• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-rise building fire pre-warning model based on the support vector regression

    2015-04-22 07:24:52ZHANGLining張立寧ZHANGQi張奇ANJing安晶

    ZHANG Li-ning(張立寧), ZHANG Qi(張奇), AN Jing(安晶)

    (1.State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;2.Architecture Engineering College, North China Institute of Science and Technology, Beijing 101601, China)

    ?

    High-rise building fire pre-warning model based on the support vector regression

    ZHANG Li-ning(張立寧), ZHANG Qi(張奇)1, AN Jing(安晶)2

    (1.State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;2.Architecture Engineering College, North China Institute of Science and Technology, Beijing 101601, China)

    Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network, and then to improve the accuracy of fire pre-warning for high-rise buildings, a composite fire pre-warning controller is designed according to the characteristic (nonlinear, less historical data, many influence factors), also a high-rise building fire pre-warning model is set up based on the support vector regression(SVR).Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning.

    high-rise buildings fire; composite fire pre-warning system design; the support vector regression pre-warning model

    High-rise buildings are the inevitable products of the city development, but their fire safety issues are always important in the world. At present, take China as an example, the fire ladders can reach the height of generally not more than 100 m, so in the event of a fire, high-rise building often suffered heavy losses. According to statistics, from 2004 to 2010, the high-rise building fire occurred about 100 thousand cases (daily average about 40 cases) in China, which caused the death of 4 181 people, 4 844 people were injured, the direct economic losses were amounting to 14 billion yuan[1]. In recent years, the casualties and property loss caused by the high-rise building fire is increasing, for example, the “11. 15” fire of Shanghai Jing’an district in 2010 is resulting in 58 deaths, 71 people were injured, 10 million yuan economic losses. And the Ryder commercial fire of Tianjin in 2012, 10 people were killed, 16 injured and so on. At present, the prevention and control of high-rise building fire has become a serious social problem.

    Therefore, if we can develop a new intelligent fire warning model, it will have very important and practical significance to improve the accuracy and reliability of the high-rise building fire warning system, and to minimize the fire accident loss. At present, concurrent studies of the fire pre-warning are mainly focus on the system hardware development both in domestic and foreign research institutions, however, due to the lack of sufficient data and the corresponding analog simulation tools, the pre-warning algorithm (which is the core for fire warning software) research progress is slow, thus causing the warning results inaccurate, and the warning system reliability poor.

    The early study on fire warning algorithm is direct method[2], after 1980s, professor H. Luck put forward the trend algorithm and filtering algorithm, by using the correlation of fire signal, to distinguish the difference between fire and non-fire signals for fire warning. R.Siebel proposed the composite trend algorithm according to the trend correlation of different fire sensor signal. And through the application of statistical characteristics of fire signal, J.Klose proposed the fire detection signal processing algorithm based on the fire signal short-time autocorrelation function or power spectral density[3-4].

    But the threshold algorithm and trend detection algorithm, can only process the single detector signal, if applied to the multi-parameter system, often make false alarms and omissions. With the emergence of intelligent algorithms for information processing, many scholars began to introduce the intelligent algorithm into the fire pre-warning process, to reduce the rate of missing alarm and false alarm. The most representative one is the artificial neural network(ANN), in 1994, Switzerland Cerberus launched the first Algorex fire alarm to market by using neural network prediction algorithm. And Y. Okayama developed ANN pre-warning algorithm for different fire signals, for example, the three layer neural network and back propagation algorithm[5-7].

    The domestic study on the fire pre-warning algorithm began relatively late, and obtained some research results. For example, Wang Shu put forward a specific compound trend algorithm[8], Zhang Jian brought about the fire pre-warning algorithm based on feed-forward neural networks[9]. Tang Qunfang developed the fire warning algorithm based on fuzzy logic and neural networks[10].

    To some extent, the above warning algorithms reduced the shortcomings of traditional warning algorithm, and improved the reliability of pre-warning system. But research shows that, in the case of small samples, the ANN usually can not be fully trained, so the warning effect is not ideal, and the ANN algorithm has the problems such as dimension disaster and over learning et al. In view of this, this study introduced support vector machine (SVM) algorithm into fire pre-warning, SVM is an intelligent non-parametric estimation algorithm for limited samples, and has superior performance in solving small sample, nonlinear and high dimensional pattern recognition problems[11-12]. But study found that the application of SVM in regression prediction and high-rise building fire pre-warning is less.

