• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Im pact of Surface Properties on Downward Surface Shortwave Radiation over the Tibetan Plateau

    2015-04-20 05:59:14WANGLeidiDarenandHEQing
    Advances in Atmospheric Sciences 2015年6期

    WANG Leidi,L¨U Daren,and HE Qing

    1Key Laboratory of Middle Atmosphere and Global Environmental Observation,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing100029

    2University of Chinese Academy of Sciences,Beijing100049

    The Im pact of Surface Properties on Downward Surface Shortwave Radiation over the Tibetan Plateau

    WANG Leidi1,2,L¨U Daren?1,and HE Qing1

    1Key Laboratory of Middle Atmosphere and Global Environmental Observation,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing100029

    2University of Chinese Academy of Sciences,Beijing100049

    The complexity of inhomogeneous surface–atmosphere radiation transfer is one of the foremostproblems in the field of atmospheric physics and atmospheric radiation.To date,the influence of surface properties on shortwave radiation has not been wellstudied.The daily downward surface shortwave radiation of the latest FLASHFlux/CERES(Fast Longwave And Shortwave Fluxes Time Interpolated and Spatially Averaged/Clouds and the Earth’s Radiant Energy System)satellite data was evaluated againstin situdata.The comparison indicated that the differences between the two data sets are unstable and large over rugged terrain compared w ith relatively flat terrain,and the mean absolute error of the satellite products reaches 31.4 W m-2(12.3%)over rugged terrain.Based on the SSF(single satellite footprint)/CERES product,the influence of surface properties on the distribution of downward surface shortwave radiation(DSSR)was analyzed.The influence of surface properties on DSSR over the Tibetan Plateau is about tw ice as large as that in two other regions located at the same latitude(eastern China–western Pacific and subtropical North Pacific).A simulation was carried out w ith the help of the I3RC(International Intercomparision of Three-Dimensional Radiation Code)Monte Carlo 3D radiative transfer community model.The results showed that DSSR increases as surface albedo increases.Moreover,the impact of surface albedo on DSSR is larger if the spatial distribution of clouds is more non-uniform.It is hoped that these results w ill contribute to the developmentof 3D radiative transfer models and the improvementof satellite inversion algorithms.

    shortwave radiation,surface properties,Tibetan Plateau,satellite remote sensing

    1.Introduction

    Solar radiation is a significant source of heat for the earth–atmosphere system.The heterogeneity of surface solar radiation could affect the radiative energy budget,weather systems and climate change.The solar flux received by the surface involves the attenuation of insolation by scattering and absorption caused by atmospheric gases,aerosols,cloud particles,and surface properties.Among others,surface parameters generally include altitude,gradient,slope direction and surface albedo.Different surface properties result in different dynam ic and thermodynam ic processes,which influence the exchange of matter and energy between the land surface and the atmosphere.The surface albedo characterizes the surface reflection of solar radiation.It determ ines energy exchange between the surface and atmosphere, and it is a key factor influencing Earth’s climate system. Even a small change in surface albedo could shift the energy balance of the earth–atmosphere system,and result in regionaland globalclimate change(Wang etal.,2002;Stroeve et al.,2005).Over the Tibetan Plateau,the mean surface elevation is 4000 m above sea level.Its protruding nature w ith high elevation and complex surface properties results in equally complex weather and cloud systems over the region.There is a 3D radiative transfer problem in the inhomogeneous surface–atmosphere system.However,most radiative transfermodels and satellite inversion algorithms are highly simplified.Compared to atmospheric composition and clouds,the effects of surface properties on downward surface shortwave radiation(DSSR)have notbeen wellstudied until now.Thus,it is worth exploring the effects of surface properties on DSSR.

