• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic modeling and simulation for the flexible spacecraft with dynamic stiffening

    2015-04-22 07:24:52LICuichun李崔春MENGXiuyun孟秀云LIUZaozhen劉藻珍

    LI Cui-chun(李崔春), MENG Xiu-yun(孟秀云), LIU Zao-zhen(劉藻珍)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education,Beijing Institute of Technology, Beijing 100081, China)

    ?

    Dynamic modeling and simulation for the flexible spacecraft with dynamic stiffening

    LI Cui-chun(李崔春), MENG Xiu-yun(孟秀云), LIU Zao-zhen(劉藻珍)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education,Beijing Institute of Technology, Beijing 100081, China)

    A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system, the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystem modeling framework. It is clearly elucidated for the first time that, dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. The modeling approach in this paper successfully avoids problems which are caused by other popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical explanation for dynamic stiffening can’t be provided. First, the continuous dynamic models of the flexible beam and the central rigid body are established via structural dynamics and angular momentum theory respectively. Then, based on the conclusions of orthogonalization about the normal constrained modes, the finite dimensional dynamic model suitable for controller design is obtained. The numerical simulation validations show that: dynamic stiffening is successfully incorporated into the dynamic characteristics of the first-order model established in this paper, which can indicate the dynamic responses of the rigid flexible coupling system with large overall motion accurately, and has a clear modeling mechanism, concise expressions and a good convergence.

    non-inertial coordinate system; large overall motion; rigid flexible coupling; dynamic stiffening; normal constrained mode

    In early times, a rigid model could be fairly accurate to describe the dynamic characteristics of a spacecraft. With the development of aerospace technology, the number of spacecraft with a variety of flexible appendages such as large area solar panel and large scale flexible antenna is increasing rapidly. While the system is undergoing a large overall motion, the coupling effect of the large overall motion and the elastic deformation of flexible appendage appears. Previous studies of the rigid flexible coupling system were based on the traditional zero-order approximate dynamic model[1-2], which ignored the coupling terms of the large overall motion and the elastic deformation. However, when the system is undergoing large overall motions, especially a motion of high velocity, it would provide a result of unlimited increasing of the deformation of flexible appendages, which is in contradiction with the reality. To solve this problem, based on the study of a cantilever beam attached to a moving platform, Kane put forward the concept of dynamic stiffening for the first time in 1987[3], and pointed out that the large rotation motion would increase the stiffness of the beam. From then on, many scholars started to pay a lot of attentions[4-8]. It becomes an engineering significance whether the dynamic stiffening is incorporated into the dynamic behavior of model established[9-14].

    To sum up, there are two key points lying in the dynamic modeling of the rigid flexible coupling system: ① the model established should contain the coupling of the rigid motion and the flexible deformation; ② the dynamic stiffening should be included in the dynamic characteristics of the model. The ideas in most previous papers are to regard the whole system as the research object, and the models are established by employing only one dynamic principle. There are mainly two drawbacks in these papers: ① the coupling degree of the dynamic equations established is too high, and the modeling process is too complex to be conducive for the numerical integration; ② the dynamic stiffening term is captured by truncating the high-order terms of the expansion of the flexible deformation filed, so a really rational explanation for dynamic stiffening is not provided. To solve problems referred, a rigid flexible coupling dynamic model (Hub-Beam) is studied in this paper by adopting the subsystem modeling technique. Firstly, the system is divided into two subsystems: a central rigid body (Hub) and a flexible beam (Beam). The continuous dynamic models are derived via structural dynamics and angular momentum theory respectively. Then, based on the conclusion of orthogonalization about the normal constrained modes of the flexible beam, a space state model is obtained. The numerical simulation shows that, the first-order model in this paper has considered dynamic stiffening, and can indicate the dynamic behavior of the flexible spacecraft with large overall motions accurately. It has a clear modeling mechanism, concise expressions and a good convergence.

    The main contribution of this paper is the introduction of the mechanics theory in the non-inertial coordinate system, which considers the dynamic stiffening as a mechanics phenomenon in a non-inertial system. As a result, a clearly theoretical explanation for dynamic stiffening is provided: it is produced by the coupling effect of the centrifugal inertial load distributed on the flexible beam with large overall motions and the transverse vibration deformation of the beam.

    1 Continuous dynamic modeling based on mechanics problems in non-inertial system

    1.1 Rigid flexible coupling physical model

    The rigid flexible coupling physical model (Hub-Beam) is shown in Fig.1. This model can represent a large class of spacecrafts, such as a satellite with solar panel, etc. The effect of orbit maneuver on attitude motion is ignored here. The system shown in Fig.1 consists of a central rigid body (Hub) and a cantilever flexible beam (Beam) attached to Hub. The flexible beam is assumed to be a uniform Euler-Bernoulli beam with the assumption of small deformation and small strain, and the material is assumed to be homogeneous and isotropic.

