• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    2015-04-22 07:48:14WANGHui王輝WANGJiang王江CHENGZhenxuan程振軒
    關(guān)鍵詞:王江王輝

    WANG Hui (王輝), WANG Jiang (王江), CHENG Zhen-xuan (程振軒)

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    WANG Hui (王輝)1, WANG Jiang (王江)1, CHENG Zhen-xuan (程振軒)2

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    To satisfy the terminal position and impact angel constraints, an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground, an extended trajectory shaping guidance law considering a first-order autopilot lag (ETSGL-CFAL) was proposed. To derive the ETSGL-CFAL, a time-to-go -nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated. The performance of the ETSGL-CFAL and the ETSGL guidance laws was compared through simulation. Simulation results show that although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.

    extended trajectory shaping guidance law; time-to-go; first-order autopilot; guidance performance

    Linear optimal guidance problems have been studied since the 1960s in the last century. During this period, based on different terminal constraints, several different linear optimal guidance laws have been proposed[1-12]. In these guidance laws, the optimal guidance law with impact angle constraint (OGLIAC) attracted more attentions. As mentioned in Refs.[4-8], to enhance the missile’s warhead effectiveness, many attacking missions have additional requirements on the terminal impact angle. For example, for antitank missiles, a near-vertical attacking direction is often designed to enhance the attacking effect on the armored vehicles; and for some anti-ship missiles, a side-plane attacking technology is often used to make the missile attack the side part of the ship in a lateral-vertical direction.

    Terminal impact angle control problem has been an important area of research in the homing missile guidance in recent years. In Ref.[4], Zarchan proposed an optimal guidance law called trajectory shaping guidance law (TSGL), which can also control the terminal impact angle. With the assumption of small angle for the line of sight (LOS) angle and the flight path angle, the TSGL is equivalent to the OGLIAC[4, 6-8]. In 1998, the TSGL was defined in the desired terminal line of sight frame and the guidance performance of which was also demonstrated by Ben-Asher and Yaesh[5]. During 2003-2005, the guidance performance of TSGL with a first-order autopilot was studied by Ryoo et al[6-7]. In 2013, for a stationary or a slowly moving target on the ground, a new form of time-to-go polynomial guidance law with impact angle constraint was proposed by Kim and Lee[9-10]. The new guidance law provides a new angle of view to study the optimal guidance problem with impact angle constraint.

    As mentioned above, the TSGL or OGLIAC was usually derived using the linear quadratic optimal control theory with some given terminal constraints, where the weighting functionR(t) in the object function was defined as the traditional form, i.e.,R(t) was set as a constant value one[4-8]. Correspondingly, the guidance law can be called as the conventional TSGL (CTSGL). However, in 2006, a more generalized form of the CTSGL, namely, the extended TSGL (ETSGL), was proposed by Ohlmeyer, Ryoo, et al., where the weighting function was extended to a new form of time-to-go -nth power[11-12]. This promotes the corresponding research work of the optimal guidance laws to a more widely research area[9-13].

    In this paper, considering a first-order autopilot lag, the extended weighting function found in Refs.[11-12] is adopted to derive the ETSGL using three different methods and the method of the Schwartz inequality is mainly demonstrated. The proposed guidance law is called extended trajectory guidance law considering a first-order autopilot lag (ETSGL-CFAL). Finally, the guidance performance of the ETSGL-CFAL is analyzed.

    1 Missile’s longitudinal motion equations considering a first-order autopilot lag

    According to Ref.[14], for a stationary or a slowly moving target, the longitudinal equations of missile’s motion can be expressed as

    (1)

    wherey,V,θandamdenotes the missile position, velocity, flight path angle and acceleration response, respectively. Under the assumption thatVis constant andθis small angle, Eq.(1) can be linearized as

    (2)

    Thetransferfunctionofafirst-orderaccelerationautopilotcanbeexpressedas

    am(s)/ac(s)=1/(Tgs+1)

    (3)

    whereacmeans the missile acceleration command andTgdenotes the time constant of the autopilot. Rewrite Eq.(3) as the form of differential equation, one obtains

    (4)

    CombiningEqs.(2) (4),themissile’slongitudinalmotionequationsconsideringafirst-orderautopilotlagcanbewrittenas

    (5)

    where

    (6)

    (7)

    In Eq.(7),y(tf) is the missile position at the terminal timetf,θ(tf) is the terminal flight path angle andam(tf) is the missile terminal acceleration response. The desired values ofy(tf),θ(tf) andam(tf) areyf,θf(wàn)andaf, respectively.

