• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of dual annealing upon photovoltaic properties of polymer solar cells based on poly(3-hexylthiophene)

    2015-04-22 02:33:20LIChang李暢XUEWei薛唯ZHANGTing章婷YUZhinong喻志農(nóng)JIANGYurong蔣玉蓉

    LI Chang(李暢), XUE Wei(薛唯), ZHANG Ting(章婷), YU Zhi-nong(喻志農(nóng)), JIANG Yu-rong(蔣玉蓉)

    (School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Effect of dual annealing upon photovoltaic properties of polymer solar cells based on poly(3-hexylthiophene)

    LI Chang(李暢), XUE Wei(薛唯), ZHANG Ting(章婷), YU Zhi-nong(喻志農(nóng)), JIANG Yu-rong(蔣玉蓉)

    (School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China)

    A dual annealing method comprised of toluene vapor treatment and post thermal annealing was employed to fabricate polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) film. It is found that the P3HT crystallinity and chain ordering can be dramatically enhanced by this annealing process as compared with the films treated merely with solvent vapor annealing, which is verified by a higher X-ray diffraction intensity peak and clearly visible fibrillar crystalline domains of P3HT. The result suggests that a favorable equilibrium condition was established by dual annealing in the morphology reorganization. Due to the morphological improvement of active layer, the dually annealed PSCs show better overall performances, with a mean power conversion efficiency of 4.06% and an increase in each electrical parameter, than any solely annealed ones.

    dual annealing; solvent vapor annealing; thermal annealing; polymer solar cells

    Polymer solar cells (PSCs) with a bulk heterojunctions(BHJs) active layer have attracted significant interest, owing to its unique advantages of low cost and ease of large-area processing[1-4]. Of all the polymeric systems reported in the literature, poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are widely-used electron donor and acceptor for the BHJ polymer solar cells, respectively[5-7]. The ideal BHJ morphology contains nanoscale interpenetrating networks with charge-separating heterojunctions throughout the photoactive layer[8-9]. More specifically, the molecular packing of both the acceptor and donor within their respective domains must be optimized for maximum charge-carrier mobility and exciton transport. In addition, the nanophase segregated heterojunction domain size must be less than the exciton diffusion length in order to keep efficient conversion of adsorbed photons into electrical current[10].

    Since the power conversion efficiency (PCE) of solar cells based on the P3HT-fullerene system depends strongly on processing conditions[11], several strategies have been used to manipulate the morphology of polymer-fullerene BHJs, including film deposition conditions and post processing techniques, such as slow growth[12], thermal annealing[13-15]and solvent vapor annealing[16-17]. Although the protocols differ significantly, the maximum PCE values reported for the various strategies are comparably 4%-5%[18]. It is the general belief that solvent vapor annealing provides potential advantages over thermal annealing, namely selective annealing of individual components and more controlled nanoscale phase segregation[17,19-20], whereas thermal annealing is prone to lead to degradation of conjugated polymers and result in large scale phase segregation[21-22]. Previous studies have showed that a successive annealing process consisting of a solvent treatment and post thermal annealing was effective in improving the efficiency of the device, yet toluene might not be a favorable choice in the solvent annealing process due to its poor solubility to PCBM[23]. In this work, a combinative annealing process were introduced to the device fabrication procedure, defined as “dual annealing”, applying toluene to the solvent vapor annealing[24]and resulting in PCE up to 4.0%. The main objective of this study is to examine the integrated effect of dual annealing upon the morphology of slow drying-cast P3HT:PCBM active layer, by monitoring the extent of crystalline within the domains of each component.

    1 Experimental

    All the BHJ layers in this work were prepared either on commercially available indium-tin oxide (ITO) coated glass with a layer thickness of ca.140 nm and a sheet resistance of 15 Ω/□ or on glass microscope slides. Substrates were ultrasonicated in acetone, isopropanol and deionized water sequentially and dried in a nitrogen flow, then exposed to ozone for 10 min under UV irradiation. The blend solutions were mainly made by dissolving 10 mg of P3HT (Rieke Metals,Mw≈70 000) and 84 mg of PCBM (Solenne BV) in 1 ml of 1,2-dichlorobenzene (ODCB), and then stirred at 50 ℃ overnight before use.

    For device fabrication,the cleaned ITO was spin-coated with a 40-nm-thick of poly(3,4-ethylene-dioxythiophene):polystyrene (PEDOT:PSS, Clevios P VP Al 4083). The PEDOT:PSS coated samples were then heat-treated at 120 ℃ for 20 min and then transferred into a nitrogen glove box for the remainder of the device fabrication. The active layer of the solar cells were spin-coated at 800 r/min for 80 s to allow the casting films to dry slowly, where a dramatic change in the color of the film can be observed when it is transformed from the liquid (orange) to the solid (dark purple) phase[12]. For solvent annealing, the solid films were then placed in a covered glass crystallizing dish filled with saturated toluene vapor. Afterward, the samples were moved into a high vacuum chamber (ca. 5×10-4Pa), where 150 nm Al electrode were vapor-deposited through a mask leaving six solar cells with an active area of 0.09 cm2. After metal deposition, the samples were either directly measured or annealed on a hotplate at 130 ℃ for 20 min for post annealing in a glove box.

