• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-rise building fire pre-warning model based on the support vector regression

    2015-04-22 07:24:52ZHANGLining張立寧ZHANGQi張奇ANJing安晶

    ZHANG Li-ning(張立寧), ZHANG Qi(張奇), AN Jing(安晶)

    (1.State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;2.Architecture Engineering College, North China Institute of Science and Technology, Beijing 101601, China)

    ?

    High-rise building fire pre-warning model based on the support vector regression

    ZHANG Li-ning(張立寧), ZHANG Qi(張奇)1, AN Jing(安晶)2

    (1.State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;2.Architecture Engineering College, North China Institute of Science and Technology, Beijing 101601, China)

    Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network, and then to improve the accuracy of fire pre-warning for high-rise buildings, a composite fire pre-warning controller is designed according to the characteristic (nonlinear, less historical data, many influence factors), also a high-rise building fire pre-warning model is set up based on the support vector regression(SVR).Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning.

    high-rise buildings fire; composite fire pre-warning system design; the support vector regression pre-warning model

    High-rise buildings are the inevitable products of the city development, but their fire safety issues are always important in the world. At present, take China as an example, the fire ladders can reach the height of generally not more than 100 m, so in the event of a fire, high-rise building often suffered heavy losses. According to statistics, from 2004 to 2010, the high-rise building fire occurred about 100 thousand cases (daily average about 40 cases) in China, which caused the death of 4 181 people, 4 844 people were injured, the direct economic losses were amounting to 14 billion yuan[1]. In recent years, the casualties and property loss caused by the high-rise building fire is increasing, for example, the “11. 15” fire of Shanghai Jing’an district in 2010 is resulting in 58 deaths, 71 people were injured, 10 million yuan economic losses. And the Ryder commercial fire of Tianjin in 2012, 10 people were killed, 16 injured and so on. At present, the prevention and control of high-rise building fire has become a serious social problem.

    Therefore, if we can develop a new intelligent fire warning model, it will have very important and practical significance to improve the accuracy and reliability of the high-rise building fire warning system, and to minimize the fire accident loss. At present, concurrent studies of the fire pre-warning are mainly focus on the system hardware development both in domestic and foreign research institutions, however, due to the lack of sufficient data and the corresponding analog simulation tools, the pre-warning algorithm (which is the core for fire warning software) research progress is slow, thus causing the warning results inaccurate, and the warning system reliability poor.

    The early study on fire warning algorithm is direct method[2], after 1980s, professor H. Luck put forward the trend algorithm and filtering algorithm, by using the correlation of fire signal, to distinguish the difference between fire and non-fire signals for fire warning. R.Siebel proposed the composite trend algorithm according to the trend correlation of different fire sensor signal. And through the application of statistical characteristics of fire signal, J.Klose proposed the fire detection signal processing algorithm based on the fire signal short-time autocorrelation function or power spectral density[3-4].

    But the threshold algorithm and trend detection algorithm, can only process the single detector signal, if applied to the multi-parameter system, often make false alarms and omissions. With the emergence of intelligent algorithms for information processing, many scholars began to introduce the intelligent algorithm into the fire pre-warning process, to reduce the rate of missing alarm and false alarm. The most representative one is the artificial neural network(ANN), in 1994, Switzerland Cerberus launched the first Algorex fire alarm to market by using neural network prediction algorithm. And Y. Okayama developed ANN pre-warning algorithm for different fire signals, for example, the three layer neural network and back propagation algorithm[5-7].

    The domestic study on the fire pre-warning algorithm began relatively late, and obtained some research results. For example, Wang Shu put forward a specific compound trend algorithm[8], Zhang Jian brought about the fire pre-warning algorithm based on feed-forward neural networks[9]. Tang Qunfang developed the fire warning algorithm based on fuzzy logic and neural networks[10].

    To some extent, the above warning algorithms reduced the shortcomings of traditional warning algorithm, and improved the reliability of pre-warning system. But research shows that, in the case of small samples, the ANN usually can not be fully trained, so the warning effect is not ideal, and the ANN algorithm has the problems such as dimension disaster and over learning et al. In view of this, this study introduced support vector machine (SVM) algorithm into fire pre-warning, SVM is an intelligent non-parametric estimation algorithm for limited samples, and has superior performance in solving small sample, nonlinear and high dimensional pattern recognition problems[11-12]. But study found that the application of SVM in regression prediction and high-rise building fire pre-warning is less.