    Fig.1 Rigid flexible coupling physical model (Hub-Beam)

    The inertial coordinate systemOIXIYIis built with the center of the central rigid body as the origin. The floating coordinate systemOXYis built on the flexible beam. The deflection curvey=y(x,t) describes the transverse vibration deformation of Beam. The angular rotation of Hub isθ(t). The rigid flexible coupling system shown in Fig.1 is divided into two subsystems. Subsystem 1 is Beam.lis the length,ρbis the mass per unit length,Eis the Young’s modulus of elasticity, andIis the rotary inertia of cross section. Subsystem 2 is Hub.Jstaris the rotary inertia about an axis of rotationOI,bis the radius, andThis the applied torque.

    1.2 Modeling of Beam based on structural dynamics

    The deformation field of Beam with large overall motions is shown in Fig.2. As a result of the motion of Hub,OXYbecomes a non-inertial coordinate system. Therefore, the research purpose on the dynamic characteristics of the transverse vibration of Beam is to solve a typical mechanics problem in a non-inertia coordinate system. According to structural dynamics, the transverse vibration of Beam is determined by the external distributed load which is perpendicular to the Beam. The corresponding equation is in the form of

    (1)

    whereq(x,t) is the external vertical distributed load. Therefore, the key to establish the dynamic equation of the transverse vibration of Beam is to obtain the expression of the external vertical distributed load acting on Beam.

    Fig.2 Deformation field of Beam with large overall motion

    (2)

    BasedonthegeometricrelationsshowninFig.2andtheassumptionaboutalittledisplacementandalittleangle,andmeanwhile,thesecond-orderofseriesoftrigonometricfunctionsareomitted,thesimplifiedformoftheexternalverticaldistributedloadactingonBeamcanbewrittenas

    (3)

    SubstitutingEq. (3)intoEq. (1),thecontinuousdynamicequationofBeamwithlargeoverallmotionsisobtainedintheformof

    (4)

    1.3 Modeling of Hub based on angular momentum theory

    The applied forces related to the attitude motion of Hub are shown in Fig.3.Th(t) is the applied torque.Fs(0,t) andM(0,t) are the force and the torque of Beam acting on Hub at the joint respectively.

    Fig.3 Forces and torques acting on Hub

    (5)

    Thus,thedistributionfunctionsoftheshearforceandthebendingmomentare

    (6)

    (7)

    BasedonEqs. (5)-(7),thecontinuousdynamicequationofHubisintheformof

    (8)

    2 Discrete dynamic modeling based on the conclusions of orthogonalization about normal constrained modes

    The expansion about the firstN-orders of the normal constrained modes is utilized to describe the transverse vibration deformation of Beam approximately as following:

    (9)

    (10)

    (11)

    BasedonEqs. (10) (11),thefinitedimensionaldynamicequationofBeamisobtainedasfollowing

    (12)

    where

    q=[q1(t)q2(t)q3(t) …qN(t)]T

    (13)

    ΛN=diag[ω1ω2ω3…ωN]

    (14)

    (15)

    (16)

    Similarly, the finite dimensional dynamic equation of Hub is

    (17)

    where

    (18)

    Eqs. (12)-(18) constitute theN-dimensional dynamic model of a flexible spacecraft. With the consideration of dynamic stiffening, the first-order dynamic model is not only suitable for the engineering background of a small angular maneuver, but also meets the requirements of a large angular maneuver in the complex aerospace missions nowadays. According to Eqs. (12)-(18), the state space equations of the system are

    (19)

    where

    (20)

    3 Numerical simulation validation

    The validations of the rigid flexible coupling dynamic model of a flexible spacecraft are carried out in 2 aspects: ① the validation of dynamic stiffening when the large overall motion is known; ② the validation of the convergence of the first-order model with dynamic stiffening when the large overall motion is unknown.

    3.1 Validation of dynamic stiffening

    Refer to the system parameters in Ref. [16]: Beam of lengthl=8 m, Young’s modulus of elasticityE=6.895 2×1010N/m2, sectional areaA=7.296 8×10-5m2, bulk densityρ=2.766 7×103kg/m3, rotary inertia of cross sectionI=8.218 9×10-9m4; Hub of radiusb=0.5 m, rotary inertiaJstar=300 kg·m2. The regular pattern of the known large overall motion is

    (21)

    whereωmis the final angular velocity of Hub. The value ofωmequals to 0.5 rad/s, 2 rad/s and 4 rad/s respectively in the simulation. Fig.4 is the response of the tip transverse vibration displacement of Beam with large overall motions defined in Eq. (21). Hereinto, the dotted lines correspond to the responses of ZDM, and the solid lines correspond to the responses of FDM. By analyzing the natural frequencies of Beam, the first-order and the second-order natural frequencies are respectively 2.91 rad/s and 18.24 rad/s.