    2 Derivation of the ETSGL-CFAL using three different methods

    2.1 Derivation of the ETSGL-CFAL using the linear quadratic optimal control theory

    2.1.1 Using the optimal method in Ref.[7]

    Let us first consider the following optimal control problem: subject to Eq.(5), findu(t) to minimize the cost functionJwhich is defined as

    (8)

    whereSf≥0,R(t)>0,t0is the initial time. The solution of the optimal control problem shown in Eq.(5) and Eq.(8) is given by Ref.[7], that is

    u(t)*=-R(t)-1BTΦT(tf,t)Sf[x(tf)-xf]

    (9)

    whereΦ(tf,t) is the state transition matrix fromttotfand the expression of x(tf)-xfis given by

    x(tf)-xf=

    [Φ(tf,t)x(t)-xf]

    (10)

    According to Eq.(6), the weighting funtionR(t) and the terminal state weighting matrix Sfare chosen as

    (11)

    wheretf-t=tgo. The estimation method of time-to-go and the influence of time-to-go estimation errors on the guidance performance have been studied by Ryoo et al[6-7, 12]. Therefore, we assume that time-to-go is exactly known in this paper.

    According to Eq.(10), we define C as

    (12)

    where the expressions ofM11,M12,M21andM22are given by

    D1=Tg(e-tgo/Tg+tgo/Tg-1),D2=1-e-tgo/Tg

    (13)

    (14)

    (15)

    (16)

    (17)

    CombiningEqs.(5)-(17)andaftercomplexcalculations,oneobtainstheoptimalguidancelaw:

    W2θ(t)+W3θf(wàn)+W4am(t)]

    (18)

    whereW1,W2,W3andW4are defined as

    W1=(1/Δ)(s1D1M22-s2D2M21)

    (19)

    W2=(1/Δ)[s1D1(M22Vtgo-M12)]+

    (1/Δ)[s2D2(M11-M21Vtgo)]

    (20)

    W3=(1/Δ)(s1D1M12-s2D2M11)

    (21)

    W4=(Tg/Δ)[s1D1(M22D1-M12D2/V)]+

    (Tg/Δ)[s2D2(-M21D1+M11D2/V)]

    (22)

    (23)

    AccordingtoEq.(18),wesets1→∞,s2→∞, the final expression of the ETSGL-CFAL can be simplified as

    W′3)Vθ(t)-W′3Vθf(wàn)+Tg(D1W′1+D2W′3)am(t)}

    (24)

    2.1.2 Using the optimal method in Ref.[12]

    Rewrite the terminal constraints Eq.(7) as the form of matrix, that is

    (25)

    Neglect the terminal state constraint in Eq.(8), then Eq.(8) can be simplified as

    R(t)=1/(tf-t)n,n≥0

    (26)

    According to Ref.[12], the optimal solution is given by

    u(t)*=-R(t)-1BTFG-1[E-FTx(t)]

    (27)

    where the matrices F and G are given by

    (28)

    Substituting Eqs.(6) (25) into Eq.(28), we have

    (29)

    (30)

    where G is a 2×2 matrix.

    Substituting Eqs.(6) (25) (29) (30) into Eq.(27), we finally have the ETSGL-CFAL, which is the same with Eq.(24).

    2.2 Derivation of the ETSGL-CFAL using the Schwartz inequality

    The general solution of the state space

    Eq.(5) at the final time is given by[4]

    (31)

    whereΦ(t) is the fundamental matrix related to the matrix A according to

    Φ(t)=L-1[(sI-A)-1]

    (32)

    From Eqs.(6) (32),Φ(tf-t) is found to be

    (33)

    SubstitutingEqs.(6) (7) (33)intoEq.(31),weget

    (34)

    Multiplyingouttheprecedingtwomatrixequationsyields

    (35)

    WestillwanttominimizetheextendedcostfunctiondefinedinEq.(26)subjecttothespecifiedterminalpositionandterminalimpactangle,thatis

    y(tf)=yf,θ(tf)=θf(wàn)

    (36)

    For convenience, let us first define

    f1=y(tf)-y(t)-Vtgoθ(t)-

    (37)

    (38)

    Thus,Eq.(35)canbewrittenas

    (39)

    InordertocombineEq.(39)intooneequation,wefirstdefineanewvariableσand then we have

    (40)

    IfweapplytheSchwartzinequalitytoEq.(40),weget

    (41)

    TheleftpartofinequalityEq.(40)isequivalenttotheextendedcostfunctionEq.(26)andwillbeminimizedwhentheequalitysignholds.UsingtheSchwartzinequality,theequalitysignholdsas

    a′c(t)=C(h1-σh2)

    (42)

    whereCis a constant. Therefore, when the equality sign holds, we have

    (43)

    Forconvenience,wedefinethefollowingnewvariables

    (44)

    Thus,Eq.(43)canberewriteas

    (45)

    Defineσ′=σ/Vand then Eq.(45) can be expressed as

    (46)

    BytakingthederivativeofEq.(46)withrespecttoσand setting the result to zero, we get the optimalσ′ that minimizes Eq.(46), that is

    σ′=(f2g11-f1g12)/(f2g12-f1g22)

    (47)

    Substituting Eq.(42) intof1in Eq.(39) and solving for the constantC, one obtains

    C=f1/(g11-σ′g12)

    (48)

    And then, Eq.(42) can be expressed as

    a′c(t)=f1(h1-σh2)/(g11-σ′g12)

    (49)

    Substituting Eq.(47) into Eq.(49) and after some algebra yields

    (50)

    SubstitutingEqs.(37) (44)intoEq.(50),weobtainthefinalexpressionoftheETSGL-CFAL,whichisalsothesamewithEq.(24).