    Therefore, according to the characteristics of high-rise buildings, such as complex function, large fire load, the fire spread quickly, etc., and the characteristics (nonlinear, less historical data, many influence factors) of the high-rise building fire pre-warning system, to improve the accuracy of the high-rise building fire pre-warning, one key is to establish a reliable and intelligent pre-warning model. So in the study,a high-rise building fire pre-warning model set up based on the support vector regression(SVR), through the Matlab simulation, to provide a reliable decision support system for high-rise building fire pre-warning.

    1 Composite and intelligent fire pre-warning system establishment for high-rise building

    1.1 Composite fire pre-warning system design

    The purpose of fire pre-warning system is to discover the fire as soon as possible, not only just to detect a single smoke or temperature signal. Research shows that, the smoke signal and temperature signal are complementary good, their combination can overcome the shortcomings of smoke detector whose smoking-spectrum range is narrow, and also solves the disadvantages of temperature sensing detector with low sensitivity. Also compared with other fire signals (such as smoke, temperature, flame, gas etc.) in a compound form, the combination is of simple structure, signal intuitive, and low cost etc. So this study designs a composite fire alarm controller composed of the smoke detector and the temperature detector, the pre-warning system diagram is shown in Fig.1.

    Fig.1 Composite fire pre-warning system diagram for high-rise building

    1.2 SVR pre-warning model implementation

    The support vector machine(SVM) proposed by Cortes and Vapnik in 1995, is a new data mining technology, which can overcome the deficiency of traditional algorithms, for example, the dimension disaster, the over learning et al. At present, SVM has been widely used in various fields both abroad and home, the support vector regression(SVR) is an improved SVM[13-14]. The relationship between the fire signal and fire probability is very complex for high-rise building, it is difficult to use a specific model to describe. This paper is using the SVR pre-warning model to build the relationship between the fire signal and the fire / smoldering fire occurrence probability, that is, set the smoke signals, the smoke rising rate signals, the temperature signals and the temperature rising rate signals 4 factors as network inputs, the fire occurrence probability and the smoldering fire occurrence probability respectively as the network output, to establish a SVR pre-warning model with multiple inputs and single output for high-rise building fire pre-warning, as shown in Fig.2.

    Fig.2 SVR model for high-rise building fire pre-warning

    The modeling idea is to make the input signal value (x1,x2,…,xm) mapped to a high dimensional feature space (φ(x1),φ(x2),…,φ(xm)).Thenthenonlinearmodelistransformedintoalinearregressionmodel,whichisgivenbythefollowingequation:

    f(xj)=ωTφ(xj)+b

    (1)

    whereω,bis model parameter to be identified, deal with the parameter in Eq.(1), the result is:

    (2)

    whereRemp(f) is the empirical risk, ‖ω‖2is the trust risk,C(ei) is the loss function.

    According to the SVM principle, solving Eq.(2) is equivalent to solving the optimization problem of the following equatioin

    (3)

    Fortheconvenienceofproblemsolving,transformEq.(3)intothedualproblem,togetthenonlinearfunctionf(x):

    (4)

    (5)

    TakeEq.(5)intoEq.(4),weobtainthroughequivalenttransformation:

    (6)

    2 Example analysis

    InordertoverifythefeasibilityandeffectivenessoftheSVRpre-warningmodel,takethestandardfiredataofwoodburningasanexample[15],tomakeanempiricalanalysis.

    WiththeMatlab8.0,byusingtheSVMcgForRegress.mfunctiontofindtheoptimalparametersofcandg. In Tab.1, take the smoke signals value, the smoke rising rate signals value, the temperature signals value and the temperature rising rate signals value as SVR inputs, the fire occurrence probability value as a SVR output. The first seventeen samples data as the training samples for simulation, the parameter selection results of SVR for fire occurrence probability obtained in Fig.3, bestc=1,g=0.574 35, MSE=0.005 915 2(cis the penalty coefficient,gis the kernel function parameters,MSE is the error).

    Tab.1 The wood burning standardized data[15]

    Take the remaining five samples as the prediction sample, input the sample value into the trained SVR, the pre-warning results are shown in Fig.4.

    Similarly, take the first seventeen samples data as the training samples, after simulation, the parameter selection results of SVR for smoldering fire occurrence probability obtained in Fig.5, bestc=1,g=3.031 4, MSE=0.011 58.

