inertial coordinate system, dynamic stiffening is successfully incorporated into the dynamic behavior of the system. The numerical simulations show that: the established FDM is not only with the consideration of dynamic stiffening under the background of a large angular maneuver of the flexible spacecraft, but also has a good convergence in the simulation under extreme conditions. FDM can indicate the dynamic responses of the system accurately.

    ③ A clearly theoretical mechanism of dynamic stiffening is provided in this paper: it is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. It gives a way out of the dilemma about dealing with dynamic stiffening in previous papers.

    [1] Hu Qinglei, Shi Peng, Gao Huijun. Adaptive variable structure and commanding shaped vibration control of flexible spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 804-815.

    [2] Shan Jinjun, Liu Hongtao, Sun Dong. Modified input shaping for a rotating single-link flexible manipulator[J]. Journal of Sound and Vibration, 2005, 285(1-2): 187-207.

    [3] Kane T R, Ryant R R. Dynamics of a cantilever beam attached t o a moving base[J]. Journal of Guidance, Control and Dynamics, 1987, 10(2): 139-151.

    [4] Banerjee A K, Dickens J M. Dynamics of an arbitrary flexible body in large rotation and translation[J]. Journal of Guidance, Control and Dynamics, 1990, 13(2): 221-227.

    [5] Zhang D J, Liu C Q, Huston R L. On the dynamics of an arbitrary flexible body with large overall motion: an integrated approach[J]. Mechanics of Structures and Machines, 1995, 23(3): 419-438.

    [6] Jiang Lizhong, Hong Jiazhen, Zhao Yueyu. Coupling dynamical modeling theory of elastic beam-in large overall motions[J]. Chinese Journal of Computational Mechanics, 2002, 19(1): 12-15. (in Chinese)

    [7] Yang Hui, Hong Jiazhen, Yu Zhengyue. Dynamics modeling and numerical simulation for a rigid-flexible coupling multibody system[J]. Chinese Journal of Computational Mechanics, 2003, 20(4): 402-408. (in Chinese)

    [8] Jiang Jianping, Li Dongxu. Research on rigid-flexible coupling dynamics of spacecraft with solar panel[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3): 418-422. (in Chinese)

    [9] Yang Zhengxian, Kong Xianren, Liao Jun, et al. Dynamic modeling and simulation for the rigid-flexible coupling system with large overall motion[J]. Spacecraft Environment Engineering, 2011, 28(2): 141-146. (in Chinese)

    [10] Liang Lifu, Wang Peng, Song Haiyan. The study of the dynamic stiffening problem in a non-inertial coordinate system[J]. Journal of Harbin Engineering University, 2012, 33(8): 1052-1056.

    [11] Bai Shengjian, Huang Xinshen. Building control-oriented simulation environment for flexible spacecraft[J]. Journal of System Simulation, 2010, 22(2): 302-305. (in Chinese)

    [12] García-Vallejo D, Sugiyama H, Shabana A A. Finite element analysis of the geometric stiffening effect. Part 1: a correction in the floating frame of reference formulation[J]. Journal of Multi-body Dynamics, 2005, 219(2): 187-202.

    [13] Huang Yong’an, Deng Zichen, Yao Linxiao. An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system[J]. Journal of Sound and Vibration, 2007, 299(1-2): 229-246.

    [14] Chen Sijia. Researches on the rigid-flexible coupling problem and the dynamic modeling theory of multi-link spatial flexible manipulator arms[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0304