    Asshownintheabovetwosubsections,thethreedifferentderivationmethodsresulttothesameETSGL-CFAL.

    ComparedwithCTSGLandETSGL,ETSGL-CFALisamoregeneralizedform.IfweneglectthetimeconstantTg, i.e., the autopilot is lag-free, ETSGL-CFAL will reduce to ETSGL and if we setTg=0 andn=0 simultaneously, ETSGL-CFAL will directly reduce to CTSGL.

    2.3 Expression of the ETSGL-CFAL in engineering application

    (51)

    (52)

    DefinesomenewgainsoftheETSGL-CFALas

    (53)

    Combining Eqs.(24) (51) (52) yields

    (54)

    Eq.(54)istheexpressionoftheETSGL-CFALforengineeringapplicationinmissileguidance.FortheETSGL,Eq.(53)reducesto

    N′p=2(n+2),N′θ=(n+1)(n+2),N′a=0

    (55)

    and then the ETSGL can be written as

    (56)

    3 Analysis of the normalized acceleration and normalized miss induced by the impact angle

    For comparison, we consider both the ETSGL-CFAL and ETSGL guidance laws. Fig.1 gives the block diagram of the ETSGL-CFAL guidance system. As the gains of Eq.(55) are chosen, the ETSGL-CFAL guidance system can be simplified to the ETSGL guidance system with a first-order autopilot. In Fig.1, two constraints are considered, i.e., the desired missile positionyfand the desired impact angleθf(wàn). Simulation parameters of Fig.1 are given in Tab.1.

    Fig.1 Guidance system of the ETSGL-CFAL/ETSGL

    Tab.1 Simulation parameters

    Parameteryf/mθf(wàn)/(°)V/(m/s)Tg/stf/sValue0-30,-603000.510

    Simulation results of the trajectories and LOS angles forθf(wàn)=-30° andθf(wàn)=-60°, respectively, are shown in Fig.2 and Fig.3. It can be seen that for the ETSGL-CFAL/ETSGL, both the curves of the trajectories and LOS angles are similar if a small indexnis chosen, for example,n=0; however, a large indexn, for example,n=1, will result in a higher trajectory for the ETSGL. Correspondingly, for the ETSGL-CFAL, a lower trajectory will be got whennis chosen as a large value.

    Fig.4 gives the normalized acceleration commands of the ETSGL-CFAL/ETSGL induced by the impact angleθf(wàn). Fig.4 shows that it will result in an abrupt increase in the acceleration command at the final time if we introduce an autopilot lag into the ETSGL guidance system and this will lead to undesired position miss distance and impact angle error (as shown in Fig.5 and Fig.6), especially when the system total guidance timetfis not enough. The reason is that the ETSGL is only optimal for the lag-free autopilot and if we introduce into a first-order autopilot, the ETSGL is not optimal. However, the ETSGL-CFAL is also optimal at the existence of the first-order autopilot, and the acceleration command of which will approach to zero at the final guidance time (Fig.4). Thus, although a first-order autopilot was introduced into the ETSGL-CFAL system, there is no miss distance and terminal impact angle error as shown in Fig.5 and Fig.6.

    Fig.2 Trajectories for different θf(wàn)

    Fig.3 LOS angle q for different θf(wàn)

    Fig.4 Normalized acceleration commands induced by θf(wàn)

    Fig.5 Normalized position miss distance induced by θf(wàn)

    Fig.6 Normalized terminal impact angle error induced by θf(wàn)

    4 Conclusions

    ① Using a time-to-go weighted object function and considering a first-order autopilot lag, for a stationary or slowly moving target, an extended trajectory shaping guidance law, called ETSGL-CFAL in this paper, is proposed.

    ② Three different methods are adopted to derive the ETSGL-CFAL: two based on the linear optimal control theory and one based on the Schwartz inequality.

    ③ Performance of the ETSGL-CFAL and the ETSGL guidance laws are compared through simulation. Simulation results show that for different guidance times, although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, there is no miss distance and terminal impact angle error induced by the impact angle.