    Fig.4 Responses of tip displacement of Beam with known large overall motions

    To sum up, with the increasing of the final velocity (ωm), the simulation results of ZDM start to become invalid, until divergent. According to analyses about the dynamic terms in Eq. (12), the dynamic softening effect plays a great role in the dynamic behaviors of system at this moment, so the larger the value ofωmis, the more obvious the softening effect is. It should be noticed that, even though the angular velocity of the motion of Hub is quite large, FDM can still predict the dynamic behaviors of the system with a convergent simulation result. It just corresponds to the analysis conclusion about the positive definitiveness of the stiffness matrix of FDM. Thus, FDM has successfully incorporated dynamic stiffening into the dynamic behavior of the system, and could meet the requirements of practical engineering.

    3.2 Validation of the convergence of first-order model

    Set the parameters of Beam: lengthl=5 m, sectional areaA=4×10-4m2, rotary inertia of cross sectionI=1.333×10-8m4, bulk densityρ=2.766 7×103kg/m3, Young’s modulus of elasticityE=6.895 2×1010N/m2. Ignore the central rigid body (Hub), that is to sayJstar=0 andb=0. The external torque is

    Fig.5 Responses of the first-order model when Thm=50 N·m

    (22)

    whereTm=2 s, andThmis the maximum of torque, which equals 50 N·m.

    Fig.5 corresponds to the simulation results whenThm=50 N·m. The tip maximum response amplitude is 0.42 m, and when the system reaches the steady state, the amplitude of the micro continuous oscillation of Beam is about 0.07 m. It can be seen from Fig.5 that, although the torque is very large, the simulation results are still convergent. It should be pointed out that, in the same simulation condition, the simulation results of the first-order approximate coupling dynamic model presented in general papers are rapidly divergent[19]. Thus, the model established in this paper (FDM) not only has a clear modeling mechanism and concise expressions, but also has a good convergence. Even if the simulation conditions are very harsh, FDM can still indicate the dynamic responses of the system accurately.

    4 Conclusions

    A rigid flexible coupling physical model is investigated in this paper.To simplify complex modeling process, this paper applys the mechanics theory in a non-inertial coordinate system, then the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystem modeling technique. According to the modeling process, theoretical analyses and numerical simulation validations, the following conclusions are obtained:

    ① By applying the subsystem modeling technique, the models are established via structural dynamics and angular momentum theory. The modeling approach in this paper successfully solves problems caused by other popular modeling methods, and the modeling process is simplified here. Meanwhile, it meets the requirement about the coupling of the rigid motion and the flexible deformation in the dynamic behavior of the flexible spacecraft.

    ② Dynamic stiffening is considered as a typical mechanics phenomenon in a non-inertial system. By introducing the mechanics theory in a non-inertial coordinate system, dynamic stiffening is successfully incorporated into the dynamic behavior of the system. The numerical simulations show that: the established FDM is not only with the consideration of dynamic stiffening under the background of a large angular maneuver of the flexible spacecraft, but also has a good convergence in the simulation under extreme conditions. FDM can indicate the dynamic responses of the system accurately.

    ③ A clearly theoretical mechanism of dynamic stiffening is provided in this paper: it is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. It gives a way out of the dilemma about dealing with dynamic stiffening in previous papers.

    [1] Hu Qinglei, Shi Peng, Gao Huijun. Adaptive variable structure and commanding shaped vibration control of flexible spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 804-815.

    [2] Shan Jinjun, Liu Hongtao, Sun Dong. Modified input shaping for a rotating single-link flexible manipulator[J]. Journal of Sound and Vibration, 2005, 285(1-2): 187-207.

    [3] Kane T R, Ryant R R. Dynamics of a cantilever beam attached t o a moving base[J]. Journal of Guidance, Control and Dynamics, 1987, 10(2): 139-151.

    [4] Banerjee A K, Dickens J M. Dynamics of an arbitrary flexible body in large rotation and translation[J]. Journal of Guidance, Control and Dynamics, 1990, 13(2): 221-227.