    V 414.33 Document code: A Article ID: 1004- 0579(2015)03- 0305- 08

    Received 2013- 11- 26

    E-mail: mengxy@bit.edu.cn

    免费高清在线观看日韩| 亚洲第一av免费看| 人妻 亚洲 视频| 精品国产乱码久久久久久男人| 汤姆久久久久久久影院中文字幕| 男女国产视频网站| 我要看黄色一级片免费的| 自线自在国产av| 99国产精品免费福利视频| 1024视频免费在线观看| 成人影院久久| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区三区在线| 黄片小视频在线播放| 国产成人精品无人区| 一级毛片 在线播放| 亚洲成人手机| 91成人精品电影| 久久精品人人爽人人爽视色| 性少妇av在线| 美国免费a级毛片| 亚洲专区中文字幕在线| 亚洲人成77777在线视频| 最黄视频免费看| 黄色怎么调成土黄色| 亚洲欧美激情在线| 国产在线视频一区二区| 视频区图区小说| av国产精品久久久久影院| 久久久精品区二区三区| 国产三级黄色录像| 操美女的视频在线观看| 亚洲国产欧美网| 国产爽快片一区二区三区| 老汉色av国产亚洲站长工具| 日本色播在线视频| 在线观看免费高清a一片| 99国产精品一区二区三区| 亚洲三区欧美一区| 一区二区日韩欧美中文字幕| 成人免费观看视频高清| 在线av久久热| 老司机在亚洲福利影院| 亚洲国产精品999| 亚洲人成电影观看| 久久精品久久精品一区二区三区| 老熟女久久久| 51午夜福利影视在线观看| 爱豆传媒免费全集在线观看| 无限看片的www在线观看| 国产日韩欧美亚洲二区| 国产精品久久久久久人妻精品电影 | 国产精品国产三级国产专区5o| 一区二区日韩欧美中文字幕| 日本av免费视频播放| 亚洲情色 制服丝袜| 激情视频va一区二区三区| 久久亚洲国产成人精品v| 日韩大码丰满熟妇| av国产精品久久久久影院| 中文字幕亚洲精品专区| 国产精品av久久久久免费| 亚洲av男天堂| 亚洲国产精品成人久久小说| 国产精品国产av在线观看| 这个男人来自地球电影免费观看| 大陆偷拍与自拍| 亚洲国产最新在线播放| 一级毛片电影观看| 人人妻人人添人人爽欧美一区卜| 老司机亚洲免费影院| 黄色 视频免费看| 国产精品久久久久成人av| 欧美人与性动交α欧美软件| 老司机在亚洲福利影院| 亚洲精品一卡2卡三卡4卡5卡 | xxxhd国产人妻xxx| 欧美成人精品欧美一级黄| 99国产精品免费福利视频| 日本av免费视频播放| 亚洲,一卡二卡三卡| 久久久久久人人人人人| 亚洲七黄色美女视频| 成人三级做爰电影| 亚洲av综合色区一区| 国产一区二区三区综合在线观看| 免费不卡黄色视频| 日韩免费高清中文字幕av| 丝袜喷水一区| 男女之事视频高清在线观看 | 欧美人与性动交α欧美软件| 热99国产精品久久久久久7| 视频区图区小说| 一本—道久久a久久精品蜜桃钙片| av一本久久久久| 人妻人人澡人人爽人人| 18禁观看日本| 亚洲精品美女久久av网站| 91国产中文字幕| 国产高清videossex| 精品福利观看| 精品视频人人做人人爽| 大陆偷拍与自拍| 中文字幕人妻熟女乱码| 亚洲av电影在线观看一区二区三区| 精品少妇内射三级| 韩国精品一区二区三区| 亚洲,欧美精品.