• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Positive and Negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow:Results from Sensitivity Experiments

    2015-04-20 05:59:20ZHOUQianDUANWansuoMUMuandFENGRong
    Advances in Atmospheric Sciences 2015年6期

    ZHOU QianDUAN WansuoMU Muand FENG Rong

    1State Key Laboratory of NumericalModeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2University of Chinese Academy of Sciences,Beijing100049

    3Key Laboratory of Ocean Circulation and Wave,Institute of Oceanology,Chinese Academy of Sciences,Qingdao266071

    Influence of Positive and Negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow:Results from Sensitivity Experiments

    ZHOU Qian1,2,DUAN Wansuo?1,MU Mu3,and FENG Rong1

    1State Key Laboratory of NumericalModeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2University of Chinese Academy of Sciences,Beijing100049

    3Key Laboratory of Ocean Circulation and Wave,Institute of Oceanology,Chinese Academy of Sciences,Qingdao266071

    The role of the Indonesian Throughflow(ITF)in the influence of the Indian Ocean Dipole(IOD)on ENSO is investigated using version 2 of the Parallel Ocean Program(POP2)ocean general circulation model.We demonstrate the results through sensitivity experiments on both positive and negative IOD events from observations and coupled general circulation model simulations.By shutting down the atmospheric bridge while maintaining the tropical oceanic channel,the IOD forcing is shown to influence the ENSO eventin the follow ing year,and the role of the ITF is emphasized.During positive IOD events, negative sea surface height anomalies(SSHAs)occur in the eastern Indian Ocean,indicating the existence of upwelling. These upwelling anomaliespass through the Indonesian seasand enter the western tropicalPacific,resulting in cold anomalies there.These cold temperature anomalies furtherpropagate to the eastern equatorial Pacific,and ultimately induce a La Ni?nalike mode in the follow ing year.In contrast,during negative IOD events,positive SSHAs are established in the eastern Indian Ocean,leading to downwelling anomalies thatcan also propagate into the subsurface of the western Pacific Ocean and travel further eastward.These downwelling anomalies induce negative ITF transport anomalies,and an El Ni?no-like mode in the tropicaleastern Pacific Ocean thatpersists into the follow ing year.The effects ofnegative and positive IOD events on ENSO via the ITF are symmetric.Finally,we also estimate the contribution of IOD forcing in explaining the Pacific variability associated w ith ENSO via ITF.

    IOD,Pacific Ocean,ENSO,Indonesian Throughflow

    1.Introduction

    The El Ni?no-Southern Oscillation(ENSO)is the most importantair–sea interaction phenomenon in the tropical Pacific.The occurrence of ENSO causes extreme weather and climate events across the globe,leading to severe naturaldisasters(Wang etal.,2000;Diaz etal.,2001;Alexanderetal., 2002).Consequently,it is of great importance to study the dynam ics of ENSO to predict events successfully(Latif et al.,1998;Chen etal.,2004;Jin etal.,2008;Luo etal.,2008; Tippettetal.,2011).

    The Indian Ocean Dipole(IOD)is an air–sea coupled phenomenon.Some studies argue that the IOD is dependenton Pacific Ocean air–sea interactions(Allan etal.,2001; Nicholls et al.,2001;Baquero-Bernal et al.,2002;Lau and Nath,2003),while others claim it is an intrinsic physical entity,independentof ENSO(Sajiand Yamagata,2003;Behera etal.,2006;Luo etal.,2010).Eitherway,the IOD can be influenced by ENSO events(Nagura and Konda,2007;Schott etal.,2009;Luo etal.,2010;Roxy etal.,2011).

    It has been suggested that ENSO prediction by both statistical(Clarke and Van Gorder,2003;Izumo et al.,2010; Izumo etal.,2014)and dynamicalmodels(Luo etal.,2010) is improved by including Indian Ocean information.Forexample,Izumo et al.(2010)predicted the ENSO peak during 1981–2009 w ith a lead time of 14 months by adopting the corresponding borealautumn Dipole Mode Index(DM I) and warm water volume(WWV)as predictors.They also extended this conclusion to ENSO forecasting during 1872–2008(Izumo etal.,2014),and revealed that the DM Iis much more helpful in improving ENSO hindcast skill compared w ith an Indian Ocean basin-w ide mode,the Indian Monsoon,or the ENSO index itself.These results imply that the IOD may significantly influence ENSO predictability.Furthermore,the atmospheric bridge is suggested to be a lead-ing contributor to the influence of IOD on ENSO(Alexander etal.,2002;Annamalaiet al.,2005;Kug and Kang,2006). Gear-like coupling between the Indian and Pacific oceans (GIP)is anothermechanism proposed to interpretthe interactions between the tropical Indian and Pacific Ocean climate systems(Wu and Meng,1998).Sensitivity experiments have shown that,through GIP,the air–sea interaction in one ocean basin forced by zonal w ind stress anomalies can cause air–sea interaction in the otherocean,resulting in anomalous SST (Meng and Wu,2000).

    By calculating observed time series lag correlations,Yuan etal.(2013)recently suggested that the influence of the IOD on ENSO may occur via the Indonesian Throughflow(ITF), the only ocean channel between the tropical Indian and Pacific oceans.Earlier,they had also conducted GCM sensitivity experiments w ith a closed atmospheric bridge which,togetherw ith the observational results,confi rmed theirhypothesis(Yuan etal.,2011).The results suggest that it is the ITF that can convey the IOD event forcing into the tropical Pacific Ocean in the follow ing year.However,itis worth noting that Yuan etal.(2011)only studied the influence of one IOD event(in 1997)on the follow ing year’s Pacific Ocean air–sea coupled system,and did so using the LASG(State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynam ics)IAP(Institute of Atmospheric Physics)Climate Ocean Model(LICOM)and a coupled model.Moreover,the 1997 IOD eventwas an extreme positive event.In thispaper,we ask ifanotherocean model—version 2 of the Parallel Ocean Program(POP2)ocean general circulation model(OGCM)—shows sim ilar connections between positive IOD events and subsequent La Ni?na-like states.Like ENSO events,IOD events also possess significantasymmetry(Hong etal.,2008a;2008b).Therefore,we also question how a negative IOD event influences ENSO in the Pacific Ocean:Is it opposite to that of a positive IOD? A lso,to what extent does the IOD forcing contribute to the Pacific variability associated w ith ENSO?These questions are addressed in the presentstudy.

    The remainderof this paper is organized as follows.Section 2 describes the model and data used in this study.The experimental strategy is introduced in section 3.The role of the ITF in conveying IOD forcing to the Pacific Ocean is investigated in section 4.The contribution of IOD forcing to the Pacific variability associated w ith ENSO via the ITF is estimated in section 5,followed by a summary and discussion in section 6.

    2.M odeland data

    Fig.1.Simulation of ENSO and IOD in the CESM 1.0.3 control run(year0051–0150).Powerspectrum of(a)the Ni?no3 index and(b)Dipole Mode Index(DM I).(c)Fourteen positive/negative IOD events from the coupled model(dashed lines)(mean shown in bold).(d)Monthly mean climatological ITF transportvolume.