    Input the remaining 5 samples value into the trained SVR, the pre-warning results of smoldering fire occurrence probability are shown in Fig.6.

    Fg.3 Parameter selection results of SVR for fire occurrence probability

    Fig.4 Comparison chart of fire occurrence probability

    Fg.5 Parameter selection results of SVR for smoldering fire

    Fig.6 Comparison chart of smoldering fire occurrence probability

    From the warning results of Fg.4 and Fg.6, it can be observed, for the prediction of fire occurrence probability, the pre-warning value of all the five samples is consistent with the real value. For the prediction of smoldering fire occurrence probability, in addition to that the first sample is slightly biased, the pre-warning values of the remaining four samples are in accordance with the real values, but the pre-warning model established in this study is a probability pre-warning for the actual situation of high-rise building fire, namely it is the interval judgment, so slight deviation does not affect the final decision results. That means for the first samples, the slight error does not affect the final fire decision (the smoldering fire won’t happen). The study results show that, using SVR for the high-rise building fire pre-warning, compared to other intelligent algorithms, can significantly improve the accuracy of pre-warning, ultimately to improve the reliability of the whole warning system.

    3 Conclusion

    This study designs a composite fire pre-warning controller. By applying the support vector regression (SVR), an intelligent fire pre-warning model is established for high-rise buildings, The proposed controller overcomes the shortcomings of the traditional prediction algorithm and the existing intelligent algorithm such as artificial neural network, and improves the pre-warning accuracy. By using the wood fire standard history data as the example an empirical analysis is performed, the feasibility and effectiveness of the proposed pre-warning model are verified. At the same time, the study found, relative to other intelligent optimization algorithms, SVR has an obvious superiority in solving the small sample, nonlinear and high-dimensional pattern recognition problems, so in the future, the research results can also be applied in energy demand, gas prediction, landslide, and other related fields, to provide a reliable decision support system for decision makers.

    [1] Cao Gongli. Assessment for the fire risk of high-rise building based on FAHP-FCE model[D]. Hangzhou: Zhejiang University, 2013:2-3. (in Chinese)

    [2] Li Jian. Study on fire signal processing algorithms and performance evaluation methods of algorithms[D]. Dalian: Dalian University of Technology, 2005. (in Chinese)

    [3] Grosshandler W. Toward the development of a universal fire emulator /detector evaluator[J]. Fire Safety Journal, 2007(29):113-128.

    [4] Klose J. Synthesis and simulation of signals as a tool for the test of automatic fire detection systems[J]. Fire Safety Journal, 1991(17):499-518.

    [5] Cestari L A, Worrell C, Milke J A. Advanced fire detection algorithnm using data from the home smoke detector project[J]. Fire Safety Journal, 2005(40):1-28.

    [6] Okayama Y.A primitive study of a fire detection method controlled by artificial neural net[J]. Applied Science and Technology, 2011(8):40-45.

    [7] Faouzi Derber. Reliable wireless communication for fire detection system in commercial and residential areas[J]. IEEE, 2007(1):654-656.

    [8] Wang Shu, Dou Zheng. Fire detection and signal processing[M]. Wuhan: Huazhong University of Science and Technology Press, 2006. (in Chinese)

    [9] Zhang Jian. Research on the fire detection system based on neural network algorithm[J]. Journal of Technology and Application of Digital, 2013(10):130-132.(in Chinese)

    [10] Tang Qunfang. Study on fire data processing method based on fuzzy neural network[D]. Changsha: Hunan University, 2010. (in Chinese)

    [11] Cristianini Taylor J. An introduction to support vector machine[M]. Li Guozheng, Wang Meng, Zeng Huajun, transl. Beijing: Electronics Industry Press, 2004.