| 久久久久久久久久久久大奶| 亚洲av男天堂| 黄色毛片三级朝国网站| 亚洲中文字幕日韩| 免费少妇av软件| 成人免费观看视频高清| 青草久久国产| 免费久久久久久久精品成人欧美视频| 欧美少妇被猛烈插入视频| 亚洲精品久久午夜乱码| 国产片特级美女逼逼视频| 亚洲国产成人一精品久久久| 国产主播在线观看一区二区 | 日韩av免费高清视频| 丝袜美足系列| h视频一区二区三区| 亚洲av国产av综合av卡| 欧美日韩国产mv在线观看视频| 午夜影院在线不卡| 超色免费av| 久久精品久久精品一区二区三区| 男人添女人高潮全过程视频| 免费人妻精品一区二区三区视频| 亚洲欧美一区二区三区久久| 国产又色又爽无遮挡免| 一区在线观看完整版| 精品高清国产在线一区| 久久狼人影院| 国产黄频视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产真人三级小视频在线观看| 日韩av在线免费看完整版不卡| 久久人人爽av亚洲精品天堂| 涩涩av久久男人的天堂| 婷婷色麻豆天堂久久| 免费在线观看日本一区| 美女中出高潮动态图| 久久99精品国语久久久| 亚洲国产最新在线播放| 亚洲精品久久成人aⅴ小说| 嫁个100分男人电影在线观看 | 一级毛片黄色毛片免费观看视频| 欧美中文综合在线视频| 伊人久久大香线蕉亚洲五| 少妇裸体淫交视频免费看高清 | av在线播放精品| 97在线人人人人妻| 两性夫妻黄色片| 国产免费一区二区三区四区乱码| 国产精品香港三级国产av潘金莲 | 99久久人妻综合| 大型av网站在线播放| 国产精品一区二区在线不卡| 免费黄频网站在线观看国产| 国产黄频视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 一区二区日韩欧美中文字幕| 亚洲国产av影院在线观看| 在现免费观看毛片| 亚洲成人国产一区在线观看 | 久久精品熟女亚洲av麻豆精品| 青草久久国产| 国产老妇伦熟女老妇高清| 91麻豆精品激情在线观看国产 | 午夜日韩欧美国产| 亚洲人成网站在线观看播放| 99热国产这里只有精品6| 老司机深夜福利视频在线观看 | 亚洲天堂av无毛| av国产久精品久网站免费入址| 精品一品国产午夜福利视频| 美女主播在线视频| 亚洲欧美精品综合一区二区三区| 国产精品一区二区在线观看99| 一级片'在线观看视频| 韩国高清视频一区二区三区| 成年美女黄网站色视频大全免费| 亚洲欧美日韩高清在线视频 | 欧美中文综合在线视频| 曰老女人黄片| 90打野战视频偷拍视频| 国产日韩一区二区三区精品不卡| 在线观看人妻少妇| 超色免费av| 一级毛片我不卡| 热99久久久久精品小说推荐| 中文字幕色久视频| 国产欧美日韩一区二区三区在线| 人成视频在线观看免费观看| 少妇猛男粗大的猛烈进出视频| 精品人妻一区二区三区麻豆| 久久毛片免费看一区二区三区| 亚洲av片天天在线观看| 亚洲欧美一区二区三区久久| 日本五十路高清| 黄色视频不卡| 别揉我奶头~嗯~啊~动态视频 | 久久精品亚洲av国产电影网| 成人国语在线视频| 国产无遮挡羞羞视频在线观看| 亚洲九九香蕉| 看免费av毛片| 国产又色又爽无遮挡免| 啦啦啦在线观看免费高清www| 亚洲欧美激情在线| 精品福利永久在线观看| 99九九在线精品视频| 国产欧美日韩一区二区三 | 丰满人妻熟妇乱又伦精品不卡| 女人被躁到高潮嗷嗷叫费观| 欧美亚洲 丝袜 人妻 在线| 欧美日韩国产mv在线观看视频| 亚洲精品一二三| 最新在线观看一区二区三区 | 精品福利永久在线观看| 亚洲欧美清纯卡通| 五月开心婷婷网| 欧美国产精品一级二级三级| tube8黄色片| 亚洲色图 男人天堂 中文字幕| 欧美 亚洲 国产 日韩一| 男女床上黄色一级片免费看| 国产亚洲午夜精品一区二区久久| 国产成人系列免费观看| 国产成人av教育| 一级a爱视频在线免费观看| 亚洲av日韩精品久久久久久密 | 国产在线观看jvid| 亚洲人成电影免费在线| 