    The POP2 OGCM(Danabasoglu etal.,2011),originally developed at the Los Alamos National Laboratory,butw ith more recentwork on parameterizations largely added by theNational Center for Atmospheric Research,is used in this study.It is az-level hydrostatic primitive equation model w ith 60 levels.The vertical spacing is 10 m at the surface and varies w ith depth.The nom inal horizontal resolution is 1?×1?in the off-equatorialarea w ith an enhanced resolution of(1/3)?latitude by 1?longitude in the tropics.

    The observationaldata used are from version 2 of the Coordinated Ocean Research Experiments(COREv2),w ith a horizontal resolution of 1.9?(lat)× 1.875?(lon).The relevant variables include:the atmospheric forcing of precipitation;airabsolute humidity;sea levelpressure;air temperature;w ind speed;and longwave downward,shortwave downward,and shortwave upward radiation.All these forcing data are from the Geophysical Fluid Dynam ics Laboratory (GFDL)website(http://data1.gfdl.noaa.gov/nomads/forms/ mom4/COREv2.htm l).Observational sea surface height (SSH)from the TOPEX/Poseidon satellite mission is also used.

    Due to the shorthistory of observational records,we additionally use forcing data extracted from a coupled general circulation model’s long-term run.Since version 1.0.3 of the Community Earth System Model(CESM 1.0.3)(which uses POP2 as its ocean component)simulates both the ENSO (Deser et al.,2012)and IOD well,and provides an acceptable simulation of the ITF(Large and Danabasoglu,2006; Jochum et al.,2009),we adopt the output of this coupled model to validate the results obtained from the observation. CESM 1.0.3 has been integrated for 150 years,and the fi rst fi fty years(0001–0050)of the coupled run are discarded due to the initial adjustment of the model.The simulated ENSO in the coupled modelhasa period of3–6 years(Fig.1a),w ith a reasonable amplitude and latitudinal w idth of the anomalous equatorial zonal w ind stress.El Ni?no events modeled by CESM 1.0.3,like observed ENSO events,also peak at the end of the calendar year.The simulated IOD has a period of 1–2 years(Fig.1b),usually peaking in boreal autumn and decaying in boreal w inter(Fig.1c),and roughly captures the features of observed IOD events.Because the 6?S section goes through three major channels—the Lombok Strait, the Ombai Strait,and the Timor Sea—the ITF in this studyis defined as the flow across the 6?S section from 115?E to 130?E in the upper700 m of the Indonesian seas.The simulated monthly mean climatology of the ITF transportvolume (Fig.1d)also has a signifi cant seasonal signal,which peaks in summerand decays in w inter.This feature is in accordance w ith other OGCM simulation products(Lee etal.,2010)and observations(Wyrtki,1987;Meyers etal.,1995;Shinoda et al.,2012).Based on this analysis,we accept that the simulated ENSO,IOD and ITF are suitable for investigating the role of the ITF in connecting the Indian and Pacific oceans.

    Fig.2.OGCM-simulated SSHAs between sensitivity runs forced by atmospheric forcing from observed positive IOD events and a control run during Jul(0)to Apr(1)over the Indian Ocean(contour interval:2 cm)and Pacific Ocean(contour interval: 0.2 cm).

    3.Design of the sensitivity experiments

    We use the POP2 OGCM to conduct numerical experiments.The model is fi rstintegrated w ith climatological forcing for 60 years,referred to hereafter as the“control run”. Then,sensitivity experiments are conducted at the end of year 57 to replace the Indian Ocean forcing w ith the daily w ind stress and heat flux ofan IOD year.The differences between the sensitivity experiments and the OGCM control run thus represent the interannual variations of the Indian Ocean circulation forced by the IOD w ind and heat flux anomalies in a non-coupled configuration,i.e.the IOD forcing influences on the Pacific Ocean through the Indonesian passages. In this study,we focus on the differences between the sensitivity experiments and the OGCM control run to explore the role played by the ITF during both positive and negative IOD events in influencing Pacific SST associated with ENSO.For simplicity,we use the term“anomalies”to denote these differences.

    For the observational run,the mean atmospheric state(see section 2)during 1970–2000 is used as the climatological forcing.The daily atmospheric forcing associated w ith the positive IOD years of1982,1983,1991,1994 and 2006,and the negative IOD years of 1975,1980,1981,1989 and 1992, are used.For the model data,atmospheric data of 14 positive IOD events and 14 negative IOD events from the coupled long-term run of CESM 1.0.3(shown in Fig.1c)and the mean of 100 years of the control run are used as daily and climatological forcing,respectively.

    4.Role of the ITF in conveying the IOD forcing on the Pacific Ocean

    First,we compare the POP2 simulations to those of Yuan etal.(2011)in describing the role of the ITF during the 1997 positive IOD event.The sensitivity experiments associated w ith the 1997 positive IOD event show that it can induce a La Ni?na-like mode in the follow ing yearvia the ITF,in good agreementw ith the results of Yuan etal.(2011)(for brevity, the details are om itted here).Having established this good agreement,we proceed to simulate the role of the ITF in conveying the positive IOD impact on the Pacific SST by conducting more sensitivity experiments w ith IOD forcing using POP2.In particular,we investigate the role of the ITF in conveying the negative IOD’s forcing on Pacifi c SST.

    4.1.Role of the ITF in conveying the positive IOD forcing on the Pacifi c Ocean

    4.1.1.Sensitivity experiments forced by the observed atmosphere during positive IOD events

    First,we use the observed climatological atmospheric state to force the POP2 model,producing a control run.Second,two-year sensitivity experiments are performed using the observed daily heat flux and w ind observations from positive IOD years(1982,1983,1991,1994 and 2006)and their follow ing years as the external forcing over the Indian Ocean, whilst at the same time retaining the climatological atmospheric forcing over other ocean basins.The differences between the sensitivity experiments and the control run are obtained as the so-called anomalies,including SSH anomalies (SSHAs)and sea surface temperature anomalies(SSTAs),to identify the role of the ITF in the IOD’s influence on the Pacific SST associated w ith ENSO.

    Fig.3.The ITF anomaly for(a)volume transport and(b) heat flux transportdifferences between sensitivity experiments of observed positive IOD events and the OGCM control run (dashed lines).Solid bold lines represent the mean.

    Figure 2 displays the composite SSH anomalies of the observed positive IOD forcing periods over the Indian Ocean and the Indo-Pacific regions from Jul(0)to Apr(1)(“0”and“1”denote the IOD year and the subsequent year,respectively).Positive IODs occurw ith positive SSHAs in the western Indian Ocean,and negative SSHAs in the east;the nega-tive SSHAs in the eastern Indian Ocean indicate a shoaled thermocline and upwelling currents.The upwelling anomalies are amplified and transported into the Pacific Ocean in Aug(0),and persist in the equatorial Pacific Ocean into the follow ing year.The SSHAs indicate that the differences between the sensitivity experiments and the control run arise from the shutting down of the atmospheric bridge while the ITF remains.The resulting propagation of negative SSHAs from the Indian Ocean to the Pacific Ocean demonstrates the role of the ITF in connecting the Indian Ocean and Pacific Ocean interannualanomalies.