    [12] Ding Shifei, Qi Bingjuan, Tan Hongyan.An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology, 2011(40):2-7. (in Chinese)

    [13] Xue Yuan, Wu Jianguo. Prediction of output of hoop standard granulator based on SVR[J]. The Industrial Control Computer Journal, 2013(26):56-58. (in Chinese)

    [14] Zhai Yongjie, Shang Xuelian. Simulation research on SVR in sensor fault diagnosis[J]. Journal of System Simulation, 2004(16):1257-1259. (in Chinese)

    [15] Hu Zhaojie. Fire detection information processing based on BP neural network and data theory fusion[D]. Tianjing:Tianjin University of Technology, 2013. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0301

    TU 12 Document code: A Article ID: 1004- 0579(2015)03- 0285- 06

    Received 2014- 02- 01

    Supported by the National Natural Science Foundation of China (11072035)

    E-mail: zlining666@163.com

    xxxhd国产人妻xxx| 亚洲精品乱久久久久久| 亚洲精品久久成人aⅴ小说| 成人18禁高潮啪啪吃奶动态图| 精品久久久久久久毛片微露脸 | 中文字幕色久视频| 他把我摸到了高潮在线观看 | 亚洲色图 男人天堂 中文字幕| 亚洲专区中文字幕在线| 大香蕉久久成人网| 久久国产亚洲av麻豆专区| av欧美777| 国产亚洲一区二区精品| 国产伦人伦偷精品视频| 一个人免费看片子| 亚洲专区字幕在线| 午夜福利视频在线观看免费| 国产黄频视频在线观看| 久热爱精品视频在线9| 国产精品偷伦视频观看了| 啦啦啦 在线观看视频| 嫩草影视91久久| 大片免费播放器 马上看| xxxhd国产人妻xxx| 99香蕉大伊视频| 亚洲,欧美精品.| 热re99久久精品国产66热6| 亚洲 欧美一区二区三区| 香蕉丝袜av| 午夜影院在线不卡| 人人澡人人妻人| 99香蕉大伊视频| 老司机影院毛片| videos熟女内射| 丰满少妇做爰视频| 色视频在线一区二区三区| 欧美成狂野欧美在线观看| 国产主播在线观看一区二区| 麻豆乱淫一区二区| 久久国产亚洲av麻豆专区| 免费在线观看黄色视频的| 99国产综合亚洲精品| tube8黄色片| 久久久久网色| 色视频在线一区二区三区| 极品人妻少妇av视频| 51午夜福利影视在线观看| 久久久国产欧美日韩av| 亚洲自偷自拍图片 自拍| 极品人妻少妇av视频| 交换朋友夫妻互换小说| 1024香蕉在线观看| 国产亚洲精品第一综合不卡| 蜜桃国产av成人99| 好男人电影高清在线观看| 在线观看舔阴道视频| av又黄又爽大尺度在线免费看| 午夜精品久久久久久毛片777| 久久99一区二区三区| 中文字幕人妻丝袜一区二区| 亚洲国产毛片av蜜桃av| 777久久人妻少妇嫩草av网站| 午夜91福利影院| 久久久久久久精品精品| 人妻久久中文字幕网| 国产麻豆69| 电影成人av| 国内毛片毛片毛片毛片毛片| 国产不卡av网站在线观看| 老熟女久久久| 国产无遮挡羞羞视频在线观看| 