麻豆乱淫一区二区| 人成视频在线观看免费观看| 国产精品久久久久成人av| 日韩,欧美,国产一区二区三区| av网站在线播放免费| 成年av动漫网址| 又大又爽又粗| 欧美日韩av久久| 午夜福利在线免费观看网站| 精品少妇久久久久久888优播| 精品一品国产午夜福利视频| 可以免费在线观看a视频的电影网站| 亚洲精品中文字幕在线视频| 超色免费av| 老司机影院成人| 欧美激情极品国产一区二区三区| 男女国产视频网站| 在线观看免费视频网站a站| 极品人妻少妇av视频| 久久久精品区二区三区| 色精品久久人妻99蜜桃| 免费日韩欧美在线观看| 亚洲av日韩精品久久久久久密 | av欧美777| 免费观看a级毛片全部| a级毛片黄视频| 午夜福利免费观看在线| 9色porny在线观看| 男女无遮挡免费网站观看| 老司机午夜十八禁免费视频| 999久久久国产精品视频| 亚洲精品久久久久久婷婷小说| 最近手机中文字幕大全| 久久女婷五月综合色啪小说| 精品少妇久久久久久888优播| 久热这里只有精品99| 日本vs欧美在线观看视频| 欧美日韩黄片免| 欧美精品一区二区大全| av不卡在线播放| 90打野战视频偷拍视频| 国产免费视频播放在线视频| 热99久久久久精品小说推荐| 啦啦啦在线观看免费高清www| av天堂在线播放| 国产熟女午夜一区二区三区| 丰满饥渴人妻一区二区三| 亚洲av日韩在线播放| 99久久综合免费| 亚洲男人天堂网一区| 日本猛色少妇xxxxx猛交久久| 日本五十路高清| 欧美日韩一级在线毛片| 韩国高清视频一区二区三区| 啦啦啦 在线观看视频| 欧美日韩成人在线一区二区| 国产成人啪精品午夜网站| 免费日韩欧美在线观看| 久久天堂一区二区三区四区| 电影成人av| 国产人伦9x9x在线观看| 色婷婷久久久亚洲欧美| 少妇被粗大的猛进出69影院| 国产精品秋霞免费鲁丝片| 韩国高清视频一区二区三区| 婷婷色麻豆天堂久久| 国产片特级美女逼逼视频| 丝袜美腿诱惑在线| av国产久精品久网站免费入址| 久久鲁丝午夜福利片| 久久午夜综合久久蜜桃| 另类亚洲欧美激情| 精品一区在线观看国产| 亚洲视频免费观看视频| av天堂久久9| 国产成人系列免费观看| 99热网站在线观看| videos熟女内射| 亚洲av成人精品一二三区| 老司机靠b影院| 亚洲精品久久久久久婷婷小说| 9热在线视频观看99| 欧美xxⅹ黑人| 国产老妇伦熟女老妇高清| 中文字幕另类日韩欧美亚洲嫩草| 欧美乱码精品一区二区三区| 女性生殖器流出的白浆| 免费一级毛片在线播放高清视频 | 欧美黑人精品巨大| 一级毛片电影观看| 两个人免费观看高清视频| 中文字幕色久视频| 欧美97在线视频| 可以免费在线观看a视频的电影网站| 97在线人人人人妻| 日韩大片免费观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 各种免费的搞黄视频| 人人妻,人人澡人人爽秒播 | 亚洲国产成人一精品久久久| 免费在线观看黄色视频的| 亚洲精品中文字幕在线视频| 美女主播在线视频| 伊人久久大香线蕉亚洲五| 99香蕉大伊视频| 国产无遮挡羞羞视频在线观看| 十八禁人妻一区二区| 亚洲五月色婷婷综合| 日韩一本色道免费dvd| 丰满饥渴人妻一区二区三| 一级毛片黄色毛片免费观看视频| 超碰成人久久| 亚洲七黄色美女视频| 欧美 亚洲 国产 日韩一| 中文字幕另类日韩欧美亚洲嫩草| 日本欧美国产在线视频| 欧美在线一区亚洲| 侵犯人妻中文字幕一二三四区| 人成视频在线观看免费观看| 九色亚洲精品在线播放| 免费看十八禁软件| 韩国高清视频一区二区三区| 麻豆国产av国片精品| 悠悠久久av| 午夜av观看不卡| 亚洲av综合色区一区| 日本av免费视频播放| 另类精品久久| 免费在线观看黄色视频的| 亚洲精品国产av蜜桃| 在线观看免费午夜福利视频| 久久精品国产a三级三级三级| 亚洲欧美成人综合另类久久久| 久久久久久久大尺度免费视频| 如日韩欧美国产精品一区二区三区| 另类精品久久| 国产极品粉嫩免费观看在线| 女人高潮潮喷娇喘18禁视频| 精品欧美一区二区三区在线| 精品人妻在线不人妻| 国产激情久久老熟女| 男人添女人高潮全过程视频| www.