    [1] Kim B S, Lee J G, Han H S. Biased PNG law for impact with angular constraint [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288.

    [2] Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1816-1821.

    [3] Ratnoo A, Ghose D. State dependent Riccati equation based guidance law for impact angle constrained trajectories [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 320-325.

    [4] Zarchan P. Tactical and strategic missile guidance[M]. 5th ed. Progress in Astronautics and Aeronautics, 2007: 541-569.

    [5] Ben-Asher J Z, Yaesh I. Advances in missile guidance theory[M]. [S.l.]: American Institute of Aeronautics and Astronautics, Inc., 1998:25-88.

    [6] Ryoo C K, Cho H, Tahk M J. Close-form solutions of optimal guidance with terminal impact angle constraint [C]∥Proceedings of IEEE International Conference on Control Application, Istanbul, Turkey, 2003: 504-509.

    [7] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint [J]. Journal of Guidance, Control and Dynamics, 2005, 28(4): 724-732.

    [8] Ryoo C K, Cho H, Tahk M J. Energy optimal waypoint guidance synthesis for antiship missiles [J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1):80-95.

    [9] Kim T H, Lee C H, Tahk M J, et al. Time-to-go polynomial guidance with trajectory modulation for observability enhancement [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 55-73.

    [10] Lee C H, Kim T H, Tahk M J, et al. Polynomial guidance laws considering terminal impact angle and acceleration constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 74-92.

    [11] Ohlmeyer E J, Phillips C A. Generalized vector explicit guidance [J]. Journal of Guidance, Control and Dynamics, 2006, 29(2): 261-268.

    [12] Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 14(3): 483-492.

    [13] Wang H, Lin D F, Cheng Z X, et al. Optimal guidance of extended trajectory shaping [J]. Chinese Journal of Aeronautics, 2014,27(5):1259-1272.

    [14] Qian X F, Lin R X, Zhao Y N. Missile aviation mechanics [M]. Beijing: Beijing Institute of Technology Press, 2008: 28-74. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0302

    TJ 765.3 Document code: A Article ID: 1004- 0579(2015)03- 0291- 07

    Received 2013- 12- 01

    Supported by the National Natural Science Foundation of China (61172182)