欧美精品啪啪一区二区三区 | 人妻人人澡人人爽人人| 丰满人妻熟妇乱又伦精品不卡| 国产熟女午夜一区二区三区| 亚洲欧美精品自产自拍| 国产免费现黄频在线看| 宅男免费午夜| 国产亚洲av片在线观看秒播厂| 啦啦啦啦在线视频资源| 日韩免费高清中文字幕av| 91九色精品人成在线观看| 成人影院久久| 在线av久久热| 两性夫妻黄色片| 永久免费av网站大全| 老汉色av国产亚洲站长工具| 日韩精品免费视频一区二区三区| 国产精品免费视频内射| 精品一区二区三区av网在线观看 | 国产伦理片在线播放av一区| 日韩制服丝袜自拍偷拍| 黄色视频在线播放观看不卡| av国产精品久久久久影院| 精品一区二区三区四区五区乱码| 十八禁网站网址无遮挡| 丝袜脚勾引网站| 国产亚洲精品一区二区www | 在线观看免费视频网站a站| 国产一级毛片在线| 啦啦啦啦在线视频资源| 少妇 在线观看| 国产成+人综合+亚洲专区| 黄片播放在线免费| 多毛熟女@视频| 菩萨蛮人人尽说江南好唐韦庄| bbb黄色大片| 亚洲国产精品一区二区三区在线| 视频区欧美日本亚洲| 日本黄色日本黄色录像| 国产又色又爽无遮挡免| 亚洲第一av免费看| 91字幕亚洲| 国产精品久久久久久精品古装| 久久精品亚洲熟妇少妇任你| 久久国产亚洲av麻豆专区| 91老司机精品| 男女高潮啪啪啪动态图| 久久久国产成人免费| 色精品久久人妻99蜜桃| 美女脱内裤让男人舔精品视频| 精品人妻在线不人妻| 日韩欧美一区视频在线观看| 欧美精品高潮呻吟av久久| 精品亚洲成国产av| 老熟女久久久| 亚洲国产欧美日韩在线播放| 水蜜桃什么品种好| 亚洲精品国产av成人精品| 精品国内亚洲2022精品成人 | 丁香六月欧美| 国产一区二区 视频在线| 中文精品一卡2卡3卡4更新| 欧美日韩一级在线毛片| 国产熟女午夜一区二区三区| 纵有疾风起免费观看全集完整版| 国产精品一区二区在线观看99| 男女床上黄色一级片免费看| 他把我摸到了高潮在线观看 | 国产欧美日韩精品亚洲av| 亚洲精品一二三| 亚洲国产毛片av蜜桃av| 日本五十路高清| 97精品久久久久久久久久精品| 又黄又粗又硬又大视频| 91九色精品人成在线观看| 啦啦啦在线免费观看视频4| 人人妻人人添人人爽欧美一区卜| 黄片播放在线免费| 脱女人内裤的视频| 人人澡人人妻人| 黑人欧美特级aaaaaa片| 欧美另类亚洲清纯唯美| 精品欧美一区二区三区在线| 精品久久久久久电影网| 桃花免费在线播放| 可以免费在线观看a视频的电影网站| 亚洲国产av影院在线观看| 黄色片一级片一级黄色片| 久久久精品国产亚洲av高清涩受| 国产熟女午夜一区二区三区| 美女主播在线视频| 亚洲欧美成人综合另类久久久| 日本撒尿小便嘘嘘汇集6| 免费不卡黄色视频| 精品欧美一区二区三区在线| 中文精品一卡2卡3卡4更新| 高清av免费在线| 精品一区在线观看国产| 欧美精品av麻豆av| 高清在线国产一区| 91老司机精品| 日日摸夜夜添夜夜添小说| 免费在线观看日本一区| 亚洲欧美日韩高清在线视频 | 国产精品免费大片| 精品第一国产精品| 国产日韩一区二区三区精品不卡| 中文字幕最新亚洲高清| 国产精品一区二区在线不卡| 久久国产精品人妻蜜桃| 国产精品免费大片| 欧美少妇被猛烈插入视频| 男女高潮啪啪啪动态图| 精品第一国产精品| 美女福利国产在线| 免费在线观看视频国产中文字幕亚洲 | 99精品久久久久人妻精品| 99精品久久久久人妻精品| 久久久精品国产亚洲av高清涩受| 热99re8久久精品国产| 最新在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲欧美成人综合另类久久久| 99久久精品国产亚洲精品| e午夜精品久久久久久久| 精品欧美一区二区三区在线| 久久久精品94久久精品| 久久热在线av| 视频区图区小说| 久久久久国产一级毛片高清牌| 亚洲 欧美一区二区三区| 丝袜在线中文字幕| 欧美午夜高清在线| 嫁个100分男人电影在线观看| 国产成人啪精品午夜网站| 免费在线观看视频国产中文字幕亚洲 | 人人妻人人澡人人爽人人夜夜| 久9热在线精品视频| 黄色怎么调成土黄色| 日韩中文字幕欧美一区二区| 日韩欧美一区二区三区在线观看 | 色婷婷久久久亚洲欧美| tube8黄色片| 中文字幕另类日韩欧美亚洲嫩草| 婷婷丁香在线五月| 久久久久网色| 久久国产精品男人的天堂亚洲| 亚洲精品中文字幕一二三四区 | 欧美亚洲日本最大视频资源| 纵有疾风起免费观看全集完整版| 咕卡用的链子| 成年人免费黄色播放视频| 亚洲avbb在线观看| av在线app专区| 久久性视频一级片| 久久久久国产精品人妻一区二区| 女性生殖器流出的白浆| 高潮久久久久久久久久久不卡| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美成人综合另类久久久| 黑人巨大精品欧美一区二区mp4| 91成年电影在线观看| av天堂久久9| tube8黄色片| 99精品久久久久人妻精品| 成年人午夜在线观看视频| 日韩,欧美,国产一区二区三区| 777米奇影视久久| 国产精品久久久久久精品古装| 久久人妻熟女aⅴ| 国产av国产精品国产| 精品人妻在线不人妻| 性少妇av在线| 飞空精品影院首页| 欧美亚洲 丝袜 人妻 在线| 亚洲自偷自拍图片 自拍| 日韩三级视频一区二区三区| 国产一区二区 视频在线| 欧美在线黄色| 日本撒尿小便嘘嘘汇集6| 激情视频va一区二区三区| 日韩熟女老妇一区二区性免费视频| 熟女少妇亚洲综合色aaa.| 纯流量卡能插随身wifi吗| 中亚洲国语对白在线视频| 美国免费a级毛片| 男女床上黄色一级片免费看| 中文字幕最新亚洲高清| 两个人免费观看高清视频| 午夜老司机福利片| 午夜视频精品福利| 这个男人来自地球电影免费观看| 精品福利观看| 纵有疾风起免费观看全集完整版| 欧美性长视频在线观看| 日韩欧美免费精品| 午夜91福利影院| 欧美黄色片欧美黄色片| 国产精品一区二区在线不卡| 两个人免费观看高清视频| 十分钟在线观看高清视频www| 每晚都被弄得嗷嗷叫到高潮| 18在线观看网站| 老司机影院成人| 国产男女超爽视频在线观看| 中文字幕高清在线视频| 国产精品九九99| 精品第一国产精品| 宅男免费午夜| 中国国产av一级| 男女无遮挡免费网站观看| 操美女的视频在线观看| 国产在线一区二区三区精| 后天国语完整版免费观看| 老司机亚洲免费影院| 亚洲人成77777在线视频| 亚洲欧美日韩高清在线视频 | 日韩大码丰满熟妇| 久久国产精品影院| 亚洲激情五月婷婷啪啪| 免费日韩欧美在线观看| 欧美激情高清一区二区三区| 一本综合久久免费| 亚洲人成77777在线视频| 久久青草综合色| 久久中文看片网| 成人三级做爰电影| 国产真人三级小视频在线观看| 极品人妻少妇av视频| 啦啦啦啦在线视频资源| 18在线观看网站| 精品福利观看| 日韩人妻精品一区2区三区| 亚洲精品国产av成人精品| 视频区欧美日本亚洲| 精品少妇久久久久久888优播| 国产不卡av网站在线观看| 国产成人啪精品午夜网站| 国产成人系列免费观看| 少妇的丰满在线观看| 不卡一级毛片| 中文字幕人妻丝袜制服| 1024视频免费在线观看| 俄罗斯特黄特色一大片| 777米奇影视久久| 高清欧美精品videossex| 80岁老熟妇乱子伦牲交| a在线观看视频网站| 亚洲av成人一区二区三| 国产主播在线观看一区二区| 成人黄色视频免费在线看| 亚洲专区字幕在线| 18禁国产床啪视频网站| 精品一区二区三区四区五区乱码| 久久久久国产精品人妻一区二区| 国产精品.