熟女人妻精品国产| 尾随美女入室| 欧美日韩视频高清一区二区三区二| 欧美黑人欧美精品刺激| 精品一区二区三区av网在线观看 | 每晚都被弄得嗷嗷叫到高潮| 久久久精品国产亚洲av高清涩受| 亚洲成人免费av在线播放| 两人在一起打扑克的视频| 97在线人人人人妻| 爱豆传媒免费全集在线观看| 久久亚洲精品不卡| 国产高清国产精品国产三级| 18禁国产床啪视频网站| 看免费av毛片| 久久国产精品大桥未久av| 午夜91福利影院| 丝袜美腿诱惑在线| 国产精品久久久久久精品电影小说| 电影成人av| 亚洲精品成人av观看孕妇| 这个男人来自地球电影免费观看| 老汉色∧v一级毛片| 别揉我奶头~嗯~啊~动态视频 | 国产精品一区二区在线观看99| 亚洲欧美一区二区三区久久| 在线看a的网站| 国产精品久久久久久精品电影小说| a级毛片在线看网站| 国产视频一区二区在线看| 欧美亚洲 丝袜 人妻 在线| 另类精品久久| 久久精品久久久久久噜噜老黄| 亚洲伊人色综图| 性少妇av在线| 日韩电影二区| 国产一区二区 视频在线| 高清视频免费观看一区二区| 啦啦啦视频在线资源免费观看| 午夜福利在线免费观看网站| 老司机影院成人| 日韩一本色道免费dvd| 日韩中文字幕欧美一区二区 | 午夜福利视频在线观看免费| 久久久国产一区二区| 考比视频在线观看| 久久久久精品国产欧美久久久 | 国产亚洲精品久久久久5区| 欧美 亚洲 国产 日韩一| 男的添女的下面高潮视频| 亚洲精品一卡2卡三卡4卡5卡 | 久久久久久亚洲精品国产蜜桃av| avwww免费| 搡老乐熟女国产| 亚洲成av片中文字幕在线观看| 黄色毛片三级朝国网站| 亚洲九九香蕉| 亚洲专区国产一区二区| 别揉我奶头~嗯~啊~动态视频 | 免费观看人在逋| 欧美日韩av久久| 只有这里有精品99| 日韩制服丝袜自拍偷拍| 亚洲国产欧美在线一区| 欧美老熟妇乱子伦牲交| 中国国产av一级| 亚洲久久久国产精品| 丁香六月欧美| 成年美女黄网站色视频大全免费| 秋霞在线观看毛片| 又大又黄又爽视频免费| 搡老岳熟女国产| 精品一区在线观看国产| 黄色一级大片看看| 99国产精品一区二区三区| 1024视频免费在线观看| 中文字幕制服av| 日本vs欧美在线观看视频| 男人添女人高潮全过程视频| 黄片播放在线免费| 国产成人精品在线电影| a 毛片基地| 久久性视频一级片| 嫩草影视91久久| 各种免费的搞黄视频| 国产精品国产av在线观看| 啦啦啦中文免费视频观看日本| 色网站视频免费| 天天躁日日躁夜夜躁夜夜| 精品久久久久久久毛片微露脸 | 亚洲人成电影免费在线| 国产精品一区二区精品视频观看| 国产熟女欧美一区二区| 久久 成人 亚洲| 黄色视频不卡| 99国产精品一区二区三区| 这个男人来自地球电影免费观看| 18禁观看日本| 亚洲精品国产一区二区精华液| 亚洲男人天堂网一区| 99久久99久久久精品蜜桃| 亚洲七黄色美女视频| 亚洲成人免费电影在线观看 | 久久精品熟女亚洲av麻豆精品| 国产一区二区 视频在线| 成人亚洲精品一区在线观看| a 毛片基地| 日本午夜av视频| tube8黄色片| av天堂久久9| 色94色欧美一区二区| 亚洲一区中文字幕在线| 