    [5] Zhang D J, Liu C Q, Huston R L. On the dynamics of an arbitrary flexible body with large overall motion: an integrated approach[J]. Mechanics of Structures and Machines, 1995, 23(3): 419-438.

    [6] Jiang Lizhong, Hong Jiazhen, Zhao Yueyu. Coupling dynamical modeling theory of elastic beam-in large overall motions[J]. Chinese Journal of Computational Mechanics, 2002, 19(1): 12-15. (in Chinese)

    [7] Yang Hui, Hong Jiazhen, Yu Zhengyue. Dynamics modeling and numerical simulation for a rigid-flexible coupling multibody system[J]. Chinese Journal of Computational Mechanics, 2003, 20(4): 402-408. (in Chinese)

    [8] Jiang Jianping, Li Dongxu. Research on rigid-flexible coupling dynamics of spacecraft with solar panel[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3): 418-422. (in Chinese)

    [9] Yang Zhengxian, Kong Xianren, Liao Jun, et al. Dynamic modeling and simulation for the rigid-flexible coupling system with large overall motion[J]. Spacecraft Environment Engineering, 2011, 28(2): 141-146. (in Chinese)

    [10] Liang Lifu, Wang Peng, Song Haiyan. The study of the dynamic stiffening problem in a non-inertial coordinate system[J]. Journal of Harbin Engineering University, 2012, 33(8): 1052-1056.

    [11] Bai Shengjian, Huang Xinshen. Building control-oriented simulation environment for flexible spacecraft[J]. Journal of System Simulation, 2010, 22(2): 302-305. (in Chinese)

    [12] García-Vallejo D, Sugiyama H, Shabana A A. Finite element analysis of the geometric stiffening effect. Part 1: a correction in the floating frame of reference formulation[J]. Journal of Multi-body Dynamics, 2005, 219(2): 187-202.

    [13] Huang Yong’an, Deng Zichen, Yao Linxiao. An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system[J]. Journal of Sound and Vibration, 2007, 299(1-2): 229-246.

    [14] Chen Sijia. Researches on the rigid-flexible coupling problem and the dynamic modeling theory of multi-link spatial flexible manipulator arms[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0304