    As an important complement to ground observations, satellite remote sensing provides data w ith preferable continuity and homogeneity in both time and space,and has become an effective way to study surface radiation budgets. However,satellite products may be severely biased due to input data inaccuracy,algorithm errors,and the influence of surface properties and elevation differences(Yang et al.,2006).Thecomplexityofspatialorientationandtheoptical propertiesofthesurfacehavesofarbeeninvestigatedina relativelylimitednumberofradiativetransferschemes(e.g., DubayahandRich,1995;Wangetal.,2005;Liouetal.,2007; Helbigetal.,2009;Leeetal.,2013;St¨ockli,2013).Theireffectsonthesurfacesolarradiationbudgethavenotbeenwell accountedforinthemostwidelyappliedradiativetransfer schemesinwhichthelowerboundaryisassumedtobeunobstructed,horizontal,andhomogeneous.Therefore,itisnecessarytovalidatesatellitedataagainstinsituobservations, becausesuchvalidationsnotonlyguaranteedataqualitybut alsoprovideusefulinformationtoimprovetheretrievalalgorithms.Meanwhile,climatesimulationsrequireaccurateand stableradiationbudgetdata,andtheproductsobtainedfrom spaceareusefulforclimateresearch(Ohringetal.,2005).

    TheTibetanPlateauhasgreatimpactsonenergyandwatercyclesatbothregionalandglobalscales,makingita usefulresearchareafortestingthequalityofdataandthe estimationalgorithms.Yangetal.(2006,2008,2010)assessedthesatellite-estimatedsurfacedownwellingshortwave irradianceofISCCP-FD(InternationalSatelliteCloudClimatologyProject-FluxData)andGEWEX-SRB(GlobalEnergyandWaterCycleExperiment-SurfaceRadiationBudget)byusingtheinsitudataofseveralsurfacesitesover theTibetanPlateau.Comparisonsindicatedthattheerrors ofsatelliteproductsarespatiallydependentoverTibet,and discrepanciesbetweendifferentproductsareusuallylarger inthepresenceofhighlyvariableterrain.Guietal.(2009, 2010)comparedISCCP-FDandCERES-FSW(Cloudsand theEarth’sRadiantEnergySystem-MonthlyGriddedRadiativeFluxesandClouds)hourlysurfacesolarradiationwith groundmeasurements.Theresultsshowedthattheaccuracy ofsatellite-estimateddatacannotmeettherequirementsof researchcommunities,andsatellite-estimateddataoverthe TibetanPlateaumustbesubstantiallyimproved,especially fortheshortwavecomponents.

    ObservationsshowthatthedownwardshortwaveradiationoverTibetismuchhigherthanthatoversealevelalong thesamelatitude(Maetal.,2005;Wangetal.,2013).Inadditiontothehighelevation,thereareseveralwest–eastelongatedhighmountainsandmanyhillsleadingtothecomplex terrain.Thecomplexterraincanaffectsolarradiationindirect(DubayahandRich,1995;DubayahandLoechel,1997; Kangetal.,2002;Wangetal.,2005;Ryuetal.,2008;Helbig etal.,2009)andindirect(Kuwagataetal.,2001;Kurosaki andKimura,2002)ways.Besidesclouds,theleadinguncertaintiesinsurfacefluxesoriginatefromthesurfaceandnearsurfaceatmosphericproperties(Zhangetal.,2006,2007).

    Accordingtotheresultsofa3DMonteCarlophotontracingprogram,themeansurfacesolarfluxoveraregionwith complextopographycandeviatefromasmoothsurfacebyas muchas10–50Wm-2foranalbedoof0.2,andtheanomaliesofsolarfluxinclear–skyconditionscanbeasmuchas 600Wm-2(Liouetal.,2007).GiventhealtitudinaldependenceofDSSR,cautionisneededwhenapplyingcurrent satellitedatatoplateauregions.Groundmeasurementsover theTibetanPlateaucanbeusedasabenchmarkforevaluating satellitealgorithmsathighelevations(Yangetal.,2006).

    Mostevaluationsofsatelliteproductshavebeenperformedinlowelevationareaswithsmoothsurfaces,andhigh accuracyhasbeenshown.AsforthequalityofsatelliteproductsovertheTibetanPlateau,mostpreviousstudieshavefocusedsolelyonrelativelyshortperiodsofseveralmonths, andhavenotevaluatedthelatestFLASHFlux(FastLongwaveAndShortwaveFluxesTimeInterpolatedandSpatially Averaged)/CERESproduct.Itisunknowntowhatextent surfacepropertiesinfluencesatellite-estimatedDSSR.The transferofshortwaveradiationundertheco-existenceof3D cloudsandcomplexsurfacepropertiesstillrequiresexploration.