    E-mail: wh20031131@126.com

    猜你喜歡
    王江王輝
    本期面孔
    遼河(2022年12期)2023-01-29 13:24:58
    Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept
    洛書
    寶藏(2021年12期)2022-01-15 04:19:44
    劇作家王輝
    火花(2021年10期)2021-11-04 09:23:52
    Characterization of size effect of natural convection in melting process of phase change material in square cavity?
    王江薈國(guó)畫系列作品《安仁古八景》
    竹之韻
    Orientation and alignment during materials processing under high magnetic fields?
    王江作品
    The Thought on PPP in China
    国产成人精品无人区| 日本三级黄在线观看| 99久久精品一区二区三区| 亚洲av五月六月丁香网| 无遮挡黄片免费观看| 女生性感内裤真人,穿戴方法视频| 国产高清有码在线观看视频| 最近在线观看免费完整版| 亚洲欧洲精品一区二区精品久久久| 又黄又爽又免费观看的视频| 久久这里只有精品中国| 欧美zozozo另类| 首页视频小说图片口味搜索| 免费看光身美女| 日本与韩国留学比较| 国产精品日韩av在线免费观看| 欧美成狂野欧美在线观看| 亚洲天堂国产精品一区在线| 国语自产精品视频在线第100页| 91av网一区二区| 亚洲av电影在线进入| 成人性生交大片免费视频hd| 国产av麻豆久久久久久久| 1000部很黄的大片| 欧美日韩中文字幕国产精品一区二区三区| 99精品久久久久人妻精品| 亚洲人成网站高清观看| 一进一出抽搐gif免费好疼| 99热只有精品国产| 久久久色成人| 国产人伦9x9x在线观看| 国产极品精品免费视频能看的| 午夜免费观看网址| 亚洲精品久久国产高清桃花| 国产高清三级在线| 1000部很黄的大片| 欧美性猛交黑人性爽| 在线观看日韩欧美| 麻豆一二三区av精品| 国产爱豆传媒在线观看| 极品教师在线免费播放| 97超级碰碰碰精品色视频在线观看| 成人精品一区二区免费| 国产男靠女视频免费网站| 亚洲av电影在线进入| 中文字幕精品亚洲无线码一区| 窝窝影院91人妻| 成人av一区二区三区在线看| 久久久久久大精品| 欧美中文日本在线观看视频| 色老头精品视频在线观看| 美女免费视频网站| 这个男人来自地球电影免费观看| 天堂网av新在线| 国产一区二区三区视频了| 国产精品,欧美在线| 亚洲熟妇熟女久久| 国产真实乱freesex| 男女那种视频在线观看| 国产精品综合久久久久久久免费| 亚洲国产看品久久| 一个人免费在线观看电影 | 免费在线观看视频国产中文字幕亚洲| 久久人人精品亚洲av| 久久久精品欧美日韩精品| 三级毛片av免费| 国产精品野战在线观看| 亚洲av五月六月丁香网| av欧美777| 91久久精品国产一区二区成人 | 国产又黄又爽又无遮挡在线| 日韩中文字幕欧美一区二区| 19禁男女啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频| 啦啦啦韩国在线观看视频| 悠悠久久av| АⅤ资源中文在线天堂| 精品一区二区三区视频在线 | 12—13女人毛片做爰片一| 亚洲av成人av| 国产成人av教育| 一级毛片高清免费大全| 91av网一区二区| 亚洲欧美日韩卡通动漫| 国产久久久一区二区三区| 亚洲专区国产一区二区| 十八禁网站免费在线| 欧美乱妇无乱码| 怎么达到女性高潮| 日本与韩国留学比较| 日本免费a在线| 婷婷丁香在线五月| 黄色日韩在线| 天堂√8在线中文| 熟女人妻精品中文字幕| 国产免费男女视频| 啦啦啦免费观看视频1| 69av精品久久久久久| 熟女少妇亚洲综合色aaa.