    The current density-voltage (J-V) characteristics were measured using a Keithley 2612 source measurement unit under the illumination of 100 mW/cm2from a 500 W xenon lamp with AM1.5 filter. The light intensity was calibrated with a Si reference cell (Oriel). The X-ray diffraction (XRD) patterns of the P3HT:PCBM films were recorded by a Bruker D8 Advance with Cu Kα(λ=0.154 nm). The surface morphology of the blend films was examined using a multimode scanning probe microscope system (digital instruments) operated in the tapping mode. All the devices and samples were characterized under ambient conditions at room temperature.

    2 Results and discussion

    2.1 XRD peak analysis

    The crystallinity of conjugated polymer and fullerene plays an important role in determining the optoelectrical characteristics of the devices[10]. To investigate the molecular rearrangement during annealing process, we studied the XRD patterns of P3HT:PCBM blend films annealed with different methods, as shown in Fig.1. To exclude the impact of solvent evaporation time on the resulting BHJ thin film morphology[17], all sample films were spin-cast using the “slow dried” method[18], and the XRD pattern of the pristine blend film is also plotted for comparison. The diffraction intensity peak at ca.2θ=5.4° represents first-order reflection (100) of P3HT, which is associated with the crystallographic direction along the alkyl side chains (a axis)[25-26]. Since the relative intensity of the peak is correlated with polymer crystallinity, the crystallinity within P3HT domains induced by dual annealing (DA), where toluene solvent vapor annealing (SA) employed prior to thermal annealing (PA), is superlative as compared with the solely-annealed samples. Meanwhile, both thermal annealing and solvent vapor annealing can induce the formation of crystalline P3HT. It is worth noting that there are no signs of crystalline PCBM under any treatment in the scanning scale of 3°-25° (2θ), which indicates that PCBM could not form ordered crystals in the presence of a large proportion of copolymers.

    Fig.1 XRD patterns of blend films treated by different annealing processes

    In addition, the diffraction intensity peak of thermal treated films shifts “blue” slightly, as compared to the solvent annealed films. Consequently the interlayer spacing for thermal treated films, regardless of solvent annealing, is determined to be 1.65 nm according to Bragg’s law, which indicates that toluene solvent annealing tends to “compress” the interlayer in a lamellar structure as shown in Fig.1. To further increase solvent annealing duration from 20 min to 1 h, the angle between the incident and scattered X-ray wavevectors is also increased from 5.37° to 5.48°, corresponding to an interlayer spacing of 1.62 nm and 1.60 nm respectively. These results suggest that in a dual annealing process, thermal annealing possibly possesses a dominant position in improving the ordering of the alkyl chains, and leads to a more extended conformation of the alkyl chains and a larger layer spacing[10]. Besides, the integrated effect of dual annealing could further optimize the morphology of blend films to a higher level. The improvement of the crystallinity and main chain order is deemed to enhance device photovoltaic characteristics[26].

    2.2 Devices fabrication and characteristics

    Polymer solar cells based on P3HT:PCBM were fabricated with different treatments and the measured device parameters are summarized in Tab.1. Due to the inferior performance with the PCE less than 1%, the as-product device will not be discussed here. Fig. 2 shows the statistical data for device parameters derived from six cells of each type. As expected, the maximum power conversion efficiency of 4.12% is attained for the dual annealed device, where the thermal annealing section was employed after metal electrode deposition. A nearly identical checkmark-like trend in every single parameter has been observed for the devices treated with merely post thermal annealing, solvent annealing and a dual annealing process. In comparison with the solar cell underwent sole annealing treatment, the dual annealed device demonstrated an improvement in overall photovoltaic characteristics, which agrees well with XRD spectra. To elucidate this observation, the series resistance (RS) of devices were calculated by fitting the J-V curves to the Shockley equation[27], as listed in Tab.1. TheRSof the cells with dual annealing treatment was the smallest amongst all devices. Given that a smallerRSis associated with higher charge mobility, which can be ascribed to better crystalline polymer within the blend films[28], these values are thus consistent with device photovoltaic characteristics and XRD results.

    Fig.2 Device parameters derived from six cells under post annealing (PA), solvent annealing (SA), dual annealing (DA) and tri-annealing (TA), respectively

    Tab.1 Cell characteristics measured under 100 mW/cm2illumination

    TreatmentVOC/VJSC/(mA·cm-2)FFPCE/%RS/(Ω·cm2)Postannealing0 6310 200 593 784 8Solventannealing0 589 400 472 585 9Dualannealing0 6310 760 604 064 2SA+Prea+PA(TA)0 6211 080 553 755 1

    aPre-annealing

    Moreover, in order to better understand the role of thermal annealing in the dual annealing process, an extra heat-treatment was added to the fabrication procedure right after solvent annealing, referred to as “pre-annealing”. The output characteristics of these tri-annealed devices are also exhibited in Fig. 2. The PCE is reduced slightly from 4.06% to 3.75%, as compared with the dual annealed one. This value is almost equivalent to the cells treated with only post annealing, which suggests that the equilibrium condition of optimization established by dual annealing in the morphology reorganization, was not reserved anymore. Excessive introduction of thermal annealing would lead to unfavorable coarsening of the nanoscale phase segregation, resulting in device performance deterioration[10].