    Theremainderofthepaperisarrangedasfollows.Section2introducesthedatasetsandprocessingusedinthe study.Insection3,theDSSRfromthelatestFLASHFlux/ CERESdataoverawholeyearisassessedagainstthree groundsitesovertheTibetanPlateau,andtheimpactofsurfacepropertiesonthesatellite-estimatedDSSRisanalyzed. Then,theshortwaveradiationfluxtransferredthroughtwo typesofcloudsissimulatedusingastate-of-the-artmodel. Finally,theoverallconclusionsofthestudyandsomefurther discussionarepresentedinsection4.

    2.Materialsandmethods

    2.1.Insitudata

    Insituobservationsfromthreesitesareadoptedinthis study(Fig.1):

    (1)Yangbajain[(30.088?N,90.540?E);4350m]:This siteislocatedonthesouthernsideofNyainqentanglhaMountaininthecenteroftheTibetanPlateau.Itisannexedtothe InstituteofHighEnergyPhysicsoftheChineseAcademyof Sciences.

    (2)TheNamCoMonitoringandResearchStationfor MultisphereInteractions[(30.774?N,90.988?E);4730m]. ThissiteislocatedonthesoutheastshoreofNamCoLake, 220kmawayfromLhasa.ItwasestablishedbytheInstitute ofTibetanPlateauResearch,ChineseAcademyofSciences in2005.

    Fig.1.LocationsoftheYangbajain,NamCoandSACOLsites.

    (3)TheSemi-AridClimateandEnvironmentObservatoryofLanzhouUniversity[knownasSACOL;(35.946?N,104.137?E);1965.8m].ThissiteisnearthecityofLanzhou, onthesouthernbankoftheYellowRiverinnorthwestern China.Inparticular,thissiteisveryclosetothegeometric centerofChina’smainland.

    Thevaluesofsurfaceshortwaveirradianceweremeasuredbypyranometersateachsite[Yangbajain:TBQ-2-BI,HUATRON,Beijing,China(1-minresolution);NamCo: Model-CM,Kipp&Zonen,TheNetherlands(5-minresolution);SACOL:Model-CM,Kipp&Zonen,TheNetherlands (1-minresolution)].ThesensitivityoftheTBQ-2-B-Ipyranometeris10.22×10-6VW-1m2.TheTBQ-2-B-Ipyranometeriscomparabletootherpyranometers,andiswidely usedinmeteorologicalstations.Allthreesolarpyranometers wererigorouslytestedbeforeinstallation.Thetimesequence oftheinsitudataisfromApril2009toMarch2010atYangbajainandNamCo,andfromJanuary2009toAugust2010 atSACOL.Toacquirethebestpossibledataforsolarradiation,dailyqualityassurancechecksareessential.Thequality controlproceduresarederivedfromWMO(WorldMeteorologicalOrganization)andGeigeretal.(2002)withminor modifications.

    2.2.Satellitedata

    Byimprovingthesceneidentificationandincreasingthe sensitivityofangulardistributionmodels,CERESimproves theTOAfluxaccuracyforindividualcloudtypes,thereby providingamorereliabledatasetforstudyingradiativeprocessesandradiativeforcingbycloudtype(Loebetal.,2003). CEREShasfourlevelproducts.OurworkusedtheSSF(SingleScannerFootprint)productfromlevel2andFLASHFlux Version2Gfromlevel3.Theotherproductsafterlevel2are basedonthelevel2products.TheSSFproductcontainsone hourofinstantaneousCERESdataforasinglescannerinstrument.TheSSFcombinesinstantaneousCERESdatawith sceneinformationfromahigherresolutionimagersuchas VIRS(Visible/InfraredScanner)onTRMM(TropicalRainfallMeasuringMission)orMODIS(Moderate-Resolution ImagingSpectroradiometer)onTerraandAqua.EachSSF granulecontainsonehourofdata,whichisapproximately two-thirdsofanorbitfromasingleCERESinstrument.The widthoftheSSFswathislimitedtothewidthoftheimager swathwithwhichtheCERESdatawereconvolved.Each SSFfieldofview(FOV)representsonescannermeasurement.Measurementsaretakenevery0.01seconds.Accordingtodifferentalgorithms,theSSFcanbedividedintotwo products:the“A”modelproduct(Lietal.,1993)and“B”modelproduct(Guptaetal.,2001).