| 欧美日韩精品网址| 岛国视频午夜一区免费看| 精品欧美国产一区二区三| 脱女人内裤的视频| 久久国产乱子伦精品免费另类| 一个人免费在线观看电影 | 亚洲av成人av| 久久久国产成人精品二区| 亚洲va日本ⅴa欧美va伊人久久| 少妇丰满av| 亚洲精华国产精华精| 国产又黄又爽又无遮挡在线| 成人国产一区最新在线观看| 国产成人精品无人区| 99久久成人亚洲精品观看| 久久精品91蜜桃| 国产av不卡久久| 美女 人体艺术 gogo| 9191精品国产免费久久| 婷婷六月久久综合丁香| 午夜精品久久久久久毛片777| 波多野结衣巨乳人妻| 国产av在哪里看| 亚洲七黄色美女视频| 欧美中文综合在线视频| 一进一出抽搐gif免费好疼| 最近视频中文字幕2019在线8| 老司机午夜福利在线观看视频| 亚洲午夜精品一区,二区,三区| 日韩欧美一区二区三区在线观看| 亚洲人成电影免费在线| 亚洲欧美日韩东京热| 热99在线观看视频| 在线观看免费午夜福利视频| 少妇熟女aⅴ在线视频| 他把我摸到了高潮在线观看| 在线免费观看不下载黄p国产 | 国模一区二区三区四区视频 | 日韩欧美免费精品| 国产 一区 欧美 日韩| 午夜两性在线视频| 听说在线观看完整版免费高清| 国产成人欧美在线观看| 国产精品久久久久久久电影 | 国产成人av教育| 欧美绝顶高潮抽搐喷水| 18禁国产床啪视频网站| 最新在线观看一区二区三区| 在线观看免费视频日本深夜| 19禁男女啪啪无遮挡网站| aaaaa片日本免费| www日本在线高清视频| 色综合亚洲欧美另类图片| 成人av在线播放网站| 91在线观看av| 亚洲激情在线av| 久99久视频精品免费| 欧美日韩国产亚洲二区| 国产精品,欧美在线| 狂野欧美白嫩少妇大欣赏| 免费看光身美女| 宅男免费午夜| 在线免费观看不下载黄p国产 | 给我免费播放毛片高清在线观看| 亚洲无线观看免费| 亚洲18禁久久av| 亚洲人成伊人成综合网2020| 亚洲成av人片在线播放无| 一区福利在线观看| 久久久色成人| 亚洲色图av天堂| 日本 av在线| 国产淫片久久久久久久久 | 91麻豆av在线| 12—13女人毛片做爰片一| 香蕉丝袜av| 亚洲国产精品久久男人天堂| 国产爱豆传媒在线观看| 性色av乱码一区二区三区2| 中文字幕最新亚洲高清| 成人三级黄色视频| 国产真实乱freesex| 免费看光身美女| 欧美黄色片欧美黄色片| 午夜福利成人在线免费观看| 亚洲av成人不卡在线观看播放网| 69av精品久久久久久| 精品国产乱子伦一区二区三区| 亚洲乱码一区二区免费版| 久久天躁狠狠躁夜夜2o2o| 成人欧美大片| 国产91精品成人一区二区三区| 18禁黄网站禁片午夜丰满| 老熟妇乱子伦视频在线观看| 欧美性猛交╳xxx乱大交人| 成人18禁在线播放| 日韩成人在线观看一区二区三区| 99在线视频只有这里精品首页| 99久久99久久久精品蜜桃| 婷婷六月久久综合丁香| 成人鲁丝片一二三区免费| 日韩中文字幕欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 免费观看精品视频网站| 国产主播在线观看一区二区| 精品一区二区三区四区五区乱码| 亚洲国产高清在线一区二区三| 欧美日韩中文字幕国产精品一区二区三区| 一本精品99久久精品77| 精品人妻1区二区| 又大又爽又粗| 国内精品一区二区在线观看| 综合色av麻豆| 精品一区二区三区av网在线观看| 日韩 欧美 亚洲 中文字幕| 麻豆国产av国片精品| 国产伦一二天堂av在线观看| 国产精品久久久av美女十八| 国产成人精品久久二区二区91| 久久天躁狠狠躁夜夜2o2o| 国产成年人精品一区二区| 熟女人妻精品中文字幕| 在线观看舔阴道视频| 日本五十路高清| 99国产精品一区二区蜜桃av| 国产综合懂色| 嫩草影视91久久| 香蕉丝袜av| 成熟少妇高潮喷水视频| www日本在线高清视频| 亚洲精品在线观看二区| 露出奶头的视频| 桃色一区二区三区在线观看| 欧美乱色亚洲激情| 美女免费视频网站| 久久久久久久精品吃奶| 99热6这里只有精品| 亚洲无线观看免费| 亚洲美女黄片视频| 搡老妇女老女人老熟妇| 亚洲av电影不卡..在线观看| 白带黄色成豆腐渣| 国产私拍福利视频在线观看| 桃红色精品国产亚洲av| 看免费av毛片| 亚洲 欧美 日韩 在线 免费| www.999成人在线观看| 99riav亚洲国产免费| 久久久久久久久免费视频了| 亚洲 欧美 日韩 在线 免费| 一二三四社区在线视频社区8| 国产欧美日韩一区二区精品| 日日摸夜夜添夜夜添小说| 国产精品影院久久| 淫秽高清视频在线观看| 日本黄色片子视频| 欧美激情久久久久久爽电影| 国产精品久久久人人做人人爽| 午夜精品在线福利| 亚洲中文日韩欧美视频| 少妇丰满av| 欧美日韩一级在线毛片| 一本综合久久免费| 午夜福利在线在线| 亚洲无线在线观看| 又爽又黄无遮挡网站| 韩国av一区二区三区四区| 久久精品91蜜桃| 亚洲18禁久久av| 色视频www国产| 国产一级毛片七仙女欲春2| 露出奶头的视频| 欧美日韩福利视频一区二区| 成人永久免费在线观看视频| 村上凉子中文字幕在线| 岛国视频午夜一区免费看| a级毛片在线看网站| 午夜日韩欧美国产| 免费看a级黄色片| 午夜福利在线观看吧| 精品一区二区三区av网在线观看| 亚洲 欧美 日韩 在线 免费| 19禁男女啪啪无遮挡网站| 午夜福利成人在线免费观看| 亚洲成人久久性| 老汉色av国产亚洲站长工具| 成人性生交大片免费视频hd| 久久精品国产综合久久久| 999久久久精品免费观看国产| 欧美日韩综合久久久久久 | 国产精品亚洲一级av第二区| 亚洲精品美女久久av网站| 亚洲人与动物交配视频| 久久久久免费精品人妻一区二区| 国产野战对白在线观看| 两个人视频免费观看高清| 欧美中文综合在线视频| 999久久久精品免费观看国产| or卡值多少钱| www国产在线视频色| 欧美不卡视频在线免费观看| 美女黄网站色视频| 一进一出抽搐动态| 亚洲国产精品合色在线| 国产精品久久久久久精品电影| 1024手机看黄色片| 欧美绝顶高潮抽搐喷水| 久久中文看片网| 国产亚洲欧美98| 一个人看的www免费观看视频| 日韩三级视频一区二区三区| 老司机午夜十八禁免费视频| 欧美乱色亚洲激情| 丰满的人妻完整版| 亚洲色图 男人天堂 中文字幕| 窝窝影院91人妻| 在线视频色国产色| 黄片大片在线免费观看| 久久久久久久久中文| 午夜影院日韩av| 国产成年人精品一区二区| 国产爱豆传媒在线观看| 少妇裸体淫交视频免费看高清| 国产单亲对白刺激| 1000部很黄的大片| 精品免费久久久久久久清纯| 亚洲av成人精品一区久久| 国产爱豆传媒在线观看| 亚洲欧美一区二区三区黑人| 制服人妻中文乱码| 女同久久另类99精品国产91| 欧美一区二区国产精品久久精品| 免费看日本二区| 欧美日韩瑟瑟在线播放| 久久精品国产清高在天天线| 99在线视频只有这里精品首页| 国产伦一二天堂av在线观看| 日韩欧美一区二区三区在线观看| 国产真实乱freesex| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲,欧美精品.| 桃色一区二区三区在线观看| 国产亚洲精品久久久久久毛片| 九九热线精品视视频播放| 国产成人啪精品午夜网站| 国产高潮美女av| 日本免费a在线| 亚洲人成电影免费在线| 免费在线观看亚洲国产| 国内久久婷婷六月综合欲色啪| 亚洲欧美日韩高清在线视频| 超碰成人久久| 国产精品综合久久久久久久免费| 丰满的人妻完整版| 亚洲av第一区精品v没综合| aaaaa片日本免费| 国产激情偷乱视频一区二区| 午夜福利在线观看免费完整高清在 | 精品国产亚洲在线| 久久精品aⅴ一区二区三区四区| 免费大片18禁| 亚洲人与动物交配视频| 日日夜夜操网爽| 国产99白浆流出| 国产午夜精品久久久久久| 很黄的视频免费| 搡老熟女国产l中国老女人| 亚洲专区中文字幕在线| av视频在线观看入口| 人妻丰满熟妇av一区二区三区| av天堂在线播放| 成人无遮挡网站| 亚洲中文日韩欧美视频| 88av欧美| 欧洲精品卡2卡3卡4卡5卡区| 18禁黄网站禁片免费观看直播| 国产精品亚洲av一区麻豆| 精品久久久久久,| 国产69精品久久久久777片 | 日本一本二区三区精品| 男女床上黄色一级片免费看| 亚洲 欧美一区二区三区| 亚洲精品粉嫩美女一区| 中文字幕av在线有码专区| 琪琪午夜伦伦电影理论片6080| 国产伦精品一区二区三区四那| 亚洲精品美女久久av网站| 国产精品电影一区二区三区| 午夜福利免费观看在线| 亚洲一区二区三区不卡视频| 91在线精品国自产拍蜜月 | 99re在线观看精品视频| 国产精品久久电影中文字幕| 一进一出好大好爽视频| 天堂网av新在线| 哪里可以看免费的av片| 日本一本二区三区精品| 国产一区二区在线观看日韩 | 国产精品爽爽va在线观看网站| 国产精品久久电影中文字幕| 精品电影一区二区在线| 夜夜爽天天搞| 国产熟女xx| 中文字幕人妻丝袜一区二区| 少妇的丰满在线观看| 国产精品综合久久久久久久免费| 男女视频在线观看网站免费| 91九色精品人成在线观看| 亚洲,欧美精品.| 老司机午夜福利在线观看视频| 国内精品美女久久久久久| 欧美zozozo另类| 亚洲国产欧美网| 他把我摸到了高潮在线观看| 国产69精品久久久久777片 | 久久午夜亚洲精品久久| 国产精品98久久久久久宅男小说| 成在线人永久免费视频| 怎么达到女性高潮| 宅男免费午夜| svipshipincom国产片| 免费av毛片视频| 九色国产91popny在线| 十八禁网站免费在线| 免费一级毛片在线播放高清视频| 免费看美女性在线毛片视频| 亚洲午夜精品一区,二区,三区| 精品久久久久久久末码| 999久久久精品免费观看国产| 在线观看日韩欧美| 色在线成人网| svipshipincom国产片| 日韩欧美三级三区| 麻豆一二三区av精品| 亚洲九九香蕉| 欧美不卡视频在线免费观看| 美女cb高潮喷水在线观看 | e午夜精品久久久久久久| 97人妻精品一区二区三区麻豆| 99热这里只有精品一区 | 婷婷丁香在线五月| 国产精品一及| 国产激情偷乱视频一区二区| 性色av乱码一区二区三区2| 亚洲色图av天堂| a在线观看视频网站| 色哟哟哟哟哟哟| 午夜激情福利司机影院| 99re在线观看精品视频| 观看免费一级毛片| 国产亚洲欧美在线一区二区| 亚洲自偷自拍图片 自拍| 亚洲av第一区精品v没综合| 精品福利观看| 