    2.3 Surface morphology of blend films

    To further investigate the morphological changes induced by different annealing processes, the mesoscale film morphology in the lateral direction of the blend films has been visualized using tapping mode atomic force microscopy (TM-AFM). The film processing conditions for AFM images were kept the same as those in device fabrication for accurate comparison. Fig. 3 shows typical TM-AFM phase images of P3HT:PCBM blend films treated with thermal, toluene vapor, and dual annealing. It has been found that the surface topography of the thermally annealed film is significantly rougher than the solvent annealed film; the former films have a root mean square roughness (Rrms) of 1.3 nm, compared to 0.6 nm for the latter ones. The rough surface can be deemed as a “signature” of polymer self-organization induced by thermal annealing[28-29]. Dual annealing results in a moderately rough surface withRrmsof 0.8 nm, however, the fibrillar crystalline domains of P3HT, with a lamellar periodicity of approximately 30 nm are clearly visible only in the dual annealed films (Fig. 3c), whereas fragmentary nanofibrillar domains are observed in the other annealed films (Fig. 3a and Fig.3b). This difference in film morphology suggests that the enhanced molecular mobility that a successive dual annealing afford enables the molecules to reach a more thermodynamically favorable morphology[18]. As P3HT self-organizes to fibrillar highly crystalline domains with periodicity close to twice the exciton diffusion length[12,30], the mobile P3HT chains force amorphous PCBM to form nano-clusters among these ordered structures during annealing process, hence a percolated network of crystalline P3HT and PCBM takes shape,without allowing for large scale disordered regions with harbor structural defects like chain ends and folds and tie segments[31](Fig. 2b). Therefore, the device performance improvement through dual annealing can be explained by film morphology rearrangement during this processing series.

    Fig.3 TM-AFM phase images for blend films fabricated using different annealing processes

    3 Conclusion

    In summary, polymer solar cells fabricated with different annealing processes were examined. The solar cells which underwent the dual annealing comprised of solvent vapor annealing and post thermal annealing, exhibits high output characteristics with enhancedJSC,VOCand FF. The maximum power conversion efficiency of 4.12% is obtained from dual annealed device, which is higher than all of the solely annealed solar cells in this case. The improved performance were attributed to the improvement in P3HT crystallinity and chain ordering, which is resulted from the integrated effect of dual annealing, by taking XRD analysis and surface morphologies into consideration.

    [1] Hoppe H, Sariciftci N S. Morphology of polymer/fullerene bulk heterojunction solar cells[J]. J Mater Chem, 2006,16(1):45-61.

    [2] Brabec C J, Durrant J R. Solution-processed organic solar cells[J]. MRS Bull, 2008,33(7):670-675.

    [3] Thompson B C, Frechet J M J. Polymer-fullerene composite solar cells[J]. Angew Chem Int Ed, 2008,47(1):58-77.

    [4] Service R F. Outlook brightens for plastic solar cells[J]. Science, 2011,332(6027):293-303.

    [5] Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nat Mater, 2005,4(11):864-868.

    [6] Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Adv Funct Mater, 2005,15(10):1617-1622.

    [7] Reyes-Reyes M, Kim K, Carroll D L. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends[J]. Appl Phys Lett, 2005,87(8):083506.

    [8] Tang C W. Two-layer organic photovoltaic cell[J]. Appl Phys Lett, 1986,48(2):183-185.

    [9] Yu G, Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions[J]. J Appl Phys, 1995,78(7):4510-4515.

    [10] Verploegen E, Mondal R, Bettinger C J, et al. Effects of thermal annealing upon the morphology of polymer-fullerene blends[J]. Adv Funct Mater, 2010,20(20):3519-3529.

    [11] Yang X, Loos J. Toward high-performance polymer solar cells: the importance of morphology control[J]. Macromolecules, 2007,40(5):1353-1362.

    [12] Li G, Yao Y, Yang H, et al. “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes[J]. Adv Funct Mater, 2007,17(10):1636-1644.

    [13] Bertho S, Janssen G, Cleij T J, et al. Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells[J]. Sol Energy Mater Sol Cells, 2008,92(7):753-760.

    [14] Kim Y, Choulis S A, Nelson J, et al. Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene[J]. Appl Phys Lett, 2005,86(6):063502.

    [15] Al-Ibrahim M, Ambacher O, Sensfuss S, et al. Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene):fullerene[J]. Appl Phys Lett, 2005,86(20):201120.