    V 414.33 Document code: A Article ID: 1004- 0579(2015)03- 0305- 08

    Received 2013- 11- 26

    E-mail: mengxy@bit.edu.cn

    久久久久久久久大av| 国产伦一二天堂av在线观看| 国产精品久久久久久亚洲av鲁大| 美女大奶头视频| 床上黄色一级片| 国产成人影院久久av| 亚洲av不卡在线观看| 色5月婷婷丁香| ponron亚洲| 久久亚洲精品不卡| videossex国产| 人妻久久中文字幕网| 亚洲性久久影院| 日韩人妻高清精品专区| 久久久久久久午夜电影| 午夜爱爱视频在线播放| 美女被艹到高潮喷水动态| 三级男女做爰猛烈吃奶摸视频| 变态另类成人亚洲欧美熟女| 精品一区二区免费观看| 午夜老司机福利剧场| 中出人妻视频一区二区| 日韩国内少妇激情av| 久久久午夜欧美精品| 少妇的逼好多水| 最近手机中文字幕大全| 国产在线精品亚洲第一网站| 不卡一级毛片| 国产一区二区在线av高清观看| 青青草视频在线视频观看| 最后的刺客免费高清国语| 国产单亲对白刺激| 日本熟妇午夜| 亚洲成人中文字幕在线播放| 欧美激情在线99| 免费看av在线观看网站| 欧美激情久久久久久爽电影| 亚洲美女视频黄频| 欧美xxxx黑人xx丫x性爽| 精品99又大又爽又粗少妇毛片| 午夜视频国产福利| 99国产极品粉嫩在线观看| 国国产精品蜜臀av免费| 精品无人区乱码1区二区| 国产又黄又爽又无遮挡在线| 身体一侧抽搐| 少妇的逼好多水| 国产精品嫩草影院av在线观看| 99久国产av精品| 欧美日韩国产亚洲二区| 免费观看a级毛片全部| 天美传媒精品一区二区| 久久精品国产99精品国产亚洲性色| 国内精品久久久久精免费| 日本黄色视频三级网站网址| 国产一区二区在线av高清观看| 一本久久中文字幕| 国产探花在线观看一区二区| 亚洲真实伦在线观看| 色综合站精品国产| 国产亚洲欧美98| 亚洲人成网站在线观看播放| 一区二区三区高清视频在线| 欧美性猛交黑人性爽| 人妻少妇偷人精品九色| 国产色婷婷99| 波多野结衣高清无吗| 国产一区二区亚洲精品在线观看| 可以在线观看的亚洲视频| 啦啦啦观看免费观看视频高清| 网址你懂的国产日韩在线| 色噜噜av男人的天堂激情| 一级毛片久久久久久久久女| 蜜桃久久精品国产亚洲av| 大香蕉久久网| 在线免费观看的www视频| 在线观看午夜福利视频| 十八禁国产超污无遮挡网站| 男女啪啪激烈高潮av片| 乱人视频在线观看| 校园春色视频在线观看| 国产精品久久久久久久电影| 国产成人福利小说| 成年免费大片在线观看| 国产精品一区二区三区四区免费观看| 久久精品夜夜夜夜夜久久蜜豆| 免费观看人在逋| 欧美成人精品欧美一级黄| www.av在线官网国产| 国产不卡一卡二| 国产成人a∨麻豆精品| 亚洲不卡免费看| 女同久久另类99精品国产91| 我的女老师完整版在线观看| 国产亚洲av嫩草精品影院| 大又大粗又爽又黄少妇毛片口| 三级男女做爰猛烈吃奶摸视频| 久久亚洲精品不卡| 亚洲国产精品成人久久小说 | 免费不卡的大黄色大毛片视频在线观看 | 色哟哟哟哟哟哟| 99在线人妻在线中文字幕| 成人性生交大片免费视频hd| 免费看光身美女| 少妇被粗大猛烈的视频| 男插女下体视频免费在线播放| 亚洲第一电影网av| 悠悠久久av| 欧美性猛交黑人性爽| 麻豆av噜噜一区二区三区| 日本熟妇午夜| 五月玫瑰六月丁香| 国产69精品久久久久777片| 久久久久国产网址| 久久久久久伊人网av| 最近手机中文字幕大全| 国产午夜精品一二区理论片| 2021天堂中文幕一二区在线观| 国产成人福利小说| 免费看日本二区| 国内精品一区二区在线观看| 久久中文看片网| 在现免费观看毛片| kizo精华| 91av网一区二区| 毛片一级片免费看久久久久| 日本一本二区三区精品| 国产极品天堂在线| 亚洲欧美日韩卡通动漫| 国产精品麻豆人妻色哟哟久久 | 国产探花极品一区二区| 在线观看一区二区三区| 亚洲精品国产av成人精品| 真实男女啪啪啪动态图| 久久热精品热| av视频在线观看入口| 尤物成人国产欧美一区二区三区| 在线a可以看的网站| 亚洲国产欧洲综合997久久,| 国产美女午夜福利| 免费一级毛片在线播放高清视频| 亚洲精品日韩在线中文字幕 | 亚洲国产精品合色在线| 国产精品免费一区二区三区在线| 亚洲国产精品成人久久小说 | 淫秽高清视频在线观看| 久久久国产成人精品二区| 国内精品一区二区在线观看| 大型黄色视频在线免费观看| 国产三级中文精品| 黄片无遮挡物在线观看| 成年女人永久免费观看视频| 