    Therefore, according to the characteristics of high-rise buildings, such as complex function, large fire load, the fire spread quickly, etc., and the characteristics (nonlinear, less historical data, many influence factors) of the high-rise building fire pre-warning system, to improve the accuracy of the high-rise building fire pre-warning, one key is to establish a reliable and intelligent pre-warning model. So in the study,a high-rise building fire pre-warning model set up based on the support vector regression(SVR), through the Matlab simulation, to provide a reliable decision support system for high-rise building fire pre-warning.

    1 Composite and intelligent fire pre-warning system establishment for high-rise building

    1.1 Composite fire pre-warning system design

    The purpose of fire pre-warning system is to discover the fire as soon as possible, not only just to detect a single smoke or temperature signal. Research shows that, the smoke signal and temperature signal are complementary good, their combination can overcome the shortcomings of smoke detector whose smoking-spectrum range is narrow, and also solves the disadvantages of temperature sensing detector with low sensitivity. Also compared with other fire signals (such as smoke, temperature, flame, gas etc.) in a compound form, the combination is of simple structure, signal intuitive, and low cost etc. So this study designs a composite fire alarm controller composed of the smoke detector and the temperature detector, the pre-warning system diagram is shown in Fig.1.

    Fig.1 Composite fire pre-warning system diagram for high-rise building

    1.2 SVR pre-warning model implementation

    The support vector machine(SVM) proposed by Cortes and Vapnik in 1995, is a new data mining technology, which can overcome the deficiency of traditional algorithms, for example, the dimension disaster, the over learning et al. At present, SVM has been widely used in various fields both abroad and home, the support vector regression(SVR) is an improved SVM[13-14]. The relationship between the fire signal and fire probability is very complex for high-rise building, it is difficult to use a specific model to describe. This paper is using the SVR pre-warning model to build the relationship between the fire signal and the fire / smoldering fire occurrence probability, that is, set the smoke signals, the smoke rising rate signals, the temperature signals and the temperature rising rate signals 4 factors as network inputs, the fire occurrence probability and the smoldering fire occurrence probability respectively as the network output, to establish a SVR pre-warning model with multiple inputs and single output for high-rise building fire pre-warning, as shown in Fig.2.

    Fig.2 SVR model for high-rise building fire pre-warning

    The modeling idea is to make the input signal value (x1,x2,…,xm) mapped to a high dimensional feature space (φ(x1),φ(x2),…,φ(xm)).Thenthenonlinearmodelistransformedintoalinearregressionmodel,whichisgivenbythefollowingequation:

    f(xj)=ωTφ(xj)+b

    (1)

    whereω,bis model parameter to be identified, deal with the parameter in Eq.(1), the result is:

    (2)

    whereRemp(f) is the empirical risk, ‖ω‖2is the trust risk,C(ei) is the loss function.

    According to the SVM principle, solving Eq.(2) is equivalent to solving the optimization problem of the following equatioin

    (3)

    Fortheconvenienceofproblemsolving,transformEq.(3)intothedualproblem,togetthenonlinearfunctionf(x):

    (4)

    (5)

    TakeEq.(5)intoEq.(4),weobtainthroughequivalenttransformation:

    (6)

    2 Example analysis

    InordertoverifythefeasibilityandeffectivenessoftheSVRpre-warningmodel,takethestandardfiredataofwoodburningasanexample[15],tomakeanempiricalanalysis.

    WiththeMatlab8.0,byusingtheSVMcgForRegress.mfunctiontofindtheoptimalparametersofcandg. In Tab.1, take the smoke signals value, the smoke rising rate signals value, the temperature signals value and the temperature rising rate signals value as SVR inputs, the fire occurrence probability value as a SVR output. The first seventeen samples data as the training samples for simulation, the parameter selection results of SVR for fire occurrence probability obtained in Fig.3, bestc=1,g=0.574 35, MSE=0.005 915 2(cis the penalty coefficient,gis the kernel function parameters,MSE is the error).

    Tab.1 The wood burning standardized data[15]

    Take the remaining five samples as the prediction sample, input the sample value into the trained SVR, the pre-warning results are shown in Fig.4.