    The anomalies of ITF volume and heat transport along 6?S are shown in Fig.3.If the ITF anomalies are positive (negative),it means that the warm pool loses(gains)more heatand WWV to(from)the Indian Ocean,implying a propagation of the cold(warm)temperature anomalies from the Indian Ocean to Pacific Ocean.During positive IOD event years,the ITF anomalies become positive in Aug(0),peak in Dec(0),decay over the w inter and reverse to negative in Mar(1).Positive ITF transport anomalies lead to cold sea temperature anomalies in the eastern Indian Ocean to Pacific Ocean,thus inducing a La Ni?na-like state in the Pacific Ocean.

    Figure 4 plots the subsurface temperature anomalies in the equatorialverticalsection of the Pacific Ocean.Itclearly shows that cold subsurface sea temperature anomalies fi rst appear in the western Pacific in Aug(0),as a result of ITF anomalies.These cold anomalies then propagate into the eastern Pacific,maintaining a La Ni?na-like cooling state until the follow ing year.The propagation of these cold subsurface temperature anomalies also suggests a role of the ITF during positive IOD forcing,leading to an influence on the follow ing year’s La Ni?na events in the Pacific Ocean.

    4.1.2.Sensitivity experiments forced by CESM 1.0.3 atmospheric forcing during positive IOD events

    The observational record associated w ith IOD events has a short history.Therefore,to further validate the results in section 4.1.1,we use the outputs of the coupled model, CESM 1.0.3,to repeat the experiments.A totalof14 positive IOD events(see Fig.1c)are selected,based on the 100-year time series of SSTAs in the coupled modeloutputs,and from which the atmospheric forcing fields are extracted.A ll the sensitivity experiments are completed using the same experimental strategy described in section 4.1.1,except that the climatologicaland positive IOD atmospheric forcing are extracted from the 100-year time series of the long-term run of CESM 1.0.3.

    Sim ilar to the results shown in section 4.1.1,negative SSHAs are established in the eastern Indian Ocean in summer,indicating an anomalous upwelling that induces cold temperature anomalies. These upwelling anomalies and SSHAs propagate through the Indonesian seas,giving rise to cold temperature anomalies in the subsurface layer of the tropicalwestern Pacifi c(Fig.5).These cold anomalies propagate to the tropical eastern Pacific,where they ultimately dom inate and result in a La Ni?na-like mode in the following year.The cold anomalies in the eastern Pacific Ocean are much weaker than those from the sensitivity experiments using the observed positive IOD forcing.These differences may result from the deficiencies of the coupled modelin simulating the IOD strength.

    Fig.4.Composite OGCM-simulated sea temperature anomalies(units:?C)in the equatorial vertical section of the Pacific Ocean between sensitivity experiments forced by observed positive IOD events and the control run during Feb(0)to Jun(1).

    Fig.5.As in Fig.4,but for composite temperature anomalies from sensitivity experiments on the 14 positive IOD events from the CESM 1.0.3 long-term run.

    Fig.6.As in Fig.2,but for composite SSHAs from sensitivity experiments on negative observed IOD events.

    These results demonstrate that,asin the observation,positive IOD events modeled by CESM 1.0.3 can influence thestate of the Pacific Ocean in the follow ing year through the tropicalocean channel.This suggests that the role of the ITF in conveying the positive IOD impacton the follow ing year’s ENSO is robust.

    4.2.Role of the ITF in the infl uence of negative IOD on Pacifi c SST

    As demonstrated in section 4.1,a positive IOD event may induce negative SSHAs in the eastern Indian Ocean. Upwelling anomalies associated w ith these negative SSHAs propagate across the ITF passages and spread eastward,inducing cold anomaliesin the eastern Pacific Ocean and forming La Ni?na-like SST anomalies in the follow ing year.In this section,we investigate the role of the ITF during negative IOD events in influencing the Pacific SST.

    Forobserved negative IOD events,the design of the sensitivity experimentis the same as thatin section 4.1.1,except that the atmospheric forcing in negative IOD years(1975, 1980,1981,1989 and 1992)is used as the forcing factor in the experiments.Figure 6 plots the composite SSHAs corresponding to the observed negative IOD events from Jul(0) to Apr(1)over the Indian Ocean and Pacific region.The negative SSHAs in the western Indian Ocean,and the positive anomalies in the east,indicate the existence of a negative IOD.The positive SSHAs in the eastern Indian Ocean suggestan enhancementof the thermocline depth and downwelling signals.These SSHAs and downwelling anomalies get stronger in the follow ing months,propagating into the western Pacific Ocean.The propagation of the positive SSHAs into the Pacific Ocean must take place through the Indonesian seas because the atmospheric bridge is closed in these sensitivity experiments.

    The ITF volume and heat flux transportanomalies shown in Fig.7 furtherdemonstrate the role of the ITF.The negative ITF anomalies during negative IOD events appear in Aug(0), peak in Dec(0),and reverse sign in Mar(1).The negative ITF transportanomalies prove that the downwelling anomalies in the eastern Indian Ocean propagate from the Indian Ocean to the western Pacific Ocean.These downwelling anomalies further induce an El Ni?no-like state in the Pacific Ocean, which can be traced from the sea temperature anomalies in the vertical section of the equatorial Pacific Ocean(see Fig. 8).This shows that in the tropical Pacific Ocean,warm subsurface sea temperature anomaliesappear in the western part, as a resultof ITF transportanomalies.These warm anomalies then propagate to the eastern Pacific,maintaining an El Ni?no-like warm ing state through to the nextyear.

    Similar to the analysisofpositive IOD events,furthersensitivity experiments are conducted to examine the role of the ITF in the influence of negative IOD on the Pacific Ocean (Fig.9),but w ith the atmospheric forcing provided by 14 negative IOD events from the CESM 1.0.3 coupled long-term run(Fig.1c).The results correlate closely w ith the observed atmospheric forcing.Therefore,we conclude that negative IOD events can influence ENSO via the ITF,leading to an El Ni?no-like state in the tropical Pacific Ocean in the follow ing year.

    Fig.7.As in Fig.3,but for the ITF anomalies from sensitivity experiments on negative observed IOD events.

    5.Estimation of the contribution of IOD forcing to the Pacific variability associated w ith ENSO

    In this study,the role of the ITF in the influence of both positive and negative IOD forcing on ENSO is explored.Specifically,positive IOD forcing in the tropical Indian Ocean can resultin negative SSHAsin the eastern Indian Ocean.These negative SSHAs pass through the Indonesian seas and lead to a La Ni?na-like state in the eastern Pacific Ocean the follow ing year.For negative IOD forcing,positive SSHAs appear in the eastern Indian Ocean and propagate into the western Pacific Ocean through the ITF,and then these positive SSHAs ultimately induce an El Ni?no-like state the follow ing year.We notice thatthe SSHAs excited by the IOD forcing in the Indian Ocean are signifi cantly reduced when entering the Pacific Ocean(see Figs.2 and 6).Consequently, we wonder to whatextent the IOD forcing contributes to the Pacific variability associated w ith ENSO.