春色校园在线视频观看| 成人亚洲精品av一区二区| 可以在线观看毛片的网站| 三级经典国产精品| 日本五十路高清| 变态另类丝袜制服| 最近手机中文字幕大全| 内地一区二区视频在线| av在线亚洲专区| 久久久午夜欧美精品| 国产高清视频在线观看网站| 激情 狠狠 欧美| 一区二区三区免费毛片| 高清毛片免费观看视频网站| 麻豆成人午夜福利视频| 精品99又大又爽又粗少妇毛片| 亚洲av成人精品一区久久| 男女啪啪激烈高潮av片| 一区二区三区免费毛片| 亚洲无线观看免费| 菩萨蛮人人尽说江南好唐韦庄 | 国产男人的电影天堂91| 亚洲欧美精品综合久久99| 亚洲性久久影院| 丰满的人妻完整版| 美女高潮的动态| 久久久久久久久久久免费av| 少妇的逼好多水| 欧美色视频一区免费| 丰满的人妻完整版| 床上黄色一级片| 最近手机中文字幕大全| 少妇的逼好多水| 亚洲国产精品sss在线观看| 亚洲最大成人中文| 国产一区二区在线观看日韩| 日本av手机在线免费观看| 女人被狂操c到高潮| 伊人久久精品亚洲午夜| 欧美日本亚洲视频在线播放| 超碰av人人做人人爽久久| 99热全是精品| 天堂网av新在线| 又黄又爽又刺激的免费视频.| 天堂网av新在线| 成人毛片60女人毛片免费| 亚州av有码| 春色校园在线视频观看| 久久久国产成人精品二区| 99热这里只有是精品50| 男的添女的下面高潮视频| 一级av片app| 国产亚洲av片在线观看秒播厂 | 精品熟女少妇av免费看| 国产爱豆传媒在线观看| 又粗又硬又长又爽又黄的视频 | 国产精品三级大全| 久久久久九九精品影院| 亚洲av成人精品一区久久| 高清午夜精品一区二区三区 | 18禁在线播放成人免费| 最近2019中文字幕mv第一页| a级一级毛片免费在线观看| 国产高潮美女av| 亚洲欧洲日产国产| 1024手机看黄色片| 亚洲av中文字字幕乱码综合| 国内少妇人妻偷人精品xxx网站| 丰满乱子伦码专区| 校园春色视频在线观看| 色综合色国产| 白带黄色成豆腐渣| 亚洲av免费在线观看| 高清毛片免费观看视频网站| 99精品在免费线老司机午夜| 日韩制服骚丝袜av| 99热这里只有是精品在线观看| 成人一区二区视频在线观看| 五月伊人婷婷丁香| 久久久国产成人免费| 亚洲人成网站在线观看播放| 99久久精品热视频| 最近2019中文字幕mv第一页| 国产毛片a区久久久久| 色综合亚洲欧美另类图片| 日韩av在线大香蕉| 赤兔流量卡办理| 黄片wwwwww| av卡一久久| 国产黄色视频一区二区在线观看 | 国产精品一区二区性色av| 国产男人的电影天堂91| 热99re8久久精品国产| 国语自产精品视频在线第100页| 午夜老司机福利剧场| 欧美高清性xxxxhd video| 国产精品一区二区性色av| 淫秽高清视频在线观看| av在线天堂中文字幕| 人妻久久中文字幕网| av天堂中文字幕网| 亚洲一级一片aⅴ在线观看| 亚洲高清免费不卡视频| 直男gayav资源| 不卡一级毛片| 青春草亚洲视频在线观看| 给我免费播放毛片高清在线观看| 99精品在免费线老司机午夜| 波多野结衣高清无吗| 欧美性猛交╳xxx乱大交人| 性欧美人与动物交配| 看免费成人av毛片| 男人舔女人下体高潮全视频| 日韩高清综合在线| 精品国内亚洲2022精品成人| 波多野结衣高清无吗| 青青草视频在线视频观看| 免费看日本二区| 看十八女毛片水多多多| 久久精品国产亚洲av香蕉五月| 国产精品女同一区二区软件| 欧洲精品卡2卡3卡4卡5卡区| h日本视频在线播放| 久久99热这里只有精品18| 嫩草影院入口| 国产伦精品一区二区三区四那| 男的添女的下面高潮视频| 青春草亚洲视频在线观看| 成熟少妇高潮喷水视频| 在线天堂最新版资源| 久久婷婷人人爽人人干人人爱| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品456在线播放app| av专区在线播放| av天堂在线播放| 亚洲av熟女| 午夜精品国产一区二区电影 | 国产日韩欧美在线精品| 日韩在线高清观看一区二区三区| 亚洲国产精品合色在线| 亚洲综合色惰| 日韩 亚洲 欧美在线| 日韩欧美国产在线观看| 国产极品精品免费视频能看的| 国产高清激情床上av| 成人特级av手机在线观看| 人妻少妇偷人精品九色| 色5月婷婷丁香| 3wmmmm亚洲av在线观看| 午夜福利视频1000在线观看| 国产成人午夜福利电影在线观看| 日韩中字成人| a级毛片a级免费在线| 男人狂女人下面高潮的视频| 亚洲,欧美,日韩| 91av网一区二区| a级毛片免费高清观看在线播放| 成人性生交大片免费视频hd| 日韩成人伦理影院| 