久久久| 午夜久久久在线观看| 午夜视频精品福利| 人成视频在线观看免费观看| 黄色怎么调成土黄色| 日本91视频免费播放| 大香蕉久久成人网| 黑人操中国人逼视频| 欧美变态另类bdsm刘玥| 18禁黄网站禁片午夜丰满| 久久精品国产综合久久久| 伊人久久大香线蕉亚洲五| 亚洲国产精品一区二区三区在线| 一区二区三区四区激情视频| 亚洲视频免费观看视频| 法律面前人人平等表现在哪些方面 | 国产91精品成人一区二区三区 | 精品少妇一区二区三区视频日本电影| 久久久久国内视频| 一边摸一边做爽爽视频免费| 国产黄色免费在线视频| 韩国高清视频一区二区三区| 在线观看免费日韩欧美大片| 欧美亚洲日本最大视频资源| 操出白浆在线播放| 欧美+亚洲+日韩+国产| 国产极品粉嫩免费观看在线| 久久精品国产a三级三级三级| 人人妻人人澡人人看| 国产一级毛片在线| 桃花免费在线播放| 日本五十路高清| 日本vs欧美在线观看视频| 欧美亚洲日本最大视频资源| 在线观看免费午夜福利视频| 久久精品国产a三级三级三级| 午夜老司机福利片| 国产野战对白在线观看| 最新在线观看一区二区三区| 国产xxxxx性猛交| 亚洲综合色网址| 国产精品久久久av美女十八| 国产精品免费大片| 亚洲视频免费观看视频| 精品一区二区三区av网在线观看 | 久久人妻福利社区极品人妻图片| 国产在视频线精品| 天堂中文最新版在线下载| 午夜福利影视在线免费观看| 国产福利在线免费观看视频| 手机成人av网站| 69av精品久久久久久 | 一区二区日韩欧美中文字幕| 国产亚洲午夜精品一区二区久久| 亚洲视频免费观看视频| 精品国产乱子伦一区二区三区 | 国产精品熟女久久久久浪| 亚洲欧美一区二区三区黑人| 又黄又粗又硬又大视频| 人成视频在线观看免费观看| 国产亚洲av高清不卡| 免费人妻精品一区二区三区视频| 免费在线观看影片大全网站| 精品国产一区二区久久| 国产精品麻豆人妻色哟哟久久| 一本色道久久久久久精品综合| 在线观看一区二区三区激情| 2018国产大陆天天弄谢| 考比视频在线观看| 我的亚洲天堂| 午夜福利免费观看在线| 国产亚洲精品一区二区www | 免费观看人在逋| 欧美性长视频在线观看| 男女边摸边吃奶| 亚洲成人免费电影在线观看| 99香蕉大伊视频| 日韩制服丝袜自拍偷拍| 久久久久视频综合| 日韩欧美一区视频在线观看| 久久综合国产亚洲精品| 国产精品.久久久| 欧美日韩国产mv在线观看视频| 美女脱内裤让男人舔精品视频| 欧美人与性动交α欧美软件| 在线看a的网站| 美女国产高潮福利片在线看| 桃红色精品国产亚洲av| 少妇粗大呻吟视频| 国产成人免费观看mmmm| 一区福利在线观看| 国产精品一区二区免费欧美 | av电影中文网址| 亚洲精品中文字幕一二三四区 | 蜜桃在线观看..| 人人澡人人妻人| 大香蕉久久网| 人妻人人澡人人爽人人| 电影成人av| 丰满饥渴人妻一区二区三| 如日韩欧美国产精品一区二区三区| 丝袜在线中文字幕| e午夜精品久久久久久久| 国产又爽黄色视频| 国产高清国产精品国产三级| 啦啦啦 在线观看视频| 99国产精品99久久久久| 欧美xxⅹ黑人| 欧美成人午夜精品| 99精品久久久久人妻精品| www.自偷自拍.com| 老司机福利观看| 一区福利在线观看| 黄色怎么调成土黄色| 成人亚洲精品一区在线观看| 在线 av 中文字幕| 亚洲五月婷婷丁香| 国产在线一区二区三区精| 日韩中文字幕视频在线看片| 国产精品国产av在线观看| 欧美另类一区| www.av在线官网国产| 国产亚洲精品一区二区www | 国产免费福利视频在线观看| 亚洲欧美激情在线| 国产欧美日韩综合在线一区二区| www日本在线高清视频| 久久女婷五月综合色啪小说| 在线 av 中文字幕| 日韩大码丰满熟妇| 嫩草影视91久久| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久成人aⅴ小说| 欧美精品av麻豆av| 黄色视频不卡| 亚洲va日本ⅴa欧美va伊人久久 | 天天躁日日躁夜夜躁夜夜| 亚洲人成77777在线视频| 国产成人免费无遮挡视频| 99精品欧美一区二区三区四区| 电影成人av| 免费看十八禁软件| 色婷婷久久久亚洲欧美| 国产福利在线免费观看视频| 亚洲成人手机| www.av在线官网国产| 亚洲精品国产色婷婷电影| 久久精品熟女亚洲av麻豆精品| 亚洲国产欧美在线一区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久亚洲精品国产蜜桃av| 精品人妻1区二区| 人人妻人人澡人人看| 黑人操中国人逼视频| 