    Fig.8.As in Fig.4,but for composite temperature anomalies from sensitivity experiments on negative observed IOD events.

    Fig.9.As in Fig.4,but for composite temperature anomalies from sensitivity experiments on 14 negative IOD events from the CESM 1.0.3 long-term run.

    To address this question,we calculate the SSHAs in the Indian and Pacific oceans under the uncoupled configuration, and compare them w ith the SSH standard deviation under the coupled configuration to estimate the contribution of the IOD forcing to the ENSO-related Pacific variability.We fi rst calculate the SSH standard deviation in the Indian and Pacific oceans in terms of the CESM 1.0.3 output in the model years 0051 to 0150,and the observations(TOPEX/POSEIDON) during the period 1980–2008.Since IOD events often peak in boreal autumn and the SSH variability may have a much larger influence on the tropical Pacific Ocean via the ITF, we plot the SSH standard deviation in this season(exactly in November),derived from both CESM 1.0.3 and observations, in Figs.10a and b.The results indicate that the modelgoes some way toward representing the true situation,such that it can be used to estimate the contribution of the IOD forcing to the ENSO-related Pacific variability through the ITF.Meanwhile,since the SSHAs in the eastern Indian Ocean can indicate the propagation of Indian Ocean anomalies to the Pacific through the ITF(see section 4),and the SSHAs in the eastern Pacific Ocean are closely related to ENSO,we further calculate the SSH standard deviation in the eastern Indian Oceanand eastern Pacific Ocean(represented by regions A and B in Fig.10,where the SSHAsare shown to be largest)in November.Results for regions A and B also indicate that the model closely reproduces the observed situation.It is conceivable that,if only IOD forcing over the Indian Ocean is considered and the atmospheric forcing over the Pacific Ocean is the climatological state,then the change of the Pacific variability associated w ith ENSO may solely depend on the IOD forcing via the ITF.Therefore,SSHAs in region B under the uncoupled configuration and the SSH standard deviation under the coupled configuration can be compared to estimate the contribution of the IOD forcing to the Pacific variability associated w ith ENSO.

    Fig.10.The SSH standard deviation(units:cm)in November from(a1)observations(TOPEX/POSEIDON)and(b1) the coupled model CESM 1.0.3.The ensemble mean of the SSHAs induced by the(c1)observed positive IOD forcing, and(d1)negative IOD forcing in sensitivity experiments.Panels(a2–d2)represent the averaged SSHA values(units: cm)over regions A and B.

    Figures 10c1 and 10d1 plot the ensemble means of the SSHAsduring Nov(0)composited from all the observed positive and negative IOD forcings used in this study.For positive IOD forcing,during Nov(0),when positive IOD events peak,the ensemble mean of the SSHAs in region A is about -5.4 cm,which is roughly equal to the SSH standard deviation there;while in region B,the ensemble mean of the SSHAs is-0.61 cm.Quantitatively,positive IOD forcing in the Indian Ocean may explain about8%(0.61 cm divided by 7.27 cm)of the SSHAs in the eastern Pacific.For negative IOD forcing,itis shown in Figs.10d1 and 10d2 thatnegative IOD forcing can also explain about8%of the ElNi?no-related SSHAs in the eastern Pacific through the ITF.

    We notice that the sensitivity experiments shown in Figs. 10c and 10d tend to underestimate the SSHAs in the eastern Indian Ocean.Correspondingly,the SSHAs in the eastern Pacific m ightalso be underestimated.Despite this,the small SSHAs in the eastern Pacific induced by the IOD forcing in the Indian Ocean could also exhibit significant grow th due to the air–sea interaction in the tropical Pacific Ocean,and thereby greatly influence ENSO.

    6.Summary and discussion

    We use the oceanic model POP2,w ith observed and coupled-model-simulated external forcing from positive and negative IOD atmospheric data,to conductsensitivity experiments to exam ine the role of the ITF in the influence of the IOD on ENSO.

    The results demonstrate that positive IOD events,both observed and modeled,can influence(via the ITF)the SSTAs associated w ith ENSO in the tropical eastern Pacific,inducing a La Ni?na-like state in the Pacific Ocean the next year. Upwelling anomalies in the eastern Indian Ocean,indicated by negative SSHAs,can penetrate into the western Pacific Ocean through Indonesian sea passages.These SSHAs propagate furthereastward,inducing cooling in the eastern Pacific Ocean the follow ing year.These results are in accordance w ith those of the 1997 positive IOD eventobtained by Yuan etal.(2011).

    We further investigate the role of the ITF in the influence ofnegative IOD on ENSO.We demonstrate thatnegative IOD events can also influence the Pacific Ocean in the follow ing year through the ITF.Physically,downwelling anomalies in the eastern Indian Ocean,reflected by positive SSHAsduring negative IOD events,propagate via the ITF into the western Pacific Ocean.These anomalies can further induce warm anomalies in the subsurface of the western Pacific and propagate eastward to the surface of the eastern Pacific.Ultimately, they result in an El Ni?no-like SSTA state.Therefore,it is clear that the mechanism of the influence ofnegative IOD on the Pacific Ocean in the follow ing year is symmetrical to that of positive IOD.

    We also estimate the contribution of IOD forcing to the ENSO-related Pacific variability.About8%of the eastern Pacific SSH variability associated w ith ENSO can be attributed to the IOD forcing in the tropical Indian Ocean through the ITF.However,this resultmay be dependenton the modelwe used.More sensitivity experiments carried outusing different models is recommended.

    Finally,we note that the ITF is a complex passage involving three major channels:the Lombok Strait,the Ombai Strait,and the Timor Sea.The current level of know ledge aboutthese channels lim its ourunderstanding of the ITF transportation mechanism.In this study,we simply treat the ITF as a“black box”and do not consider how the upwelling and downwelling anomalies propagate from the Indian to the Pacific Ocean.

    Acknow ledgements.The authors appreciate the anonymous reviewers very much for their valuable comments and suggestions.This work was sponsored by the National Public Benefi t (Meteorology)Research Foundation of China(Grant No.GYHY 201306018).

    REFERENCES

    A lexander,M.A.,I.Blade,M.Newman,J.R.Lanzante,N.C. Lau,and J.D.Scott,2002:The atmospheric bridge:The influence of ENSO teleconnections on air–sea interaction over the globaloceans.J.Climate,15,2205–2231.

    Allan,R.J.,and Coauthors,2001:Is there an Indian Ocean dipole and is itindependentof the ElNi?no-Southern Oscillation?InternationalCLIVAR Project Office,18–22.

    Annamalai,H.,S.P.Xie,J.P.McCreary,and R.Murtugudde, 2005:Impactof Indian Ocean sea surface temperature on developing ElNi?no.J.Climate,18,302–319.

    Baquero-Bernal,A.,M.Latif,and S.Legutke,2002:On Dipolelike variability of sea surface temperature in the tropical Indian Ocean.J.Climate,15,1358–1368.