    [16] Miller S, Fanchini G, Lin Y Y, et al. Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing[J]. J Mater Chem, 2008,18(3),306-312.

    [17] Verploegen E, Miller C E, Schmidt K, et al. Manipulating the morphology of P3HT-PCBM bulk heterojunction blends with solvent vapor annealing[J]. Chem Mater, 2012,24(20),3923-3931.

    [18] Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends[J]. Nat Mater, 2008,7(2):158-164.

    [19] Vogelsang J, Brazard J, Adachi T, et al. Watching the annealing process one polymer chain at a time[J]. Angew Chem Int Ed, 2011,50(10):2257-2261.

    [20] Zhang T, Deng Y, Johnson S, et al. Highly efficient blue polyfluorene-based polymer light-emitting diodes through solvent vapour annealing[J]. J Phys D Appl Phys, 2009,42(14):145104.

    [21] Tang H W, Lu G H, Li L G, et al. Precise construction of PCBM aggregates for polymer solar cells via multi-step controlled solvent vapor annealing[J]. J Mater Chem, 2010,20(4):683-688.

    [22] Savenije T J, Kroeze J E, Yang X N, et al. The effect of thermal treatment on the morphology and charge carrier dynamics in a polythiophene-fullerene bulk heterojunction[J]. Adv Funct Mater, 2005,15(8):1260-1266.

    [23] Zhao Y, Guo X Y, Xie Z Y, et al. Solvent vapor-induced self assembly and its influence on optoelectronic conversion of poly(3-hexylthiophene):methanofullerene bulk heterojunction photovoltaic cells[J]. J Appl Polym Sci, 2009,111(4):1799-1804.

    [24] Li Chang, Zhang Ting, Xue Wei. Enhancement of polymer crystallinity in high performance poly(3-hexylthiophene)-based solar cells via solvent vapor pretreatment-assisted thermal annealing[J]. Chinese Journal of Luminescence, 2014, 35(2):202-206. (in Chinese)

    [25] Yoshino K, Yin X H, Morita S, et al. Enhanced photoconductivity of C60 doped poly(3-alkylthiophene)[J]. Solid State Commun, 1993,85(2):85-88.

    [26] Kittichungchit V, Hori T, Moritou H, et al. Effect of solvent vapor treatment on photovoltaic properties of conducting polymer/C60 interpenetrating heterojunction structured organic solar cell[J]. Thin Solid Films, 2009,518(2):518-521.

    [27] Kawano K, Sakai J, Yahiro M, et al. Effect of solvent on fabrication of active layers in organic solar cells based on poly(3-hexylthiophene) and fullerene derivatives[J]. Sol Energy Mater Sol Cells, 2009,93(4):514-518.

    [28] Yang F, Shtein M, Forrest S R, Controlled growth of a molecular bulk heterojunction photovoltaic cell[J]. Nat Mater, 2005,4(1):37-41.

    [29] Wu Z W, Song T, Jin Y Z, et al. High performance solar cell based on ultra-thin poly(3-hexylthiophene):fullerene film without thermal and solvent annealing[J]. Appl Phys Lett, 2011,99(14):143306.

    [30] Chu C W, Yang H, Hou W J, et al. Control of the nanoscale crystallinity and phase separation in polymer solar cells[J]. Appl Phys Lett, 2008,92(10):103306.

    [31] Brinkmann M, Wittmann J C. Orientation of regioregular poly(3-hexylthiophene) by directional solidification: a simple method to reveal the semicrystalline structure of a conjugated polymer[J]. Adv Mater, 2006,18(7):860-863.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0416

    O 43; O 469 Document code: A Article ID: 1004- 0579(2015)04- 0534- 06

    Received 2014- 02- 18

    Supported by the National Natural Science Foundation of China (10904002); the Excellent Young Scholars Research Fund of Beijing Institute of Technology (2009Y0408); the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (3040036821101)