    2.3.Methods

    Thegriddedsatellitedatawerebilinearlyinterpolated ontothelocationsoftheinsitudata,sothesatelliteandin situdatacanbecompared.Itshouldbenotedthatdeviation existsinthegroundobservationsthemselves,andthevalidationtechniquesalsoproduceerrorsbecauseoftheinhomogeneousdistributionofmeteorologicalvariables.Thestatistical methodsusedinthisworkfollowpreviousstudies(Huang, 2004;Houborgetal.,2007;KimandLiang,2010;Yanget al.,2010).Thestatisticsarereportedinabsolute(Wm-2) andrelativeunits(percentageofaveragemeasuredglobalirradiance).Thestatisticsinabsoluteunitsaregivenby

    andthestatisticsinrelativeunitsaregivenby

    whereeandmrepresentsatellitepredictionsandgroundmeasurements,respectively;ˉeandˉmaretheaveragesofsatellite predictionsandgroundmeasurements,respectively;Nrepresentsthenumberofsamples;MErepresentsmeanerror; MAErepresentsmeanabsoluteerror;Rrepresentsthecorrelationcoefficient;andRMSDrepresentsroot-mean-square deviation.

    InthisstudyweusedtheI3RCMonteCarlo3Dradiative transfercommunitymodel(I3RC-community-monte-carlo). Thismodelhasbeentestedandfoundtobesuperiorandmore efficientincomputingthedownwellingfluxthanSHDOM (SphericalHarmonicDiscreteOrdinateMethod)(Cahalanet al.,2005;PincusandEvans,2009).Theheartofthemodel isamonochromaticintegrator,andmoredetailscanbefound inPincusandEvans(2009).Nevertheless,therearetwomajorlimitationsofthismodel:First,thecurrentcodecannot solveatmosphericmolecularabsorptionproblems.Second, thecurrentcodecanonlydealwithLambertiansurfaces.In ourstudy,thesimulationused109photonstoguaranteeprecision,basedonthesuggestionofEvansandMarshak(2005).

    Toensurebetteraccuracyforexaminingtheinterplayof thesurface,cloudsandsolarradiation,weperformedsimulationsatanonabsorbingwavelengthofcloudsinthevisiblespectrum(0.675μm)andanabsorbingwavelengthin thenear-infraredspectrum(2.13μm)underdifferentsurfacealbedoswithoutconsideringtheatmosphere.Unfortunately,thetopographiceffectwasnotimplementedbecause ofthelimitationofthecurrentMonteCarlocode.Thesetting ofsomebasicparametersfollowsthatofPincusandEvans (2009).Forallcalculations,thesunazimuthwassetto0?(inthisstudy,0?meansthatthesun’sraysaredirectedfrom thedirectionofincreasingx),andthesunzenithwassetto 30?.Inthisstudy,astratocumulusfield(Moengetal.,1996)andacumulusfield(StevensandLenschow,2001)areused astheinputoftheMonteCarlomodel.Figure2showsthe twocloudfields.Moreinformationaboutthesetwoclouds canbefoundinWangetal.(2014).

    3.Results

    3.1.Comparisonsofsatelliteandinsitudata

    First,weplottedthedaytimesolarradiationagainsttime. Dayswithaverysmoothcurvewereconsideredasclear-sky daysbecausecloudsleadtoclearfluctuationofsolarradiation.Figures3a,candeshowthescatterdiagramsforallallskydaysandFigs.3b,dandfforclear-skydays.Forallallskydays,therearelargedifferencesbetweenthetwoproducts.Amongthedifferentsites,thesatelliteerrorsaresmaller atSACOL,whichhasarelativelyflatsurfacecomparedtothe othertwositeswiththeirruggedterrain.ThecorrelationcoefficientsbetweenFLASHFluxandtheobservationare0.899, 0.884and0.966forYangbajain,NamCoandSACOL,respectively.Themeanabsoluteerrorsofsatellite-estimated dataare26.69Wm-2(10.96%),31.38Wm-2(12.26%)and 18.84Wm-2(15.93%),respectively.Theroot-mean-square errorsforthethreesitesrangefrom12.92%to16.86%.