    Behera,S.K.,J.J.Luo,S.Masson,S.A.Rao,H.Sakuma,and T. Yamagata,2006:A CGCM study on the interaction between IOD and ENSO.J.Climate,19,1688–1705.

    Chen,D.,M.A.Cane,A.Kaplan,S.E.Zebiak,and D.Huang, 2004:Predictability of El Ni?no over the past 148 years.Nature,428,733–736.

    Clarke,A.J.,and S.Van Gorder,2003:Improving ElNi?no prediction using a space-time integration of Indo-Pacific w inds and equatorial Pacific upper ocean heat content.Geophys.Res. Lett.,30,1399,doi:10.1029/2002GL016673.

    Danabasoglu,G.,and Coauthors,2011:The CCSM 4 ocean component.J.Climate,25,1361–1389.

    Deser,C.,and Coauthors,2012:ENSO and Pacific decadal variability in the community climate system model version 4.J. Climate,25,2622–2651.

    Diaz,H.F.,M.P.Hoerling,and J.K.Eischeid,2001:ENSO variability,teleconnections and climate change.International Journal ofClimatology,21,1845–1862.

    Hong,C.-C.,T.Li,and J.-J.Luo,2008a:Asymmetry of the Indian Ocean dipole.Part II:Model diagnosis.J.Climate,21, 4849–4858.

    Hong,C.-C.,T.Li,L.Ho,and J.-S.Kug,2008b:Asymmetry of the Indian Ocean dipole.Part I:Observationalanalysis.J.Climate,21,4834–4848.

    Izumo,T.,M.Lengaigne,J.Vialard,J.J.Luo,T.Yamagata,and G. Madec,2014:Influence of Indian Ocean Dipole and Pacific recharge on follow ing year’s El Ni?no:Interdecadal robustness.Climate Dyn.,42,291–310.

    Izumo,T.,and Coauthors,2010:Influence of the state of the Indian Ocean Dipole on the follow ing year’s El Ni?no.Nature Geoscience,3,168–172.

    Jin,E.,and Coauthors,2008:Current status of ENSO prediction skill in coupled ocean–atmosphere models.Climate Dyn.,31, 647–664.

    Jochum,M.,B.Fox-Kemper,P.H.Molnar,and C.Shields, 2009:Differences in the Indonesian seaway in a coupled climate model and their relevance to Pliocene climate and El Ni?no.Paleoceanography,24,PA1212,doi:10.1029/2008PA 001678.

    Kug,J.S.,and I.S.Kang,2006:Interactive feedback between ENSO and the Indian Ocean.J.Climate,19,1784–1801.

    Large,W.G.,and G.Danabasoglu,2006:Attribution and impacts ofupper-ocean biases in CCSM 3.J.Climate,19,2325–2346.

    Latif,M.,and Coauthors,1998:A review of the predictability and prediction of ENSO.J.Geophys.Res.:-Oceans,103,14375–14393.

    Lau,N.-C.,and M.J.Nath,2003:Atmosphere–Ocean Variations in the Indo-Pacific Sector during ENSO Episodes.J.Climate, 16,3–20.

    Lee,T.,and Coauthors,2010: Consistency and fidelity of Indonesian-throughflow total volume transport estimated by 14 ocean data assimilation products.Dyn.Atmos.Oceans,50, 201–223.

    Luo,J.-J.,S.Masson,S.K.Behera,and T.Yamagata,2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model.J.Climate,21,84–93.

    Luo,J.-J.,R.Zhang,S.K.Behera,Y.Masumoto,F.-F.Jin,R. Lukas,and T.Yamagata,2010:Interaction between El Ni?no and Extreme Indian Ocean Dipole.J.Climate,23,726–742.

    Meng,W.,and G.X.Wu,2000:Gearing between the Indian and Pacific Ocean(GIP)and the ENSO,Part2.modelsimulation. Chinese JournalofAtmospheric Sciences,24,15–25.(in Chinese)

    Meyers,G.,R.J.Bailey,and A.P.Worby,1995:Geostrophic transport of Indonesian Throughflow.Deep-Sea Research Part IOceanographic Research Papers,42,1163–1174.

    Nagura,M.,and M.Konda,2007:The seasonal developmentof an SST anomaly in the Indian Ocean and its relationship to ENSO.J.Climate,20,38–52.

    Nicholls,N.,W.Drosdowsky,and A.M.S.Ams,2001:Is there an equatorial Indian Ocean SST dipole,independentof the El Ni?no-Southern Oscillation?Climate Variability,the Oceans, and Societal Impacts,The The 81stAMS AnnualMeeting,Albuquerque,NM,U.S.,January 2001,17–18.

    Roxy,M.,S.Gualdi,H.K.L.Drbohlav,and A.Navarra,2011: Seasonality in the relationship between El Ni?no and Indian Ocean dipole.Climate Dyn.,37,221–236.

    Saji,N.H.,and T.Yamagata,2003:Structure of SST and surface w ind variability during Indian Ocean dipole mode events: COADS observations.J.Climate,16,2735–2751.

    Schott,F.A.,S.P.Xie,and J.P.M cCreary Jr.,2009:Indian ocean circulation and climate variability.Rev.Geophys.,47,doi: 10.1029/2007RG000245.

    Shinoda,T.,W.Han,E.J.Metzger,and H.E.Hurlburt,2012:Seasonal Variation of the Indonesian Throughflow in Makassar Strait.J.Phys.Oceanogr.,42,1099–1123.

    Tippett,M.K.,A.G.Barnston,and S.Li,2011:Performance of recent multimodel ENSO forecasts.J.Appl.Meteor.Climatol.,51,637–654.

    Wang,B.,R.G.Wu,and X.H.Fu,2000:Pacific–East Asian teleconnection:How does ENSO affect East Asian climate?J. Climate,13,1517–1536.

    Wu,G.,and W.Meng,1998:Gearing between the Indian and Pacific Ocean(GIP)and the ENSO,Part1.Data analyses.Chinese Journal of Atmospheric Sciences,22,470–480.(in Chinese)

    Wyrtki,K.,1987:Indonesian through flow and the associated pressure gradient.J.Geophys.Res.:Oceans,92,12941–12946.

    Yuan,D.L.,and Coauthors,2011:Forcing of the Indian Ocean Dipole on the interannual variations of the tropical Pacific Ocean:Roles of the Indonesian Throughflow.J.Climate,24, 3593–3608.

    Yuan,D.L.,H.Zhou,and X.Zhao,2013:Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean Dipole through the Indonesian Throughflow.J. Climate,26,2845–2861.

    :Zhou,Q.,W.S.Duan,M.Mu,and R.Feng,2015:Influence of positive and negative Indian Ocean dipoles on ENSO via the Indonesian Throughflow:Results from sensitivity experiments.Adv.Atmos.Sci.,32(6),783–793,

    10.1007/s00376-014-4141-0.