    E-mail: zhangting@bit.edu.cn

    国产精品久久久久久精品电影| 亚洲国产精品合色在线| 天堂√8在线中文| 中文字幕av成人在线电影| 超碰av人人做人人爽久久| 国产精品国产三级国产专区5o | 青春草国产在线视频| 观看美女的网站| 欧美日韩国产亚洲二区| 偷拍熟女少妇极品色| 少妇被粗大猛烈的视频| 国产一区二区三区av在线| 亚洲五月天丁香| 久久国产乱子免费精品| 中文精品一卡2卡3卡4更新| 婷婷色综合大香蕉| 国产精品1区2区在线观看.| 日日摸夜夜添夜夜添av毛片| 亚洲人成网站在线播| 在线免费十八禁| 日韩欧美精品免费久久| 精品无人区乱码1区二区| 狂野欧美白嫩少妇大欣赏| 美女xxoo啪啪120秒动态图| АⅤ资源中文在线天堂| 国产成人免费观看mmmm| 日韩人妻高清精品专区| 国产伦在线观看视频一区| 午夜激情福利司机影院| 国产中年淑女户外野战色| 日本黄色视频三级网站网址| 亚洲婷婷狠狠爱综合网| 变态另类丝袜制服| 中国国产av一级| 日韩av在线大香蕉| 欧美性猛交黑人性爽| 国产男人的电影天堂91| 国产精品无大码| 欧美日本亚洲视频在线播放| 在线观看66精品国产| 精品人妻熟女av久视频| 午夜亚洲福利在线播放| 亚洲中文字幕一区二区三区有码在线看| 麻豆久久精品国产亚洲av| 中文字幕av成人在线电影| 哪个播放器可以免费观看大片| 亚洲欧美精品专区久久| 亚洲av.av天堂| 97人妻精品一区二区三区麻豆| 欧美另类亚洲清纯唯美| 午夜激情欧美在线| 国产人妻一区二区三区在| 一个人观看的视频www高清免费观看| 校园人妻丝袜中文字幕| 亚洲熟妇中文字幕五十中出| 国产伦精品一区二区三区视频9| 91aial.com中文字幕在线观看| 亚洲中文字幕日韩| 白带黄色成豆腐渣| 岛国毛片在线播放| 国产精品99久久久久久久久| 国产伦一二天堂av在线观看| 一个人看视频在线观看www免费| 看免费成人av毛片| 亚洲三级黄色毛片| 色吧在线观看| 亚洲av成人精品一二三区| 亚洲最大成人av| 国产成人福利小说| 国产精品女同一区二区软件| 国产精华一区二区三区| 亚洲欧美日韩高清专用| 午夜精品国产一区二区电影 | 午夜a级毛片| 三级毛片av免费| 人妻少妇偷人精品九色| 午夜福利在线观看吧| 国产三级在线视频| 日本与韩国留学比较| 午夜福利在线观看免费完整高清在| 亚洲天堂国产精品一区在线| 国产av一区在线观看免费| 亚洲精华国产精华液的使用体验| 亚洲成人av在线免费| 我的老师免费观看完整版| 汤姆久久久久久久影院中文字幕 | 日日摸夜夜添夜夜添av毛片| 三级毛片av免费| 青春草国产在线视频| 久久精品国产亚洲av天美| 欧美一级a爱片免费观看看| 日韩三级伦理在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产成年人精品一区二区| 亚洲av电影在线观看一区二区三区 | 国产成人aa在线观看| 秋霞在线观看毛片| 久久精品国产鲁丝片午夜精品| 国产激情偷乱视频一区二区| 精品酒店卫生间| 色综合亚洲欧美另类图片| 人妻夜夜爽99麻豆av| 深夜a级毛片| 色吧在线观看| 我要搜黄色片| 毛片女人毛片| 一级av片app| 日韩欧美国产在线观看| 久久亚洲国产成人精品v| 国产老妇女一区| 亚洲精品久久久久久婷婷小说 | 综合色丁香网| 国产精品熟女久久久久浪| 男人狂女人下面高潮的视频| av黄色大香蕉| 国产午夜精品论理片| 欧美区成人在线视频| av在线观看视频网站免费| 在线免费观看的www视频| 免费看美女性在线毛片视频| 六月丁香七月| a级毛色黄片| 久久人妻av系列| 精品少妇黑人巨大在线播放 | 99在线视频只有这里精品首页| 91精品国产九色| 亚洲丝袜综合中文字幕| 免费无遮挡裸体视频| 神马国产精品三级电影在线观看| 久久久久久伊人网av| 亚洲av电影在线观看一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| 欧美激情在线99| 男插女下体视频免费在线播放| 日本欧美国产在线视频| 一级黄片播放器| 精品99又大又爽又粗少妇毛片| 99久久人妻综合| 欧美潮喷喷水| av在线亚洲专区| 波野结衣二区三区在线| 人妻夜夜爽99麻豆av| 欧美日本亚洲视频在线播放| 国产伦精品一区二区三区视频9| av免费在线看不卡| 亚洲av福利一区| 国产精品日韩av在线免费观看| 观看美女的网站| 禁无遮挡网站| 国产精品国产三级国产专区5o | 美女脱内裤让男人舔精品视频| 精品无人区乱码1区二区| 