    Fig.2.(a,b)Liquidwatercontent(units:gm-3),(c,d)effectiveparticleradius(units:μm),and(e,f) opticaldepth(units:1)atwavelength0.67μmof(a,c,e)stratocumulusand(b,d,f)cumulus.Note: thephotographscorrespondingtothecloudopticaldepthatwavelength0.67μmwereadoptedfromI3RC: http://i3rc.gsfc.nasa.gov/casesnew.html.[ReprintfromWangetal.(2014)]

    Fig.3.Scatter diagrams of the DSSR of FLASHFlux/CERES products versus in situ observations (units:W m-2):(a,b)Yangbajain;(c,d)Nam Co;(e,f)SACOL.R represents correlation;ME represents mean error;MAE represents mean absolute error;and RMSD represents root-mean-square deviation.

    Underclear-skyconditions(Figs.3b,d,f),theDSSRresultsbasedontheFLASHFlux/CERESproductsandinsitu datashowamuchbetterrelationshipthanthatunderall-sky conditions.AtYangbajainandNamCo,theFLASHFlux value tends to be lower than ground measurements on every clear-sky day.The mean error is-16.57 W m-2(-6.66%) for Yangbajain,-17.09 W m-2(-6.34%)for Nam Co,and -4.39 W m-2(-0.95%)for SACOL.At the same time,the RMSD is very small,which suggests the difference between the two datasetsisvery stable.The satellite productsare more consistent w ith surface measurements under cloudless conditions than under all-sky conditions.The differences indicate that the satellite errors partly result from the algorithms, which ignore 3D cloud properties.The quality of the satellite inversion productsis spatially dependent,and tends to be better for the area w ith smooth terrain.

    The mean error forallall-sky days is negative at Yangbajain and Nam Co,and positive at SACOL.The positive bias at SACOL site may be mainly attributable to the underestimation of the aerosol amount in the retrieval process,especially foraerosol in the sub-thin-cloud layer(Hayasaka etal., 2006).Very low aerosol optical values have been observed over the Tibetan Plateau because of the sparse population and m inimal industrialactivity(Cong etal.,2009).Therefore,at Yangbajain and Nam Co,the DSSR is much less affected by aerosols.The causes of the negative biases atYangbajain and Nam Co are not immediately obvious.The negative biases may be due to the neglect of 3D radiative effects under the conditionsof the heterogeneouscloudsand complex surface, satellite overestimation ofaerosolopticaldepth,orother reasons.

    But how does the error between satellite and in situ measurements differ among the twelve months of the calendar year? Figure 4 shows the MAE and RMSD as a function of the calendar month.The MAE and RMSD vary w ith month.At Yangbajain,the MAE varies from 7.58%up to 26.56%w ith the highest value in June,and the RMSD varies from 9.49%up to 18.35%w ith the highest value in May.At Nam Co,the MAE ranges from 8.69% to 33.82%w ith the lowest value in January and the highest value in May,and the RMSD ranges from 10.07%to 22.99%w ith the lowest value in January and the highest value in May. At SACOL,the error changes smoothly throughout the year,except in a few months.There is apeakoftheMAE(26.05%)inSeptember.TheRMSDremainsatabout11%,withahighestvalueof24.18%in Septemberandsecondhighestvalueof18.39%inNovember.

    Fig.4.TheerrorofFLASHFlux/CERESDSSRforallall-sky daysineverymonth:(a)meanabsoluteerror;(b)root-meansquaredeviation.