    Similarly, take the first seventeen samples data as the training samples, after simulation, the parameter selection results of SVR for smoldering fire occurrence probability obtained in Fig.5, bestc=1,g=3.031 4, MSE=0.011 58.

    Input the remaining 5 samples value into the trained SVR, the pre-warning results of smoldering fire occurrence probability are shown in Fig.6.

    Fg.3 Parameter selection results of SVR for fire occurrence probability

    Fig.4 Comparison chart of fire occurrence probability

    Fg.5 Parameter selection results of SVR for smoldering fire

    Fig.6 Comparison chart of smoldering fire occurrence probability

    From the warning results of Fg.4 and Fg.6, it can be observed, for the prediction of fire occurrence probability, the pre-warning value of all the five samples is consistent with the real value. For the prediction of smoldering fire occurrence probability, in addition to that the first sample is slightly biased, the pre-warning values of the remaining four samples are in accordance with the real values, but the pre-warning model established in this study is a probability pre-warning for the actual situation of high-rise building fire, namely it is the interval judgment, so slight deviation does not affect the final decision results. That means for the first samples, the slight error does not affect the final fire decision (the smoldering fire won’t happen). The study results show that, using SVR for the high-rise building fire pre-warning, compared to other intelligent algorithms, can significantly improve the accuracy of pre-warning, ultimately to improve the reliability of the whole warning system.

    3 Conclusion

    This study designs a composite fire pre-warning controller. By applying the support vector regression (SVR), an intelligent fire pre-warning model is established for high-rise buildings, The proposed controller overcomes the shortcomings of the traditional prediction algorithm and the existing intelligent algorithm such as artificial neural network, and improves the pre-warning accuracy. By using the wood fire standard history data as the example an empirical analysis is performed, the feasibility and effectiveness of the proposed pre-warning model are verified. At the same time, the study found, relative to other intelligent optimization algorithms, SVR has an obvious superiority in solving the small sample, nonlinear and high-dimensional pattern recognition problems, so in the future, the research results can also be applied in energy demand, gas prediction, landslide, and other related fields, to provide a reliable decision support system for decision makers.

    [1] Cao Gongli. Assessment for the fire risk of high-rise building based on FAHP-FCE model[D]. Hangzhou: Zhejiang University, 2013:2-3. (in Chinese)

    [2] Li Jian. Study on fire signal processing algorithms and performance evaluation methods of algorithms[D]. Dalian: Dalian University of Technology, 2005. (in Chinese)

    [3] Grosshandler W. Toward the development of a universal fire emulator /detector evaluator[J]. Fire Safety Journal, 2007(29):113-128.

    [4] Klose J. Synthesis and simulation of signals as a tool for the test of automatic fire detection systems[J]. Fire Safety Journal, 1991(17):499-518.

    [5] Cestari L A, Worrell C, Milke J A. Advanced fire detection algorithnm using data from the home smoke detector project[J]. Fire Safety Journal, 2005(40):1-28.

    [6] Okayama Y.A primitive study of a fire detection method controlled by artificial neural net[J]. Applied Science and Technology, 2011(8):40-45.

    [7] Faouzi Derber. Reliable wireless communication for fire detection system in commercial and residential areas[J]. IEEE, 2007(1):654-656.

    [8] Wang Shu, Dou Zheng. Fire detection and signal processing[M]. Wuhan: Huazhong University of Science and Technology Press, 2006. (in Chinese)

    [9] Zhang Jian. Research on the fire detection system based on neural network algorithm[J]. Journal of Technology and Application of Digital, 2013(10):130-132.(in Chinese)

    [10] Tang Qunfang. Study on fire data processing method based on fuzzy neural network[D]. Changsha: Hunan University, 2010. (in Chinese)

    [11] Cristianini Taylor J. An introduction to support vector machine[M]. Li Guozheng, Wang Meng, Zeng Huajun, transl. Beijing: Electronics Industry Press, 2004.