    (Received 1 July 2014;revised 10 October 2014;accepted 15 November 2014)

    ?Corresponding author:DUAN Wansuo Email:duanws@lasg.iap.ac.cn

    ?Institute of Atm ospheric Physics/Chinese Academ y of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2015

    免费人成视频x8x8入口观看| 亚洲专区国产一区二区| 亚洲va日本ⅴa欧美va伊人久久| 黑人巨大精品欧美一区二区mp4| 99久久久亚洲精品蜜臀av| 久久国产乱子伦精品免费另类| 午夜福利,免费看| 午夜亚洲福利在线播放| 欧美黄色淫秽网站| 色综合婷婷激情| 久热爱精品视频在线9| 最好的美女福利视频网| 女生性感内裤真人,穿戴方法视频| 母亲3免费完整高清在线观看| 欧美日韩福利视频一区二区| 两个人看的免费小视频| 久久久久久免费高清国产稀缺| 黄色女人牲交| 99riav亚洲国产免费| 亚洲男人的天堂狠狠| 国产精品亚洲美女久久久| 波多野结衣高清无吗| 亚洲熟妇中文字幕五十中出| 午夜精品在线福利| 日韩大尺度精品在线看网址 | 久久九九热精品免费| 久久伊人香网站| 亚洲午夜精品一区,二区,三区| 波多野结衣av一区二区av| 亚洲中文av在线| 91字幕亚洲| 一进一出抽搐gif免费好疼| 天天躁狠狠躁夜夜躁狠狠躁| 天天躁狠狠躁夜夜躁狠狠躁| 一进一出好大好爽视频| 欧美黄色片欧美黄色片| 视频区欧美日本亚洲| а√天堂www在线а√下载| 十八禁人妻一区二区| 国产精品亚洲av一区麻豆| 国产激情久久老熟女| 欧美日韩亚洲国产一区二区在线观看| 久久久久精品国产欧美久久久| 看黄色毛片网站| 国语自产精品视频在线第100页| 18禁观看日本| 午夜福利18| 精品电影一区二区在线| 亚洲伊人色综图| 亚洲片人在线观看| 国产精品一区二区三区四区久久 | 动漫黄色视频在线观看| 男女午夜视频在线观看| 国产精品久久久久久精品电影 | 亚洲成人精品中文字幕电影| 两个人免费观看高清视频| 88av欧美| 视频区欧美日本亚洲| av视频在线观看入口| 精品国产乱码久久久久久男人| 久久久久久久久久久久大奶| 欧美人与性动交α欧美精品济南到| 精品熟女少妇八av免费久了| 中出人妻视频一区二区| 国产在线精品亚洲第一网站| 午夜日韩欧美国产| 欧美日韩精品网址| 久久久久久免费高清国产稀缺| 欧美日本亚洲视频在线播放| 日韩欧美三级三区| 日本精品一区二区三区蜜桃| 一级片免费观看大全| 精品久久久久久成人av| 一边摸一边抽搐一进一出视频| 男人舔女人下体高潮全视频| 久久久久国内视频| 成人欧美大片| 在线视频色国产色| 国产精品久久视频播放| www.熟女人妻精品国产| 黄网站色视频无遮挡免费观看| 国产91精品成人一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品久久男人天堂| 国产99白浆流出| 老汉色av国产亚洲站长工具| 免费不卡黄色视频| 欧美激情久久久久久爽电影 | 正在播放国产对白刺激| 黄色 视频免费看| 长腿黑丝高跟| 少妇被粗大的猛进出69影院| www.999成人在线观看| 亚洲欧美一区二区三区黑人| 午夜日韩欧美国产| 国产熟女xx| 精品少妇一区二区三区视频日本电影| 成人av一区二区三区在线看| 日本精品一区二区三区蜜桃| a在线观看视频网站| 成人18禁高潮啪啪吃奶动态图| 又黄又爽又免费观看的视频| 国产一级毛片七仙女欲春2 | 在线观看免费视频日本深夜| 美女免费视频网站| 嫩草影院精品99| 午夜精品久久久久久毛片777| 国产日韩一区二区三区精品不卡| 777久久人妻少妇嫩草av网站| 此物有八面人人有两片| 天堂动漫精品| 丝袜人妻中文字幕| 在线av久久热| 久久精品国产99精品国产亚洲性色 | 亚洲av成人av| 母亲3免费完整高清在线观看| 老司机午夜福利在线观看视频| 看免费av毛片| 国产精品免费视频内射| 国产成人系列免费观看| 国产一区二区激情短视频| 高清黄色对白视频在线免费看| 禁无遮挡网站| 亚洲国产精品久久男人天堂| 国产免费男女视频| 日韩欧美国产一区二区入口| 99国产精品免费福利视频| 亚洲黑人精品在线| 亚洲精品国产一区二区精华液| 久久久久久久久中文| 黄色 视频免费看| 国产91精品成人一区二区三区| 国产亚洲精品久久久久5区| 亚洲成av人片免费观看| 欧洲精品卡2卡3卡4卡5卡区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品无人区| 午夜免费激情av| 伦理电影免费视频| 免费无遮挡裸体视频| 国产欧美日韩一区二区三区在线| 亚洲国产毛片av蜜桃av| 日韩欧美三级三区| 免费看美女性在线毛片视频| 后天国语完整版免费观看| 国产单亲对白刺激| 少妇熟女aⅴ在线视频| 亚洲国产欧美日韩在线播放| 亚洲,欧美精品.| 久久香蕉国产精品| 香蕉丝袜av| 欧美日韩一级在线毛片| 亚洲国产中文字幕在线视频| 91九色精品人成在线观看| 亚洲中文字幕一区二区三区有码在线看 | 999久久久精品免费观看国产| 免费av毛片视频| 日本免费a在线| 国产精品秋霞免费鲁丝片| 国产成人av激情在线播放| 亚洲电影在线观看av| 国产一卡二卡三卡精品| 国产精品久久久久久人妻精品电影| 给我免费播放毛片高清在线观看| 老司机福利观看| 日日摸夜夜添夜夜添小说| 亚洲av五月六月丁香网| 午夜福利欧美成人| 一个人观看的视频www高清免费观看 | 他把我摸到了高潮在线观看| 国产精品精品国产色婷婷| 美女 人体艺术 gogo| 亚洲精品国产色婷婷电影| 久久精品亚洲熟妇少妇任你| 亚洲伊人色综图| 欧美黄色片欧美黄色片| 亚洲av熟女| 亚洲免费av在线视频| 成人欧美大片| 亚洲一区二区三区色噜噜| 日韩成人在线观看一区二区三区| 制服丝袜大香蕉在线| 国产国语露脸激情在线看| 午夜福利成人在线免费观看| 国产精品98久久久久久宅男小说| 日韩欧美一区视频在线观看| 日日干狠狠操夜夜爽| 色综合欧美亚洲国产小说| 