国产av一区在线观看免费| 国产探花在线观看一区二区| 亚洲中文字幕日韩| 极品教师在线视频| 国产大屁股一区二区在线视频| 亚洲天堂国产精品一区在线| 久久久色成人| 91久久精品国产一区二区成人| 国产成年人精品一区二区| 国产亚洲5aaaaa淫片| 久久久久久久国产电影| 国产久久久一区二区三区| 国产精品一二三区在线看| 丝袜美腿在线中文| 国产淫片久久久久久久久| 欧美3d第一页| 亚洲成人久久爱视频| 亚洲欧美精品综合久久99| 久久久欧美国产精品| 久久久久久久久久久免费av| 精品人妻偷拍中文字幕| 美女xxoo啪啪120秒动态图| 日本免费a在线| 亚洲国产色片| 精品久久久久久成人av| a级一级毛片免费在线观看| 国产精品1区2区在线观看.| 欧美又色又爽又黄视频| 精品一区二区免费观看| 亚洲精品久久久久久婷婷小说 | 精品国内亚洲2022精品成人| 亚洲美女搞黄在线观看| 国产v大片淫在线免费观看| 青春草视频在线免费观看| 国产精品一区二区三区四区免费观看| 2022亚洲国产成人精品| 免费电影在线观看免费观看| 欧美性感艳星| 99久久精品国产国产毛片| 久久草成人影院| 国产免费一级a男人的天堂| 91aial.com中文字幕在线观看| 99久久中文字幕三级久久日本| 亚洲av电影在线观看一区二区三区 | 亚洲精品影视一区二区三区av| 国产精品一区www在线观看| 国产v大片淫在线免费观看| 日韩一区二区视频免费看| 国产精品一区二区在线观看99 | 亚洲人成网站在线播| 联通29元200g的流量卡| АⅤ资源中文在线天堂| 一个人看视频在线观看www免费| 国产亚洲精品久久久com| 日本欧美国产在线视频| 三级毛片av免费| 干丝袜人妻中文字幕| 晚上一个人看的免费电影| 在线播放国产精品三级| 联通29元200g的流量卡| 99久久九九国产精品国产免费| 男人舔奶头视频| 亚洲av.av天堂| 亚洲最大成人av| 国产人妻一区二区三区在| 国产一区有黄有色的免费视频 | 亚洲成av人片在线播放无| 搞女人的毛片| 两个人的视频大全免费| 97人妻精品一区二区三区麻豆| 国产男人的电影天堂91| 久久6这里有精品| 国产精品美女特级片免费视频播放器| 日本一二三区视频观看| 国产69精品久久久久777片| 热99re8久久精品国产| 国产精品国产三级国产专区5o | 欧美不卡视频在线免费观看| www.av在线官网国产| 在线观看66精品国产| 日韩av在线免费看完整版不卡| 久久久成人免费电影| 亚洲最大成人av| 又粗又硬又长又爽又黄的视频| 国产亚洲最大av| 一区二区三区四区激情视频| 久久久国产成人免费| 在线播放国产精品三级| 成人高潮视频无遮挡免费网站| 亚洲欧美精品专区久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品成人综合色| 精品无人区乱码1区二区| 成年免费大片在线观看| 成人美女网站在线观看视频| 小说图片视频综合网站| 日本wwww免费看| 午夜亚洲福利在线播放| 欧美色视频一区免费| 久久久久久久久久久丰满| 国产成人免费观看mmmm| 亚洲欧美成人精品一区二区| 在线观看66精品国产| 女人久久www免费人成看片 | 国产成人精品婷婷| 国产免费视频播放在线视频 | 国产精品久久久久久精品电影小说 | 久久久午夜欧美精品| 免费搜索国产男女视频| 国产伦一二天堂av在线观看| 国产精品日韩av在线免费观看| 精品久久久久久久久久久久久| 亚洲av中文av极速乱| 春色校园在线视频观看| 亚洲经典国产精华液单| 久久久成人免费电影| 久99久视频精品免费| 国产伦一二天堂av在线观看| a级毛片免费高清观看在线播放| 欧美成人免费av一区二区三区| 你懂的网址亚洲精品在线观看 | 久久亚洲国产成人精品v| 亚洲美女视频黄频| 极品教师在线视频| 九九久久精品国产亚洲av麻豆| 男插女下体视频免费在线播放| 亚洲精华国产精华液的使用体验| 亚洲欧美精品专区久久| 淫秽高清视频在线观看| 欧美xxxx黑人xx丫x性爽| 色视频www国产| 秋霞伦理黄片| 国产极品精品免费视频能看的| 久久这里只有精品中国| 91久久精品国产一区二区成人| 成人二区视频| 赤兔流量卡办理| 天天躁夜夜躁狠狠久久av| 精品久久国产蜜桃| 欧美色视频一区免费| 少妇熟女欧美另类| 国产在视频线在精品| 国产探花极品一区二区| 亚洲精品自拍成人| 日韩大片免费观看网站 | 欧美xxxx黑人xx丫x性爽| 欧美丝袜亚洲另类| 99久久精品一区二区三区| 久久精品91蜜桃| 国产三级中文精品| 长腿黑丝高跟| 日韩一区二区三区影片| 亚洲精品aⅴ在线观看| 