欧美乱妇无乱码| 嫩草影视91久久| 亚洲精品456在线播放app | 成人一区二区视频在线观看| 国产黄a三级三级三级人| 欧美日本视频| а√天堂www在线а√下载| 在线a可以看的网站| 真人一进一出gif抽搐免费| 国产三级中文精品| 色综合欧美亚洲国产小说| 少妇丰满av| 黑人欧美特级aaaaaa片| 欧美性猛交黑人性爽| 亚洲va日本ⅴa欧美va伊人久久| 亚洲五月天丁香| 不卡一级毛片| 国产97色在线日韩免费| 丰满的人妻完整版| 国产激情偷乱视频一区二区| 两个人视频免费观看高清| 国产精品亚洲一级av第二区| 一进一出抽搐动态| 午夜福利欧美成人| 黑人欧美特级aaaaaa片| 国产精品自产拍在线观看55亚洲| 国语自产精品视频在线第100页| 欧美成狂野欧美在线观看| 人人妻,人人澡人人爽秒播| 色av中文字幕| 十八禁网站免费在线| 亚洲国产日韩欧美精品在线观看 | 色视频www国产| 国产伦精品一区二区三区视频9 | 一个人看视频在线观看www免费 | 国产精品一区二区免费欧美| 亚洲无线在线观看| 国产乱人伦免费视频| 好男人在线观看高清免费视频| av天堂在线播放| 日韩欧美在线二视频| 国产精品一区二区三区四区久久| 一本综合久久免费| www.www免费av| 大型黄色视频在线免费观看| 精品日产1卡2卡| 91字幕亚洲| 精品久久蜜臀av无| 久久久久久久久久黄片| 久久久久免费精品人妻一区二区| 成人无遮挡网站| 好男人电影高清在线观看| 午夜福利成人在线免费观看| 亚洲av成人av| 不卡av一区二区三区| 国产亚洲av嫩草精品影院| 国产男靠女视频免费网站| 亚洲第一电影网av| 成人特级av手机在线观看| 手机成人av网站| 麻豆成人午夜福利视频| 丁香欧美五月| 欧美一级a爱片免费观看看| av在线天堂中文字幕| 成人高潮视频无遮挡免费网站| 高清毛片免费观看视频网站| 国产男靠女视频免费网站| www.熟女人妻精品国产| 国产一区二区激情短视频| www日本在线高清视频| 两性夫妻黄色片| 女人高潮潮喷娇喘18禁视频| 亚洲天堂国产精品一区在线| 最近视频中文字幕2019在线8| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品成人综合色| 两性午夜刺激爽爽歪歪视频在线观看| 最近视频中文字幕2019在线8| 香蕉久久夜色| 制服丝袜大香蕉在线| 中文资源天堂在线| 90打野战视频偷拍视频| 好看av亚洲va欧美ⅴa在| 俄罗斯特黄特色一大片| 国产伦一二天堂av在线观看| 欧美日韩乱码在线| 国产精品乱码一区二三区的特点| 听说在线观看完整版免费高清| 国产亚洲精品av在线| 欧美性猛交╳xxx乱大交人| 中文资源天堂在线| 观看美女的网站| 色老头精品视频在线观看| 天天躁日日操中文字幕| 黑人巨大精品欧美一区二区mp4| 国模一区二区三区四区视频 | a级毛片在线看网站| 国产视频一区二区在线看| 久久久久九九精品影院| 国内精品美女久久久久久| 日韩有码中文字幕| 91字幕亚洲| 成人性生交大片免费视频hd| 日韩精品青青久久久久久| 国产97色在线日韩免费| 美女免费视频网站| 美女扒开内裤让男人捅视频| 久久精品国产亚洲av香蕉五月| 最新美女视频免费是黄的| 国产av不卡久久| 亚洲av片天天在线观看| 欧美成人一区二区免费高清观看 | 欧美一级毛片孕妇| 亚洲av免费在线观看| 免费看光身美女| 别揉我奶头~嗯~啊~动态视频| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区四那| 嫩草影院入口| 女人高潮潮喷娇喘18禁视频| 国产在线精品亚洲第一网站| 欧美成人性av电影在线观看| 国内少妇人妻偷人精品xxx网站 | 床上黄色一级片| 国语自产精品视频在线第100页| 精品无人区乱码1区二区| 午夜免费观看网址| 老司机深夜福利视频在线观看| 国产成人影院久久av| 午夜福利18| 国产探花在线观看一区二区| 欧美黑人巨大hd| 国产精品久久久久久亚洲av鲁大| 久久国产精品人妻蜜桃| 欧美日韩乱码在线| 欧美一区二区精品小视频在线| 亚洲男人的天堂狠狠| 国产精品爽爽va在线观看网站| 一区二区三区激情视频| av片东京热男人的天堂| 亚洲精品美女久久久久99蜜臀| 网址你懂的国产日韩在线| 中文字幕精品亚洲无线码一区| 日韩欧美三级三区| 又黄又爽又免费观看的视频| 国产成人av教育| 97超视频在线观看视频| 日韩国内少妇激情av| 1024手机看黄色片| av欧美777| 搡老熟女国产l中国老女人| 给我免费播放毛片高清在线观看| 色哟哟哟哟哟哟| 欧美黄色淫秽网站| 国产成人福利小说| 国产毛片a区久久久久| 一进一出抽搐动态| 精品乱码久久久久久99久播| 欧美绝顶高潮抽搐喷水| 熟女人妻精品中文字幕| 免费电影在线观看免费观看| 久久久久国产精品人妻aⅴ院|