    Theerrorvariesatdifferentsiteswithdifferentsurface properties.TheerroratSACOLisrelativelystableoverthe wholeyear,whichisprobablyrelatedtotherelativelystable cloudactivity.AtYangbajainandNamCo,theerrorinMay andJuneislargerthanthatofothermonths.Thepeakerror inMayandJuneisassociatedwiththelargecloudamount duringthattime(HuoandL¨U,2012).ThelargeRMSDindicatesthatthespatialandtemporalvariabilityofcloudscontributestoconsiderableuncertaintyinMayandJune.The differencesbetweentheFLASHFluxandsurfacemeasurementsaredifferentamongdifferentsites.Thesedifferences areunstableandlargeoverruggedterraincomparedwithrelativelyflatterrain,especiallywhencloudactivityishighly frequent.Theaboveresultsindicatelargeuncertaintyinthe couplingbetween3Dheterogeneouscloudsandcomplexsurfacepropertiesonradiativetransferprocesses.Thecomplex surfacepropertiescaninducecomplexweathertypesandsky conditions,whicheventuallyformsacomplexphysicalrole toaffecttheradiationtransferprocess.

    3.2.Thespatialvariationofsatellite-derivedinstantaneousDSSR

    ThissubsectiondescribedtheworkusingtheSSF/ CERESinstantaneousorbitproducts.Thecoefficientofvariability(CV),whichismainlyusedtocomparethedispersion ofthedifferentgroups,istheratioofthestandarddeviation tothecorrespondingaverageofasetofdata.Inorderto evaluatetheeffectofsurfacepropertiesonthedistribution ofDSSR,threeregionswerechosentoobtaindomainaverages.Thesethreeregionswerelocatedatthesamelatitudes(26?–40?N)butatdifferentlongitudes:easternChina–westernPacific(ECWP,105?–135?E),subtropicalNorthPacific(NP,150?–180?E),andtheTibetanPlateau(TP,75?–105?E).Basedondigitalelevationdataattheresolutionof 500mfromSRTM(ShuttleRadarTopographyMission), NASA,Fig.5showstheelevationoftheTPandECWPregion.Thewhiteregionontherightrepresentstheocean.The NPregionischaracterizedbyseasurfaceandisnotshown inFig.5.Clear-skyconditionsweredefinedasoccurring whentheclearareapercentagecoverageatthesubpixelresolutionwasgreaterthan99.9%.Duringtheperiod1April 2009to31March2010,themonorailtrackswithinanhour thatcontainedclear-skysamplingpoints(M)ofmorethan 500werechosenasourexperimentaldatabase;thenumber ofsuchtrackswas145intheTPregion,190intheECWP region,and54intheNPregion.

    Figure6showsthevariationofthespatialCVofDSSRin the1htrack,plottedbytheordinalnumberofeligibletracks (N)fromJanuarytoDecemberonthehorizontalaxisandthe CVontheverticalaxis.Thenumberabovethehorizontalaxis representsthemonthcorrespondingtoN,andsomemonths arenotmarkedinthefigurebecauseoftheinexistenceof eligibleorbitsortoofeweligibletracks.Theseunmarked monthsincludeJune,JulyandAugustfortheTPregion(Fig. 6a),andJanuaryfortheNPregion(Fig.6c).Themonths betweenAprilandSeptemberarereferredtoasthesummer halfyear,andothersarereferredtoasthewinterhalfyear. Ifthemonorailtrackswithinanhourthatcontainedclear-sky samplingpointsofmorethan800werechosen,thenumber ofsuchtrackswas56intheTPregion,128intheECWP region,and15intheNPregion.ThedistributionsofthespatialCVforthesamplingpointsofmorethan800werethe sameasthoseforthesamplingpointsofmorethan500,so thefiguresforthesamplingpointsofmorethan800arenot shown.