久久久久网色| 日韩欧美国产在线观看| 精品熟女少妇av免费看| 精品久久久久久久久av| 国内精品宾馆在线| 欧美另类亚洲清纯唯美| 国产精品一区二区在线观看99 | 国产亚洲av嫩草精品影院| 免费观看精品视频网站| 欧美激情国产日韩精品一区| 深夜a级毛片| 99国产精品一区二区蜜桃av| 久久精品久久久久久久性| 丝袜喷水一区| 国内精品美女久久久久久| 有码 亚洲区| 青春草国产在线视频| 伦精品一区二区三区| 婷婷色综合大香蕉| 久久韩国三级中文字幕| 国产色爽女视频免费观看| 99视频精品全部免费 在线| 26uuu在线亚洲综合色| 国产黄色小视频在线观看| 欧美3d第一页| 国产亚洲精品av在线| 免费观看a级毛片全部| 色网站视频免费| 欧美人与善性xxx| 日韩av不卡免费在线播放| 国产成人精品婷婷| 国产淫片久久久久久久久| 久久久久久久久久久丰满| 成人亚洲欧美一区二区av| av免费在线看不卡| 好男人视频免费观看在线| 久久久a久久爽久久v久久| 1000部很黄的大片| 青青草视频在线视频观看| 少妇的逼水好多| 欧美精品国产亚洲| 日本黄色片子视频| 国产亚洲5aaaaa淫片| 亚洲最大成人手机在线| 国产成人午夜福利电影在线观看| 国产国拍精品亚洲av在线观看| 欧美极品一区二区三区四区| 国产午夜精品久久久久久一区二区三区| 国产亚洲精品久久久com| 国产伦精品一区二区三区四那| 日韩欧美精品v在线| 能在线免费看毛片的网站| 国产亚洲av片在线观看秒播厂 | 国产精品一区二区三区四区久久| 亚洲精品国产成人久久av| 国语自产精品视频在线第100页| 久久久午夜欧美精品| 国产av不卡久久| 亚洲av免费高清在线观看| 成人三级黄色视频| 亚洲最大成人av| 国产精品国产三级国产专区5o | 22中文网久久字幕| 国产成人福利小说| 亚洲欧美一区二区三区国产| 赤兔流量卡办理| 91午夜精品亚洲一区二区三区| 狂野欧美激情性xxxx在线观看| 99热全是精品| 日本免费在线观看一区| 亚洲国产精品成人综合色| 直男gayav资源| 网址你懂的国产日韩在线| 成人国产麻豆网| 一二三四中文在线观看免费高清| 国产精品久久电影中文字幕| 日韩,欧美,国产一区二区三区 | 一级二级三级毛片免费看| 九九爱精品视频在线观看| 精品人妻偷拍中文字幕| 好男人在线观看高清免费视频| 国产午夜福利久久久久久| 国内精品宾馆在线| 久久热精品热| 非洲黑人性xxxx精品又粗又长| 久久久午夜欧美精品| 国产片特级美女逼逼视频| 白带黄色成豆腐渣| 亚洲高清免费不卡视频| 色综合色国产| 欧美性猛交╳xxx乱大交人| 免费黄网站久久成人精品| 神马国产精品三级电影在线观看| 久久久国产成人精品二区| 日韩av不卡免费在线播放| 最近手机中文字幕大全| 插逼视频在线观看| 99久久精品国产国产毛片| 在线a可以看的网站| 成人午夜高清在线视频| 尾随美女入室| 日本av手机在线免费观看| 啦啦啦韩国在线观看视频| 99热网站在线观看| 国产精品国产三级国产av玫瑰| 亚洲在线观看片| 长腿黑丝高跟| 国内精品宾馆在线| 精品国产一区二区三区久久久樱花 | 久久婷婷人人爽人人干人人爱| 啦啦啦啦在线视频资源| 黄片无遮挡物在线观看| 99热这里只有是精品在线观看| 日韩一本色道免费dvd| 美女cb高潮喷水在线观看| 国产精品一区二区在线观看99 | 午夜日本视频在线| 欧美成人一区二区免费高清观看| 国产毛片a区久久久久| 校园人妻丝袜中文字幕| 一个人看的www免费观看视频| 日日摸夜夜添夜夜爱| 男女下面进入的视频免费午夜| 秋霞在线观看毛片| 麻豆久久精品国产亚洲av| 又爽又黄无遮挡网站| 少妇熟女aⅴ在线视频| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品成人久久小说| 日日啪夜夜撸| 亚洲av不卡在线观看| 日本wwww免费看| 国产高清三级在线| 国产成人91sexporn| 国产 一区 欧美 日韩| 久久久久久久久大av| 不卡视频在线观看欧美| 身体一侧抽搐| 久久久国产成人免费| 亚洲精品久久久久久婷婷小说 | 日韩 亚洲 欧美在线| 成人亚洲欧美一区二区av| av又黄又爽大尺度在线免费看 | 欧美激情国产日韩精品一区| 最近最新中文字幕免费大全7| 最近最新中文字幕大全电影3| 免费av毛片视频| 欧美丝袜亚洲另类| 蜜臀久久99精品久久宅男| 水蜜桃什么品种好| 日韩精品青青久久久久久| 亚洲精品456在线播放app| 亚洲在线观看片| 高清日韩中文字幕在线| 99热精品在线国产| 色噜噜av男人的天堂激情| 国产精品美女特级片免费视频播放器| 