国产1区2区3区精品| 国产精品乱码一区二三区的特点 | 日韩欧美三级三区| 一边摸一边抽搐一进一小说| 很黄的视频免费| 可以在线观看的亚洲视频| 午夜久久久久精精品| 久久精品亚洲熟妇少妇任你| 欧美日韩瑟瑟在线播放| 国产男靠女视频免费网站| 精品国产美女av久久久久小说| 亚洲人成77777在线视频| 麻豆av在线久日| 欧美日韩福利视频一区二区| 夜夜躁狠狠躁天天躁| 精品少妇一区二区三区视频日本电影| 亚洲片人在线观看| 最近最新免费中文字幕在线| 国产成人啪精品午夜网站| 女性被躁到高潮视频| 美女大奶头视频| 免费观看人在逋| 十分钟在线观看高清视频www| 色综合婷婷激情| 久久久久亚洲av毛片大全| 国产成人精品在线电影| 久久久国产成人免费| 国产aⅴ精品一区二区三区波| 国产亚洲精品av在线| 黄网站色视频无遮挡免费观看| 午夜免费观看网址| 亚洲精品中文字幕一二三四区| 欧美人与性动交α欧美精品济南到| 日本三级黄在线观看| 男男h啪啪无遮挡| 在线观看www视频免费| 巨乳人妻的诱惑在线观看| 国产亚洲精品久久久久5区| 欧美在线一区亚洲| 一进一出抽搐动态| 91麻豆av在线| 麻豆一二三区av精品| 午夜福利影视在线免费观看| 国产成人系列免费观看| 欧美日韩乱码在线| e午夜精品久久久久久久| 香蕉久久夜色| 午夜影院日韩av| 国产精品日韩av在线免费观看 | 成人欧美大片| 老司机靠b影院| 欧美午夜高清在线| 久久精品国产亚洲av高清一级| 欧美日韩福利视频一区二区| 欧美日韩亚洲国产一区二区在线观看| 国内精品久久久久精免费| 精品国产亚洲在线| 国产主播在线观看一区二区| 国产一区二区三区在线臀色熟女| 国产色视频综合| 亚洲精品国产一区二区精华液| 真人做人爱边吃奶动态| 一区二区三区国产精品乱码| 麻豆久久精品国产亚洲av| 99国产精品免费福利视频| 成年人黄色毛片网站| 淫妇啪啪啪对白视频| 色哟哟哟哟哟哟| 女生性感内裤真人,穿戴方法视频| 热99re8久久精品国产| 亚洲专区字幕在线| 日韩 欧美 亚洲 中文字幕| 欧美成人一区二区免费高清观看 | 一本大道久久a久久精品| 亚洲片人在线观看| 男人操女人黄网站| 国产伦一二天堂av在线观看| 久久精品影院6| 国产亚洲欧美98| 一边摸一边抽搐一进一出视频| 波多野结衣高清无吗| 亚洲熟妇中文字幕五十中出| 免费看十八禁软件| 国产亚洲欧美精品永久| 久久人人爽av亚洲精品天堂| 午夜激情av网站| 97人妻精品一区二区三区麻豆 | 黄网站色视频无遮挡免费观看| 国产av一区二区精品久久| 高清毛片免费观看视频网站| 亚洲欧美日韩高清在线视频| 91字幕亚洲| 免费女性裸体啪啪无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 日本黄色视频三级网站网址| 美女高潮到喷水免费观看| 亚洲成a人片在线一区二区| 欧美绝顶高潮抽搐喷水| 欧美老熟妇乱子伦牲交| 国产片内射在线| 97人妻精品一区二区三区麻豆 | 精品熟女少妇八av免费久了| 国产成人精品久久二区二区免费| 不卡一级毛片| 亚洲av成人av| 亚洲免费av在线视频| 欧美国产精品va在线观看不卡| 99re在线观看精品视频| 18美女黄网站色大片免费观看| 91老司机精品| 色哟哟哟哟哟哟| 久久中文字幕人妻熟女| 亚洲男人的天堂狠狠| 国产99白浆流出| 日韩视频一区二区在线观看| 色综合欧美亚洲国产小说| 午夜两性在线视频| 色综合站精品国产| 精品欧美一区二区三区在线| 麻豆成人av在线观看| 国产亚洲欧美在线一区二区| 精品午夜福利视频在线观看一区| 999久久久精品免费观看国产| 叶爱在线成人免费视频播放| 亚洲精品国产色婷婷电影| 国产又爽黄色视频| 精品日产1卡2卡| 亚洲自拍偷在线| x7x7x7水蜜桃| 成人国产一区最新在线观看| 日韩有码中文字幕| 少妇粗大呻吟视频| 亚洲成av人片免费观看| 亚洲中文字幕一区二区三区有码在线看 | 99精品在免费线老司机午夜| 天堂√8在线中文| xxx96com| 亚洲成av片中文字幕在线观看| 国产高清videossex| 在线观看免费视频网站a站| 大码成人一级视频| 久久狼人影院| 日韩欧美在线二视频| 国产真人三级小视频在线观看| 在线av久久热| 免费少妇av软件| 久久久国产成人精品二区| 午夜免费成人在线视频| 欧美色欧美亚洲另类二区 | 成人三级做爰电影| 日韩精品免费视频一区二区三区| 法律面前人人平等表现在哪些方面| 无遮挡黄片免费观看| 热99re8久久精品国产| 欧美一区二区精品小视频在线| 亚洲五月婷婷丁香| 亚洲精品在线美女| 真人一进一出gif抽搐免费| 精品少妇一区二区三区视频日本电影| 日韩大码丰满熟妇| 激情视频va一区二区三区| a在线观看视频网站| 黑人巨大精品欧美一区二区mp4| 亚洲五月天丁香| 美女国产高潮福利片在线看| 欧美在线一区亚洲| 一级a爱视频在线免费观看| 日韩av在线大香蕉| 亚洲专区国产一区二区| 一本久久中文字幕| 身体一侧抽搐| 黄片大片在线免费观看| 动漫黄色视频在线观看| 国产熟女午夜一区二区三区| 少妇粗大呻吟视频| 久久这里只有精品19| 日韩精品青青久久久久久| 久久久精品国产亚洲av高清涩受| 黄网站色视频无遮挡免费观看| 国产精品av久久久久免费| 精品日产1卡2卡| 国产精品1区2区在线观看.| 国产精品九九99| 欧美一级毛片孕妇| 免费在线观看影片大全网站| 天天添夜夜摸| 成人18禁高潮啪啪吃奶动态图| 女人高潮潮喷娇喘18禁视频| 一本久久中文字幕| 欧美绝顶高潮抽搐喷水| www.999成人在线观看| 人妻久久中文字幕网| 亚洲成人久久性| 人成视频在线观看免费观看| 中文字幕高清在线视频| av视频免费观看在线观看| 99久久精品国产亚洲精品| 夜夜看夜夜爽夜夜摸| 欧美激情高清一区二区三区| 啦啦啦韩国在线观看视频| 精品人妻在线不人妻| 在线av久久热| 此物有八面人人有两片| 女警被强在线播放| 国产亚洲精品第一综合不卡| 自拍欧美九色日韩亚洲蝌蚪91| 久久狼人影院| 91大片在线观看| 国产精品二区激情视频| 精品高清国产在线一区| 俄罗斯特黄特色一大片| 国产精品国产高清国产av| 电影成人av| av免费在线观看网站| 丝袜人妻中文字幕| 每晚都被弄得嗷嗷叫到高潮| 美女 人体艺术 gogo| 人人妻人人澡欧美一区二区 | 琪琪午夜伦伦电影理论片6080| 99精品在免费线老司机午夜| 成在线人永久免费视频| 757午夜福利合集在线观看| 免费搜索国产男女视频| 国产视频一区二区在线看| 亚洲成av人片免费观看| 97碰自拍视频| 大码成人一级视频| 免费av毛片视频| 精品久久久久久久久久免费视频| 女性生殖器流出的白浆| 成人永久免费在线观看视频| 久久久久久久久久久久大奶| 少妇 在线观看| 视频在线观看一区二区三区| 在线观看www视频免费| 99精品久久久久人妻精品| www.