亚洲欧洲日产国产| 青春草视频在线免费观看| 精品一区二区免费观看| 精品日产1卡2卡| 日本免费一区二区三区高清不卡| 六月丁香七月| 久久久久久久久久成人| 欧美性猛交黑人性爽| 精品久久久久久久久久久久久| 99久久久亚洲精品蜜臀av| 亚洲欧美日韩卡通动漫| 亚洲在久久综合| 亚洲欧洲日产国产| 国内精品久久久久精免费| 色噜噜av男人的天堂激情| 精品人妻熟女av久视频| 亚洲国产精品合色在线| 亚洲18禁久久av| 乱系列少妇在线播放| 97超碰精品成人国产| 亚洲真实伦在线观看| 国产亚洲91精品色在线| 久久精品国产99精品国产亚洲性色| 人妻久久中文字幕网| 国产精品蜜桃在线观看 | 少妇高潮的动态图| 日本免费一区二区三区高清不卡| 亚洲激情五月婷婷啪啪| 2022亚洲国产成人精品| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 亚洲欧美成人精品一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 日本三级黄在线观看| 成人特级黄色片久久久久久久| 国产精品一区二区三区四区久久| 久久午夜福利片| 日韩视频在线欧美| 久久国产乱子免费精品| videossex国产| 波多野结衣巨乳人妻| av国产免费在线观看| 一区二区三区免费毛片| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| 99国产精品一区二区蜜桃av| 亚洲欧美日韩高清在线视频| 国产极品天堂在线| 欧美成人一区二区免费高清观看| 成年av动漫网址| 亚洲成人久久性| 日本av手机在线免费观看| 真实男女啪啪啪动态图| 国产一区二区三区av在线 | 亚洲精品影视一区二区三区av| 一卡2卡三卡四卡精品乱码亚洲| 啦啦啦观看免费观看视频高清| 我的老师免费观看完整版| 少妇裸体淫交视频免费看高清| 99热这里只有是精品在线观看| 欧美一级a爱片免费观看看| 黄片无遮挡物在线观看| 1024手机看黄色片| 国产精品.久久久| 精品国产三级普通话版| 九草在线视频观看| 丰满的人妻完整版| 99热全是精品| 亚洲色图av天堂| av又黄又爽大尺度在线免费看 | 夜夜看夜夜爽夜夜摸| 欧美精品国产亚洲| 精品日产1卡2卡| 日本免费一区二区三区高清不卡| 免费看美女性在线毛片视频| 99久久人妻综合| 国产女主播在线喷水免费视频网站 | 成年女人看的毛片在线观看| 中文字幕熟女人妻在线| 丝袜喷水一区| 午夜福利在线在线| 青春草亚洲视频在线观看| 久久久久久久久久久丰满| 精品人妻偷拍中文字幕| 少妇猛男粗大的猛烈进出视频 | 日韩视频在线欧美| 91aial.com中文字幕在线观看| 最近中文字幕高清免费大全6| 别揉我奶头 嗯啊视频| 久久久久久九九精品二区国产| 国产精品爽爽va在线观看网站| 又爽又黄无遮挡网站| 夜夜看夜夜爽夜夜摸| 搡老妇女老女人老熟妇| 啦啦啦韩国在线观看视频| 爱豆传媒免费全集在线观看| 成人亚洲精品av一区二区| 不卡一级毛片| 久久综合国产亚洲精品| 一级毛片aaaaaa免费看小| 99热网站在线观看| 在线播放国产精品三级| 成人三级黄色视频| a级毛色黄片| 久久精品人妻少妇| 男插女下体视频免费在线播放| 99热这里只有是精品50| 男人舔女人下体高潮全视频| 国产视频内射| 人妻夜夜爽99麻豆av| 好男人视频免费观看在线| 热99re8久久精品国产| 久久久久免费精品人妻一区二区| av又黄又爽大尺度在线免费看 | 国产亚洲91精品色在线| 亚洲国产精品久久男人天堂| 精品不卡国产一区二区三区| 男女视频在线观看网站免费| 亚洲精华国产精华液的使用体验 | 美女黄网站色视频| 成人亚洲精品av一区二区| 亚洲av中文av极速乱| 午夜老司机福利剧场| 变态另类成人亚洲欧美熟女| 青春草亚洲视频在线观看| 日韩欧美国产在线观看| 91久久精品电影网| 99久国产av精品国产电影| 久久久久久久久久久免费av| 国产精品女同一区二区软件| 高清在线视频一区二区三区 | 你懂的网址亚洲精品在线观看 | 亚洲一区二区三区色噜噜| 综合色丁香网| 亚洲成av人片在线播放无| 亚洲久久久久久中文字幕| 大又大粗又爽又黄少妇毛片口| 精品少妇黑人巨大在线播放 | 日日啪夜夜撸| 亚洲av熟女| 亚洲人成网站在线观看播放| 丰满人妻一区二区三区视频av| 免费在线观看成人毛片| 国产爱豆传媒在线观看| 国产69精品久久久久777片| 成人三级黄色视频| 亚洲第一电影网av| 国产国拍精品亚洲av在线观看| 黄色欧美视频在线观看| 丰满乱子伦码专区| 麻豆成人av视频| 