    [12] Ding Shifei, Qi Bingjuan, Tan Hongyan.An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology, 2011(40):2-7. (in Chinese)

    [13] Xue Yuan, Wu Jianguo. Prediction of output of hoop standard granulator based on SVR[J]. The Industrial Control Computer Journal, 2013(26):56-58. (in Chinese)

    [14] Zhai Yongjie, Shang Xuelian. Simulation research on SVR in sensor fault diagnosis[J]. Journal of System Simulation, 2004(16):1257-1259. (in Chinese)

    [15] Hu Zhaojie. Fire detection information processing based on BP neural network and data theory fusion[D]. Tianjing:Tianjin University of Technology, 2013. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0301

    TU 12 Document code: A Article ID: 1004- 0579(2015)03- 0285- 06

    Received 2014- 02- 01

    Supported by the National Natural Science Foundation of China (11072035)

    E-mail: zlining666@163.com

    国产成人啪精品午夜网站| 日日夜夜操网爽| 9191精品国产免费久久| 韩国精品一区二区三区| 啦啦啦 在线观看视频| 亚洲激情五月婷婷啪啪| 狂野欧美激情性xxxx| 亚洲国产欧美网| 成人av一区二区三区在线看 | 国产免费福利视频在线观看| 99久久国产精品久久久| av一本久久久久| 欧美性长视频在线观看| 精品人妻一区二区三区麻豆| 精品久久久久久久毛片微露脸 | 手机成人av网站| 日韩欧美国产一区二区入口| 黄片小视频在线播放| 母亲3免费完整高清在线观看| e午夜精品久久久久久久| 啦啦啦视频在线资源免费观看| 另类精品久久| 亚洲精品美女久久av网站| 欧美精品一区二区大全| 各种免费的搞黄视频| 咕卡用的链子| 国产日韩欧美在线精品| 99国产精品一区二区蜜桃av | 男人操女人黄网站| 国产av国产精品国产| 国产精品久久久久久精品古装| 亚洲成人国产一区在线观看| 国产一区二区三区av在线| 久久影院123| 狂野欧美激情性bbbbbb| 少妇被粗大的猛进出69影院| 男女下面插进去视频免费观看| 十分钟在线观看高清视频www| 亚洲中文日韩欧美视频| 精品亚洲成a人片在线观看| 人人妻人人澡人人爽人人夜夜| av福利片在线| 国产免费一区二区三区四区乱码| 极品少妇高潮喷水抽搐| 满18在线观看网站| 亚洲精品国产色婷婷电影| 日韩 亚洲 欧美在线| 久热这里只有精品99| 永久免费av网站大全| 午夜激情久久久久久久| 黑人巨大精品欧美一区二区mp4| 久热这里只有精品99| 久久久久久久久久久久大奶| 成人影院久久| 欧美日韩亚洲高清精品| 免费高清在线观看日韩| 人妻久久中文字幕网| 免费日韩欧美在线观看| 国产av一区二区精品久久| 久久久久久久久久久久大奶| 淫妇啪啪啪对白视频 | 亚洲欧美精品自产自拍| 多毛熟女@视频| 国产精品久久久久久精品电影小说| 欧美av亚洲av综合av国产av| 男女下面插进去视频免费观看| 一级片'在线观看视频| 