自偷自拍.com| 成人国语在线视频| 国产免费av片在线观看野外av| 黑人欧美特级aaaaaa片| 国产一区二区在线av高清观看| 亚洲午夜理论影院| 色播亚洲综合网| 国产视频一区二区在线看| 后天国语完整版免费观看| 亚洲 国产 在线| 首页视频小说图片口味搜索| 一区二区日韩欧美中文字幕| 国内精品久久久久精免费| 久久精品人人爽人人爽视色| 一本大道久久a久久精品| 一个人观看的视频www高清免费观看 | 亚洲精品久久成人aⅴ小说| www.熟女人妻精品国产| 啦啦啦 在线观看视频| 韩国av一区二区三区四区| 亚洲av熟女| 国产激情欧美一区二区| 亚洲狠狠婷婷综合久久图片| 亚洲自偷自拍图片 自拍| 老鸭窝网址在线观看| 精品国产超薄肉色丝袜足j| 女警被强在线播放| 欧美在线黄色| 国产在线精品亚洲第一网站| 色综合站精品国产| 岛国在线观看网站| 久久九九热精品免费| 韩国精品一区二区三区| 色av中文字幕| 日本精品一区二区三区蜜桃| 国产成人精品久久二区二区免费| 亚洲欧美一区二区三区黑人| 一边摸一边做爽爽视频免费| 操出白浆在线播放| 亚洲国产精品sss在线观看| 日本在线视频免费播放| 亚洲精品粉嫩美女一区| 欧美性长视频在线观看| 久久性视频一级片| 国产男靠女视频免费网站| 亚洲精品国产一区二区精华液| 午夜福利,免费看| 一区二区三区国产精品乱码| 狠狠狠狠99中文字幕| 久久香蕉精品热| 亚洲一卡2卡3卡4卡5卡精品中文| 国产野战对白在线观看| 亚洲精品国产色婷婷电影| 欧美激情极品国产一区二区三区| 熟妇人妻久久中文字幕3abv| 丝袜人妻中文字幕| 久久欧美精品欧美久久欧美| 欧美另类亚洲清纯唯美| 国产一区二区三区综合在线观看| 一本综合久久免费| 亚洲人成电影观看| 日本五十路高清| 午夜成年电影在线免费观看| 久久久水蜜桃国产精品网| 久久精品国产综合久久久| 国产成人精品无人区| 国产亚洲av高清不卡| 国产国语露脸激情在线看| 99re在线观看精品视频| 精品国产乱子伦一区二区三区| 极品教师在线免费播放| 国产视频一区二区在线看| 午夜老司机福利片| 一区福利在线观看| 国产99久久九九免费精品| 极品教师在线免费播放| 国产视频一区二区在线看| 精品国产一区二区久久| 一区二区日韩欧美中文字幕| 高潮久久久久久久久久久不卡| 国产精品九九99| 超碰成人久久| 精品欧美国产一区二区三| 波多野结衣av一区二区av| 成人18禁高潮啪啪吃奶动态图| 精品久久久久久久毛片微露脸| 曰老女人黄片| 久久香蕉激情| 在线观看一区二区三区| 精品国内亚洲2022精品成人| а√天堂www在线а√下载| 国产一级毛片七仙女欲春2 | 在线十欧美十亚洲十日本专区| 日韩高清综合在线| 午夜免费成人在线视频| av天堂久久9| 嫩草影院精品99| 亚洲五月色婷婷综合| x7x7x7水蜜桃| 午夜免费观看网址| 欧美乱码精品一区二区三区| 99riav亚洲国产免费| 午夜免费成人在线视频| 国产精品一区二区在线不卡| av在线天堂中文字幕| 亚洲欧美激情在线| 欧美黄色淫秽网站| 午夜福利,免费看| 欧美乱色亚洲激情| 亚洲色图 男人天堂 中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人av激情在线播放| 搡老妇女老女人老熟妇| 免费在线观看影片大全网站| 国产亚洲欧美精品永久| 久久久久久久午夜电影| 国产精品一区二区精品视频观看| 18禁黄网站禁片午夜丰满| 日韩欧美一区视频在线观看| 久久久久久久久中文| 1024视频免费在线观看| 亚洲精品一区av在线观看| 中文字幕最新亚洲高清| 免费看美女性在线毛片视频| 999久久久精品免费观看国产| 老司机午夜福利在线观看视频| www.999成人在线观看| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区精品| 亚洲第一av免费看| 日日摸夜夜添夜夜添小说| 一级片免费观看大全| 久久欧美精品欧美久久欧美| 制服人妻中文乱码| 午夜亚洲福利在线播放| 悠悠久久av| 性欧美人与动物交配| 长腿黑丝高跟| 欧美日韩精品网址| 亚洲欧美激情综合另类| 美女高潮喷水抽搐中文字幕| 99国产精品一区二区三区| 在线观看日韩欧美| 久热这里只有精品99| 国产亚洲精品av在线| 久久性视频一级片| 日韩 欧美 亚洲 中文字幕| 波多野结衣巨乳人妻| 又大又爽又粗| 99国产极品粉嫩在线观看| 亚洲成国产人片在线观看| 久久精品国产亚洲av香蕉五月| 久久人妻av系列| 国产精品免费一区二区三区在线| 精品一区二区三区av网在线观看| 亚洲激情在线av| 一级毛片精品| 色精品久久人妻99蜜桃| 午夜影院日韩av| 啦啦啦观看免费观看视频高清 | 国产99白浆流出| 一卡2卡三卡四卡精品乱码亚洲| videosex国产| 国产亚洲av高清不卡| 中文字幕色久视频| 亚洲中文av在线| 中文亚洲av片在线观看爽| 91麻豆av在线| 久久久久久大精品| 激情视频va一区二区三区| 老司机福利观看| or卡值多少钱| 身体一侧抽搐| 日本在线视频免费播放| 香蕉丝袜av| 国产欧美日韩一区二区三区在线| 国产高清videossex| 精品免费久久久久久久清纯| 天天躁夜夜躁狠狠躁躁| 久久久久精品国产欧美久久久| 免费女性裸体啪啪无遮挡网站| 午夜福利高清视频| 最近最新中文字幕大全电影3 | 亚洲色图 男人天堂 中文字幕| 久久亚洲精品不卡| 成人永久免费在线观看视频| av福利片在线| 欧美午夜高清在线| www日本在线高清视频| 国内精品久久久久久久电影| 亚洲熟妇中文字幕五十中出|