免费观看人在逋| 三级经典国产精品| 日韩亚洲欧美综合| 日韩精品青青久久久久久| 青春草国产在线视频 | 精品一区二区三区视频在线| 亚洲精品亚洲一区二区| 国产69精品久久久久777片| 日韩中字成人| 一本精品99久久精品77| 国产精品一区二区三区四区久久| 成人美女网站在线观看视频| 国产精品av视频在线免费观看| 麻豆国产av国片精品| videossex国产| 成人一区二区视频在线观看| 只有这里有精品99| 午夜福利在线观看吧| 看片在线看免费视频| 国产高清激情床上av| 青春草国产在线视频 | 男的添女的下面高潮视频| 在线观看午夜福利视频| 成人永久免费在线观看视频| 99在线人妻在线中文字幕| 精品人妻一区二区三区麻豆| 97人妻精品一区二区三区麻豆| 春色校园在线视频观看| 天天一区二区日本电影三级| 91久久精品国产一区二区三区| 中文字幕制服av| 草草在线视频免费看| 直男gayav资源| av免费在线看不卡| 成人一区二区视频在线观看| 天美传媒精品一区二区| 国产高清不卡午夜福利| 美女被艹到高潮喷水动态| 听说在线观看完整版免费高清| 亚洲性久久影院| 精品久久久久久久末码| 看免费成人av毛片| 日日摸夜夜添夜夜爱| 黄色配什么色好看| 欧美激情在线99| 少妇熟女aⅴ在线视频| 黄色视频,在线免费观看| 国产精品野战在线观看| 九色成人免费人妻av| 天堂网av新在线| 久久中文看片网| 真实男女啪啪啪动态图| 久久久久久久久久黄片| 国产精品麻豆人妻色哟哟久久 | 国产一区二区在线观看日韩| 日本一本二区三区精品| 嫩草影院精品99| 黄色一级大片看看| 精品欧美国产一区二区三| 黄片无遮挡物在线观看| 国产 一区 欧美 日韩| 精品午夜福利在线看| 国产精品人妻久久久久久| 69人妻影院| 精品一区二区三区人妻视频| 男人狂女人下面高潮的视频| 美女黄网站色视频| 中文资源天堂在线| 性色avwww在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲成a人片在线一区二区| 色噜噜av男人的天堂激情| 日韩视频在线欧美| 最近中文字幕高清免费大全6| 亚洲av二区三区四区| 国产人妻一区二区三区在| 国产真实伦视频高清在线观看| 免费在线观看成人毛片| 久久婷婷人人爽人人干人人爱| 男女那种视频在线观看| 欧美性猛交╳xxx乱大交人| 中文亚洲av片在线观看爽| 狂野欧美白嫩少妇大欣赏| 精品国产三级普通话版| 亚洲人成网站在线观看播放| 亚洲婷婷狠狠爱综合网| 男人舔奶头视频| 蜜桃久久精品国产亚洲av| 成人特级av手机在线观看| 一个人看的www免费观看视频| 欧美在线一区亚洲| 国产女主播在线喷水免费视频网站 | 神马国产精品三级电影在线观看| 在现免费观看毛片| 久久热精品热| 国产中年淑女户外野战色| av天堂在线播放| 久久精品国产99精品国产亚洲性色| 国产精品综合久久久久久久免费| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 日韩欧美精品免费久久| 欧美三级亚洲精品| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av| 中国美女看黄片| 国产精品1区2区在线观看.| 久久午夜福利片| 午夜福利高清视频| 高清毛片免费看| 国产精品爽爽va在线观看网站| 久久精品国产亚洲av涩爱 | 国产午夜福利久久久久久| a级毛色黄片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产色片| 欧美bdsm另类| 欧美高清成人免费视频www| 最后的刺客免费高清国语| 国产精品久久久久久亚洲av鲁大| 久久精品久久久久久久性| 亚洲av.av天堂| 亚洲无线观看免费| 国产精品久久视频播放| av天堂中文字幕网| 久久99热6这里只有精品| 爱豆传媒免费全集在线观看| 亚洲在久久综合| 麻豆成人午夜福利视频| 久久久成人免费电影| 中文资源天堂在线| 亚洲最大成人手机在线| 久久国产乱子免费精品| 亚洲av中文字字幕乱码综合| 亚洲国产欧美在线一区| 不卡视频在线观看欧美| 国产精品一区www在线观看| 精品人妻视频免费看| 联通29元200g的流量卡| 九九热线精品视视频播放| 亚洲在久久综合| 日韩高清综合在线| 日韩人妻高清精品专区| 秋霞在线观看毛片| 国产三级在线视频| 精品日产1卡2卡| 国产精品免费一区二区三区在线| 99热这里只有精品一区| 久久99热这里只有精品18| 天堂网av新在线| 成年女人永久免费观看视频| 国产伦在线观看视频一区| 亚洲av第一区精品v没综合|