国产老妇伦熟女老妇高清| 免费少妇av软件| 久久精品国产亚洲av高清一级| 中文字幕另类日韩欧美亚洲嫩草| 在线av久久热| av电影中文网址| 精品亚洲乱码少妇综合久久| 国产主播在线观看一区二区| 日韩欧美一区二区三区在线观看 | 久久天躁狠狠躁夜夜2o2o| 中文欧美无线码| 女人精品久久久久毛片| av又黄又爽大尺度在线免费看| 成人影院久久| 啦啦啦视频在线资源免费观看| 又黄又粗又硬又大视频| 亚洲欧美激情在线| 亚洲av成人不卡在线观看播放网 | 日本撒尿小便嘘嘘汇集6| 大片电影免费在线观看免费| 人人妻人人添人人爽欧美一区卜| 国产在视频线精品| 亚洲欧美日韩另类电影网站| 777久久人妻少妇嫩草av网站| 国产精品久久久久久精品电影小说| 九色亚洲精品在线播放| 动漫黄色视频在线观看| 丝瓜视频免费看黄片| 午夜免费鲁丝| 日本vs欧美在线观看视频| 亚洲免费av在线视频| 美女扒开内裤让男人捅视频| 婷婷丁香在线五月| 777米奇影视久久| 国产区一区二久久| 操美女的视频在线观看| 中文字幕最新亚洲高清| 男男h啪啪无遮挡| 久久人人爽人人片av| 午夜免费成人在线视频| kizo精华| 性色av乱码一区二区三区2| 欧美日韩视频精品一区| 色婷婷av一区二区三区视频| 青青草视频在线视频观看| 又黄又粗又硬又大视频| 老司机靠b影院| 久久国产精品男人的天堂亚洲| 亚洲精品美女久久av网站| 国产黄色免费在线视频| 色综合欧美亚洲国产小说| 午夜福利视频精品| 亚洲五月色婷婷综合| 国产日韩欧美亚洲二区| 久久中文看片网| cao死你这个sao货| 99热国产这里只有精品6| 免费在线观看黄色视频的| 老司机午夜十八禁免费视频| 日本一区二区免费在线视频| 国产一区二区 视频在线| 国产免费一区二区三区四区乱码| 国内毛片毛片毛片毛片毛片| 精品免费久久久久久久清纯 | 久久人人爽av亚洲精品天堂| 一本综合久久免费| 我要看黄色一级片免费的| 岛国在线观看网站| 99国产精品一区二区三区| 国产日韩欧美视频二区| 日韩中文字幕欧美一区二区| 午夜两性在线视频| 国产91精品成人一区二区三区 | 亚洲精品久久成人aⅴ小说| 午夜影院在线不卡| 99国产极品粉嫩在线观看| 久久精品国产亚洲av香蕉五月 | 国产真人三级小视频在线观看| 国产91精品成人一区二区三区 | 香蕉丝袜av| 国产精品偷伦视频观看了| 一本色道久久久久久精品综合| 国产成人欧美在线观看 | 欧美久久黑人一区二区| 色婷婷久久久亚洲欧美| 国产成人系列免费观看| 亚洲精品美女久久av网站| 亚洲人成电影观看| 黄片播放在线免费| 婷婷色av中文字幕| 亚洲精品国产精品久久久不卡| 国产黄频视频在线观看| 日本av手机在线免费观看| 欧美日韩黄片免| 久久中文看片网| 啪啪无遮挡十八禁网站| 成人国语在线视频| 精品国产国语对白av| 韩国高清视频一区二区三区| 亚洲国产日韩一区二区| 午夜老司机福利片| 天天躁日日躁夜夜躁夜夜| 一个人免费看片子| 99国产精品一区二区蜜桃av | 中文字幕人妻丝袜制服| 久久久久视频综合| 在线十欧美十亚洲十日本专区| 日本欧美视频一区| 俄罗斯特黄特色一大片| 成人国语在线视频| 99国产精品一区二区三区| 成年动漫av网址| 在线看a的网站| 亚洲精品中文字幕一二三四区 | 中文字幕制服av| 999精品在线视频| 中文字幕高清在线视频| 精品福利观看| 精品视频人人做人人爽| 99国产精品一区二区蜜桃av | av在线app专区| 人人妻人人澡人人爽人人夜夜| 在线观看免费午夜福利视频| 免费在线观看日本一区| 超碰97精品在线观看| 他把我摸到了高潮在线观看 | 午夜福利,免费看| 最近最新中文字幕大全免费视频| 日本一区二区免费在线视频| 欧美国产精品一级二级三级| 女人爽到高潮嗷嗷叫在线视频| a 毛片基地| 国产精品香港三级国产av潘金莲| 中文字幕人妻丝袜制服| 777米奇影视久久| 在线十欧美十亚洲十日本专区| 午夜福利一区二区在线看| 如日韩欧美国产精品一区二区三区| 精品国内亚洲2022精品成人 | 各种免费的搞黄视频| 国产精品熟女久久久久浪| 成年动漫av网址| 亚洲色图 男人天堂 中文字幕| 久久热在线av| 12—13女人毛片做爰片一| 啦啦啦 在线观看视频| bbb黄色大片| 丝袜美足系列| 久久国产精品男人的天堂亚洲| 日韩大码丰满熟妇| 欧美大码av| 超碰97精品在线观看| 90打野战视频偷拍视频| 婷婷丁香在线五月| 成年人午夜在线观看视频| 国产91精品成人一区二区三区 | 爱豆传媒免费全集在线观看| 日韩免费高清中文字幕av| 老熟女久久久| 国产一区二区三区综合在线观看| 女警被强在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 国产片内射在线| 99热全是精品| 精品人妻熟女毛片av久久网站| 在线观看免费午夜福利视频| 亚洲成人手机| 国产野战对白在线观看| 永久免费av网站大全| 久久热在线av| www.自偷自拍.com| 亚洲国产精品一区二区三区在线| 亚洲精品乱久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美另类亚洲清纯唯美| 国产亚洲av高清不卡| 国产不卡av网站在线观看| tocl精华| 亚洲国产欧美网| 国产精品久久久av美女十八| 国产精品 国内视频| 在线永久观看黄色视频| 亚洲天堂av无毛| 91精品伊人久久大香线蕉| 男女午夜视频在线观看| 亚洲av日韩在线播放| 国产精品免费大片| 97人妻天天添夜夜摸| 欧美变态另类bdsm刘玥| 免费女性裸体啪啪无遮挡网站| 国产精品偷伦视频观看了| 精品国内亚洲2022精品成人 | 久久天堂一区二区三区四区| 亚洲av日韩在线播放| 欧美少妇被猛烈插入视频| 精品福利观看| 亚洲av美国av| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品国产精品久久久不卡| 亚洲伊人久久精品综合| 曰老女人黄片| 日韩精品免费视频一区二区三区| 免费高清在线观看视频在线观看| 人妻久久中文字幕网| 日韩一区二区三区影片| 19禁男女啪啪无遮挡网站| 国产成人免费观看mmmm| 在线 av 中文字幕| 两个人免费观看高清视频| 国产黄色免费在线视频| 国产精品一区二区免费欧美 | 久久久久国内视频| 正在播放国产对白刺激| 成年av动漫网址| 欧美xxⅹ黑人| 2018国产大陆天天弄谢| 999久久久精品免费观看国产| 俄罗斯特黄特色一大片| 亚洲精品国产一区二区精华液| av免费在线观看网站| 午夜福利一区二区在线看| 亚洲天堂av无毛| 欧美乱码精品一区二区三区| 亚洲国产毛片av蜜桃av| 日本a在线网址| 久久热在线av| www.自偷自拍.com| 欧美xxⅹ黑人| 大片电影免费在线观看免费| 黄色视频在线播放观看不卡| 亚洲视频免费观看视频| 91国产中文字幕| 免费一级毛片在线播放高清视频 | 一本综合久久免费| 蜜桃在线观看..| 免费不卡黄色视频| 狂野欧美激情性bbbbbb| 一本一本久久a久久精品综合妖精| 青草久久国产| 黄色毛片三级朝国网站| 三上悠亚av全集在线观看| 免费高清在线观看日韩| 91麻豆av在线| 妹子高潮喷水视频| 91av网站免费观看| 久久ye,这里只有精品| 老熟妇仑乱视频hdxx| 亚洲九九香蕉| 国产精品亚洲av一区麻豆| 美国免费a级毛片| h视频一区二区三区| 亚洲精品日韩在线中文字幕| 久久久久精品国产欧美久久久 | 人妻 亚洲 视频| 免费看十八禁软件| 91大片在线观看| 丰满饥渴人妻一区二区三| 捣出白浆h1v1| 日本wwww免费看| 免费日韩欧美在线观看| 18禁国产床啪视频网站| 别揉我奶头~嗯~啊~动态视频 | 黄色视频不卡| 欧美日韩福利视频一区二区| 中文字幕精品免费在线观看视频| 午夜免费观看性视频| 欧美亚洲 丝袜 人妻 在线| 午夜日韩欧美国产| 国产日韩欧美在线精品| av网站免费在线观看视频| 国产精品一区二区免费欧美 | 嫁个100分男人电影在线观看| 精品国产乱子伦一区二区三区 | 免费高清在线观看视频在线观看| 亚洲av片天天在线观看| 两个人免费观看高清视频| 后天国语完整版免费观看| 国产av国产精品国产| 国产亚洲av高清不卡| 国产在线视频一区二区| 国产精品亚洲av一区麻豆| 一边摸一边做爽爽视频免费| 十八禁网站网址无遮挡| 成人国产av品久久久| 中文精品一卡2卡3卡4更新| 国产精品国产三级国产专区5o| 精品人妻熟女毛片av久久网站| 中文字幕色久视频| 亚洲三区欧美一区| 日韩三级视频一区二区三区| 亚洲第一欧美日韩一区二区三区 | 91精品伊人久久大香线蕉| 日韩 欧美 亚洲 中文字幕| 日韩大码丰满熟妇| 99久久综合免费| 欧美黑人精品巨大| 欧美日韩视频精品一区| 中文字幕精品免费在线观看视频| avwww免费| 99热国产这里只有精品6| 天天躁日日躁夜夜躁夜夜| 精品视频人人做人人爽| 亚洲精品自拍成人| 精品少妇内射三级| 热99久久久久精品小说推荐| 亚洲免费av在线视频| 黄色 视频免费看| 黄频高清免费视频| 一级片'在线观看视频| 国产亚洲一区二区精品| 精品人妻在线不人妻| 黄频高清免费视频| 亚洲国产精品一区三区| 中文字幕制服av| 亚洲欧美精品自产自拍| 啦啦啦在线免费观看视频4| 男人添女人高潮全过程视频| 后天国语完整版免费观看| 日韩免费高清中文字幕av| 久久中文看片网| 超碰97精品在线观看| 高清黄色对白视频在线免费看| 日日夜夜操网爽| 国产不卡av网站在线观看| 国产亚洲欧美精品永久| 欧美+亚洲+日韩+国产| 亚洲精品日韩在线中文字幕| 午夜福利视频精品| 亚洲精品久久成人aⅴ小说| bbb黄色大片| av免费在线观看网站| 一个人免费在线观看的高清视频 | 亚洲成人手机| 宅男免费午夜| 日韩一卡2卡3卡4卡2021年| 狂野欧美激情性bbbbbb| 最近中文字幕2019免费版| 精品少妇久久久久久888优播| 国产欧美日韩一区二区三 | 夜夜骑夜夜射夜夜干| 精品视频人人做人人爽| 日韩制服骚丝袜av| 妹子高潮喷水视频| 啪啪无遮挡十八禁网站| 国产成人精品久久二区二区免费| 在线永久观看黄色视频| 亚洲国产av影院在线观看| 亚洲三区欧美一区| 最近最新中文字幕大全免费视频| 免费一级毛片在线播放高清视频 | 午夜日韩欧美国产| 99re6热这里在线精品视频| 丰满人妻熟妇乱又伦精品不卡| 97在线人人人人妻| 中国美女看黄片| 国产精品99久久99久久久不卡| 亚洲av日韩在线播放| 老司机深夜福利视频在线观看 | 美女扒开内裤让男人捅视频| 老汉色∧v一级毛片| 美女大奶头黄色视频| 午夜91福利影院| 日韩精品免费视频一区二区三区| 最黄视频免费看| a 毛片基地| 国产有黄有色有爽视频| 91精品国产国语对白视频| 亚洲精品一二三| 国产人伦9x9x在线观看| 国产av一区二区精品久久| 黑人猛操日本美女一级片| 久久狼人影院| 国产精品亚洲av一区麻豆| 国产亚洲精品第一综合不卡| 制服诱惑二区| 国产成人欧美| 大香蕉久久成人网| 高清欧美精品videossex| 黄色视频,在线免费观看| 脱女人内裤的视频| 日本精品一区二区三区蜜桃| 久久热在线av| 亚洲视频免费观看视频| 正在播放国产对白刺激| 他把我摸到了高潮在线观看 | 成年动漫av网址| 国产成人精品在线电影| 国产99久久九九免费精品| 两个人免费观看高清视频| 国产亚洲欧美精品永久| 亚洲成人免费av在线播放| 日本wwww免费看| 少妇粗大呻吟视频| 中文欧美无线码| 亚洲中文字幕日韩| 久久久水蜜桃国产精品网| 大片电影免费在线观看免费| 少妇精品久久久久久久| 亚洲熟女精品中文字幕| 国产精品免费视频内射| 91av网站免费观看| 国产精品一区二区在线不卡| 国产一区有黄有色的免费视频| 欧美日韩福利视频一区二区| 精品少妇一区二区三区视频日本电影| cao死你这个sao货| 精品卡一卡二卡四卡免费| 考比视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 九色亚洲精品在线播放| 