大香蕉久久网| xxxhd国产人妻xxx| 久久毛片免费看一区二区三区| 2018国产大陆天天弄谢| 天天影视国产精品| 亚洲综合色网址| avwww免费| 国产男女内射视频| 久久亚洲精品不卡| 成人国产av品久久久| 男女高潮啪啪啪动态图| 国产91精品成人一区二区三区 | 青春草亚洲视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产一区二区久久| 久久久精品区二区三区| 亚洲五月婷婷丁香| 97精品久久久久久久久久精品| 亚洲七黄色美女视频| 一本大道久久a久久精品| 高清视频免费观看一区二区| 高清在线国产一区| 国产精品麻豆人妻色哟哟久久| 亚洲欧美成人综合另类久久久| 欧美 日韩 精品 国产| 免费高清在线观看视频在线观看| www日本在线高清视频| 成人亚洲精品一区在线观看| 淫妇啪啪啪对白视频 | 亚洲中文av在线| 欧美久久黑人一区二区| 国产主播在线观看一区二区| 狂野欧美激情性xxxx| 午夜精品国产一区二区电影| 久久精品亚洲av国产电影网| 亚洲国产精品成人久久小说| 国产精品av久久久久免费| 窝窝影院91人妻| 人人妻人人爽人人添夜夜欢视频| 国产激情久久老熟女| 国产又爽黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色av中文字幕| 麻豆av在线久日| 中文字幕精品免费在线观看视频| 青草久久国产| 久久国产精品影院| 久久免费观看电影| 超碰成人久久| 中文字幕另类日韩欧美亚洲嫩草| 久久 成人 亚洲| 国产欧美日韩精品亚洲av| 777米奇影视久久| 国产又爽黄色视频| 美女扒开内裤让男人捅视频| 国产xxxxx性猛交| 大码成人一级视频| 无遮挡黄片免费观看| 日韩大片免费观看网站| 日韩制服丝袜自拍偷拍| 国产麻豆69| 亚洲专区中文字幕在线| 午夜精品久久久久久毛片777| 欧美日韩黄片免| 大香蕉久久成人网| 日韩一区二区三区影片| 亚洲激情五月婷婷啪啪| 国产精品99久久99久久久不卡| 久久精品国产亚洲av高清一级| 亚洲精品国产av成人精品| 国产有黄有色有爽视频| 我要看黄色一级片免费的| 免费女性裸体啪啪无遮挡网站| 色播在线永久视频| 久久女婷五月综合色啪小说| 精品少妇内射三级| 免费高清在线观看日韩| 真人做人爱边吃奶动态| 一二三四社区在线视频社区8| 国产一区二区 视频在线| 热99久久久久精品小说推荐| 男女国产视频网站| 他把我摸到了高潮在线观看 | 久久久精品国产亚洲av高清涩受| 亚洲精品国产区一区二| 午夜精品久久久久久毛片777| 国产高清视频在线播放一区 | 亚洲精品一区蜜桃| 日本撒尿小便嘘嘘汇集6| 精品亚洲乱码少妇综合久久| 狂野欧美激情性xxxx| 在线观看免费视频网站a站| 国产精品一区二区在线不卡| 18禁观看日本| 国产欧美日韩综合在线一区二区| 丝袜在线中文字幕| 久久香蕉激情| 12—13女人毛片做爰片一| 欧美精品一区二区免费开放| 日韩 亚洲 欧美在线| 国产精品久久久久久人妻精品电影 | 91av网站免费观看| 国产亚洲精品一区二区www | 久久 成人 亚洲| 啦啦啦 在线观看视频| 日日夜夜操网爽| 90打野战视频偷拍视频| 日韩免费高清中文字幕av| 最近最新中文字幕大全免费视频| 成年人午夜在线观看视频| 色精品久久人妻99蜜桃| 99热全是精品| 久9热在线精品视频| 午夜免费成人在线视频| 亚洲国产av影院在线观看| 精品亚洲成a人片在线观看| 老司机福利观看| 国产不卡av网站在线观看| 久久久久久久久免费视频了| 国产亚洲欧美在线一区二区| 国产亚洲精品一区二区www | 亚洲精品成人av观看孕妇| 亚洲一区二区三区欧美精品| 亚洲中文字幕日韩| 操出白浆在线播放| 精品人妻1区二区| 自拍欧美九色日韩亚洲蝌蚪91| 一区福利在线观看| 中文字幕最新亚洲高清| 一二三四社区在线视频社区8| 热re99久久国产66热| 大陆偷拍与自拍| 老司机深夜福利视频在线观看 | 9191精品国产免费久久| 大陆偷拍与自拍|