一区在线观看完整版| 午夜福利视频在线观看免费| 中国国产av一级| 久久女婷五月综合色啪小说| 水蜜桃什么品种好| 国产极品粉嫩免费观看在线| 日韩电影二区| 啦啦啦在线免费观看视频4| 中文字幕另类日韩欧美亚洲嫩草| 亚洲三区欧美一区| 两人在一起打扑克的视频| 国产精品久久久人人做人人爽| 丁香六月欧美| 精品福利永久在线观看| 纯流量卡能插随身wifi吗| 爱豆传媒免费全集在线观看| 亚洲男人天堂网一区| 女人爽到高潮嗷嗷叫在线视频| 久久天躁狠狠躁夜夜2o2o | xxx大片免费视频| 国产成人一区二区在线| 国语对白做爰xxxⅹ性视频网站| 色精品久久人妻99蜜桃| 亚洲av成人不卡在线观看播放网 | 一级黄片播放器| 久久精品久久久久久噜噜老黄| 精品一区二区三卡| 国产99久久九九免费精品| 男女之事视频高清在线观看 | 色精品久久人妻99蜜桃| www.自偷自拍.com| 丰满人妻熟妇乱又伦精品不卡| 女性生殖器流出的白浆| 九色亚洲精品在线播放| 精品国产一区二区久久| 亚洲人成网站在线观看播放| 99久久99久久久精品蜜桃| 久久精品成人免费网站| 精品人妻一区二区三区麻豆| 久久影院123| 夫妻性生交免费视频一级片| 国产亚洲av高清不卡| 午夜老司机福利片| 热99久久久久精品小说推荐| 亚洲欧美一区二区三区久久| 美女脱内裤让男人舔精品视频| 97精品久久久久久久久久精品| 国产成人一区二区三区免费视频网站 | 丝袜美腿诱惑在线| 久久久精品区二区三区| 成年女人毛片免费观看观看9 | 男女国产视频网站| 国产高清不卡午夜福利| 日韩中文字幕欧美一区二区 | 熟女av电影| av电影中文网址| 国产色视频综合| 搡老岳熟女国产| 看免费av毛片| 伊人亚洲综合成人网| 午夜精品国产一区二区电影| 欧美中文综合在线视频| 国产精品一区二区在线观看99| 亚洲精品成人av观看孕妇| e午夜精品久久久久久久| 国产一卡二卡三卡精品| 一区二区三区乱码不卡18| 嫁个100分男人电影在线观看 | 国产日韩一区二区三区精品不卡| 中文字幕另类日韩欧美亚洲嫩草| 欧美亚洲日本最大视频资源| 久久久国产一区二区| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性bbbbbb| 99热网站在线观看| 中文字幕人妻丝袜一区二区| 国产片特级美女逼逼视频| 视频区图区小说| 蜜桃在线观看..| 亚洲自偷自拍图片 自拍| 成年人黄色毛片网站| 国产精品久久久av美女十八| 亚洲,一卡二卡三卡| 一级,二级,三级黄色视频| 99久久人妻综合| 久久综合国产亚洲精品| 满18在线观看网站| 成年av动漫网址| 制服人妻中文乱码| 欧美日韩亚洲综合一区二区三区_| 婷婷色av中文字幕| 亚洲国产中文字幕在线视频| videosex国产| 亚洲欧美激情在线| 亚洲国产欧美在线一区| videosex国产| 丰满饥渴人妻一区二区三| 自拍欧美九色日韩亚洲蝌蚪91| 成年人免费黄色播放视频| 狂野欧美激情性bbbbbb| 在线av久久热| 国产精品九九99| 久热爱精品视频在线9| 国产精品亚洲av一区麻豆| 欧美日本中文国产一区发布| 九色亚洲精品在线播放| 欧美黄色淫秽网站| 亚洲国产日韩一区二区| 国产精品免费视频内射| 国产成人欧美在线观看 | 老司机影院成人| 国产麻豆69| 国产伦理片在线播放av一区| 老司机影院成人| 极品人妻少妇av视频| 久久精品国产亚洲av涩爱| 一边摸一边抽搐一进一出视频| 国产麻豆69| 久久精品国产亚洲av涩爱| 国产黄色视频一区二区在线观看| 日韩大片免费观看网站| 国产三级黄色录像| 国产精品国产三级国产专区5o| av网站在线播放免费|