日韩,欧美,国产一区二区三区| 欧美国产精品一级二级三级| 美女中出高潮动态图| 成人国语在线视频| 丁香六月天网| 操美女的视频在线观看| 午夜精品国产一区二区电影| 久久久久国内视频| 亚洲一区中文字幕在线| 亚洲性夜色夜夜综合| 亚洲 欧美一区二区三区| 另类亚洲欧美激情| 国产精品欧美亚洲77777| 国产淫语在线视频| 在线av久久热| 三上悠亚av全集在线观看| 国产黄频视频在线观看| 曰老女人黄片| 亚洲七黄色美女视频| 91精品国产国语对白视频| 男女床上黄色一级片免费看| 日本猛色少妇xxxxx猛交久久| 精品人妻1区二区| 久久精品亚洲av国产电影网| 久久久久国产精品人妻一区二区| 久久av网站| 狂野欧美激情性xxxx| av在线app专区| 少妇人妻久久综合中文| 亚洲专区中文字幕在线| 亚洲国产欧美一区二区综合| 精品久久久精品久久久| 国产在线视频一区二区| 中文字幕最新亚洲高清| 精品国产一区二区三区四区第35| 性少妇av在线| 成人国产一区最新在线观看| 国产av又大| 一边摸一边抽搐一进一出视频| 男女床上黄色一级片免费看| 久久99热这里只频精品6学生| 欧美黑人欧美精品刺激| 亚洲欧洲精品一区二区精品久久久| 另类亚洲欧美激情| 欧美另类亚洲清纯唯美| 亚洲成人免费av在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 好男人电影高清在线观看| 性少妇av在线| 国产在线观看jvid| 久久久国产一区二区| 日韩视频在线欧美| 大片电影免费在线观看免费| 久久久精品免费免费高清| 亚洲中文字幕日韩| 最近最新中文字幕大全免费视频| 欧美精品啪啪一区二区三区 | 国产区一区二久久| 日韩电影二区| 两个人看的免费小视频| 久久久久精品人妻al黑| 国产成人av激情在线播放| www.999成人在线观看| 免费在线观看日本一区| 色94色欧美一区二区| 亚洲欧美清纯卡通| 亚洲精品美女久久av网站| 一区二区三区四区激情视频| 99国产精品免费福利视频| 国产免费视频播放在线视频| 精品少妇黑人巨大在线播放| 国产男女内射视频| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜美腿诱惑在线| 精品久久久精品久久久| 99国产精品一区二区蜜桃av | 国产伦人伦偷精品视频| 精品高清国产在线一区| 国产欧美日韩一区二区三 | 久久久久久久精品精品| 日韩,欧美,国产一区二区三区| 黄片播放在线免费| 国产欧美亚洲国产| 国产免费视频播放在线视频| 99re6热这里在线精品视频| 亚洲情色 制服丝袜| 人妻一区二区av| 国产男人的电影天堂91| 无遮挡黄片免费观看| 久9热在线精品视频| 老司机深夜福利视频在线观看 | 99国产精品99久久久久| 狠狠婷婷综合久久久久久88av| 在线 av 中文字幕| 久久免费观看电影| 男人爽女人下面视频在线观看| 91精品三级在线观看| 黄片播放在线免费| 国产又爽黄色视频| 一进一出抽搐动态| 亚洲精品一卡2卡三卡4卡5卡 | 中文字幕最新亚洲高清| 亚洲久久久国产精品| 脱女人内裤的视频| 久久亚洲精品不卡| 18禁裸乳无遮挡动漫免费视频| 人妻 亚洲 视频| 久久99热这里只频精品6学生| 亚洲国产精品999| 丝袜美足系列| 国产精品二区激情视频| 99久久综合免费| 国产免费福利视频在线观看| 一二三四在线观看免费中文在| 大香蕉久久成人网| 亚洲国产成人一精品久久久| 一区二区av电影网| av在线app专区| 免费久久久久久久精品成人欧美视频| 久久中文看片网| 亚洲国产欧美网| 国产精品久久久久久人妻精品电影 | 99久久国产精品久久久| 欧美精品高潮呻吟av久久| 国产亚洲欧美精品永久| 欧美老熟妇乱子伦牲交| 91精品伊人久久大香线蕉| 国内毛片毛片毛片毛片毛片| 成年人午夜在线观看视频| 中亚洲国语对白在线视频| 12—13女人毛片做爰片一| 99久久国产精品久久久| 亚洲少妇的诱惑av| 国产激情久久老熟女| 亚洲成人国产一区在线观看|