国内精品一区二区在线观看| 国产一区亚洲一区在线观看| 久久精品国产亚洲网站| 99视频精品全部免费 在线| 听说在线观看完整版免费高清| 免费观看精品视频网站| 久久久久久伊人网av| 99在线视频只有这里精品首页| 久久久a久久爽久久v久久| 亚洲精品,欧美精品| 深爱激情五月婷婷| 1000部很黄的大片| 日本av手机在线免费观看| 亚洲在线观看片| 欧美日韩精品成人综合77777| 精品人妻视频免费看| 青青草视频在线视频观看| 免费看日本二区| 亚洲精华国产精华液的使用体验| av免费观看日本| 午夜福利视频1000在线观看| 国产成人精品一,二区| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美日韩高清专用| 成人亚洲欧美一区二区av| 免费观看性生交大片5| 亚洲在久久综合| 一个人免费在线观看电影| 久久久欧美国产精品| 麻豆国产97在线/欧美| 日韩视频在线欧美| 一边亲一边摸免费视频| a级一级毛片免费在线观看| 综合色av麻豆| 看片在线看免费视频| 精品久久久久久电影网 | 毛片女人毛片| 国产女主播在线喷水免费视频网站 | 成人鲁丝片一二三区免费| 亚洲国产精品专区欧美| 中文字幕av在线有码专区| av视频在线观看入口| 精品熟女少妇av免费看| 国产亚洲一区二区精品| 国产精品一及| kizo精华| 午夜福利在线观看吧| 国产午夜精品一二区理论片| 狠狠狠狠99中文字幕| 国产伦一二天堂av在线观看| 99国产精品一区二区蜜桃av| 中文字幕av在线有码专区| 久久99热这里只频精品6学生 | 国产精品人妻久久久影院| videos熟女内射| 亚洲最大成人av| 内射极品少妇av片p| 久久99热这里只频精品6学生 | 欧美日韩精品成人综合77777| 亚洲不卡免费看| 久久久久久伊人网av| 国产日韩欧美在线精品| av在线天堂中文字幕| 黄色配什么色好看| 亚洲va在线va天堂va国产| 国产极品天堂在线| 人妻制服诱惑在线中文字幕| 日本猛色少妇xxxxx猛交久久| 女的被弄到高潮叫床怎么办| 亚洲熟妇中文字幕五十中出| 国产成人午夜福利电影在线观看| 在线观看美女被高潮喷水网站| av福利片在线观看| 最后的刺客免费高清国语| 1000部很黄的大片| 午夜激情欧美在线| 久久久成人免费电影| 欧美一级a爱片免费观看看| 一个人免费在线观看电影| 日本熟妇午夜| 男人和女人高潮做爰伦理| 日韩av不卡免费在线播放| 亚洲精品乱码久久久v下载方式| 免费av毛片视频| 中文字幕久久专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男人狂女人下面高潮的视频| 91av网一区二区| 国产免费又黄又爽又色| 国产国拍精品亚洲av在线观看| 欧美激情久久久久久爽电影| 午夜福利在线观看吧| 欧美三级亚洲精品| 嘟嘟电影网在线观看| 久久久成人免费电影| 国产成人精品一,二区| 最近中文字幕高清免费大全6| 三级男女做爰猛烈吃奶摸视频| 2021少妇久久久久久久久久久| 日本色播在线视频| 在线播放国产精品三级| 亚洲自偷自拍三级| 成人高潮视频无遮挡免费网站| 好男人视频免费观看在线| 国产极品天堂在线| 欧美另类亚洲清纯唯美| 菩萨蛮人人尽说江南好唐韦庄 | 99视频精品全部免费 在线| 在现免费观看毛片| 人人妻人人澡欧美一区二区| 啦啦啦啦在线视频资源| 久久精品夜夜夜夜夜久久蜜豆| 国产 一区 欧美 日韩| 少妇裸体淫交视频免费看高清| 午夜福利在线观看免费完整高清在| 如何舔出高潮| 国国产精品蜜臀av免费| 人妻制服诱惑在线中文字幕| 亚洲欧美一区二区三区国产| 成人三级黄色视频| 国产伦精品一区二区三区四那| 亚洲精品影视一区二区三区av| 久久久久久久久久久免费av| 在线天堂最新版资源| 日本欧美国产在线视频| 国产免费福利视频在线观看| 桃色一区二区三区在线观看| 久久久久精品久久久久真实原创| 麻豆一二三区av精品| 两个人视频免费观看高清| 91久久精品电影网| 天堂中文最新版在线下载 | 人妻少妇偷人精品九色| 精品国产三级普通话版| 一级av片app| 1000部很黄的大片| 日本一二三区视频观看| 91狼人影院| 午夜a级毛片| 能在线免费观看的黄片| 91久久精品电影网| av女优亚洲男人天堂| 国产极品精品免费视频能看的| 禁无遮挡网站| 国产成人精品久久久久久| 亚洲综合精品二区| 晚上一个人看的免费电影| 欧美激情国产日韩精品一区| 亚洲最大成人av| 少妇熟女欧美另类| 麻豆精品久久久久久蜜桃| 国产午夜福利久久久久久| 亚洲va在线va天堂va国产|