    TheCERESproductsdonotfullyaccountfortheimpactofthevariedsurfaceproperties,especiallytheimpact ofcomplextopography.TheerrorsincomputingtheradiativetransfercaninfluencetheDSSRresults.Therearetwo waysinwhichthesurfaceinfluencestheCV:oneisthenature oftheradiativetransferrelatedtothesurface,andtheotheris thelimitationofthesatelliteinversionalgorithminresolving thesophisticatedsurfaceproperties.Itishardtocompletely separatethesetwoeffectsundercurrentconditions.However,thereareonlyslightdifferencesbetweenthe“A”model productsandthe“B”modelproductsintheirspatialCVsof DSSRunderclear-skyconditions(Fig.6),whichsuggests thattheDSSRerrorinducedbythelimitationsofthesatellite inversionalgorithmhaslittleimpactontheCV.Therefore, thenatureoftheradiativetransferisthedominantfactorin theoccurrenceofthedifferentCVinthedifferentregions. TheinfluenceofsurfacecharacteristicsontheDSSRdisplays annualvariation,andthisannualvariationpresentsthesame patternastheshapeoftheopeningupoftheparabolicinthe threedifferentareas.TheannualvariabilitiesoftheCVin theTPandECWPregionsmaybemainlyattributabletothe shadingeffect.Theshadingeffectisrelativelysmallwhenthe solaraltitudeangleishigh,whichwouldleadtothelowerCV inthesummerhalfyear.IntheNPregion,thewavechanges mayleadtotheannualvariabilityoftheCV.Thewavesare closelyrelatedtothewindspeeds.Inwinter,theNPregion takesthebruntoftheprevailingwesterlies,whichresultsinthe high w ind speeds.In summer,the w ind speeds are relatively small in the NP region because of the influence of the subtropicalhigh pressure.The CV ranges from about1%to 17%in the TP.The overall ranges of CV in the ECWP and NP regions are very sim ilar,and the CV varies from 1%up to 13%.The ranges of CV are similar in the NP and ECWP regionsprobably because the entire NP region and abouthalf of the ECWP region are covered by ocean.The land surface of the ECWP region is much less variable than that of the TP region,while the underlying surface of the NP region is mainly affected by waves.The sim ilar ranges of the CV in the ECWP and NP regions may indicate that the influence of huge waves on the CV can be as large as thatof the land surface.

    Fig.5.Elevation(at the resolution of 500 m from SRTM,NASA)of the TP and ECWP regions (units:m).The white region on the right represents the ocean.

    Fig.6.Coefficient of spatial variation for SSF/CERES DSSR:(a)Tibetan Plateau(TP);(b) eastern China–western Pacific(ECWP);(c)subtropical North Pacific Ocean(NP).The number of clear pixels is larger than 500 in one hour on the satellite scanning track;“A”and“B”respectively represent the satellite data from the“A”model and“B”model.The horizontal axis shows the ordinal number of eligible tracks N from January to December.The number above the horizontalaxis represents the month corresponding to N.

    In the three regions w ithin the same latitudes,solar radiation in the TP is the most strongly affected by the underlying surface conditions.Table 1 illustrates the spatial CV of DSSR in the three areas.In the situation of M being greater than 500,the average CV is 9.44%for the TP region,4.95%for the ECWP region,and 3.49%for the NP region.In the situation of M being greater than 800,the average CV is 10.5%for the TP region,5.11%for the ECWP region,and 3.55%for the NP region,respectively.The sunlight or solar fluxes that reach the surface can be physically grouped into the follow ing five components:direct flux,diffuse flux,direct-reflected flux,diffuse-reflected flux,and coupled flux.The direct-reflected flux,which consistsofphotons directly from the sun w ithoutencountering scattering,and aresubsequently reflected by surrounding terrain,is the dom inantcomponentcontributing to the differentDSSR between the flatsurface and the surface w ith complex topography(Lee et al.,2013).As can be seen from the above,the impact of underlying surface conditions is the lowest in the NP region and the greatest in the TP region,which is about tw ice as large as that in the other two regions.

    Table 1.Statistics for the DSSR under clear-sky conditions.

    Fig.7.The variation of SSF/CERES DSSR in one hour on the satellite scanning track(units:W m-2):(a,b) Tibetan Plateau(TP);(c,d)Eastern China–western Pacific(ECWP);(e,f)subtropical North Pacific Ocean(NP). Both the height in the verticaldirection and the coloring stands for the value of DSSR.The dark spots at the bottom of each panel represent the locations under clear skies.Taking(a)as an example,the label“2010030908”means between 0800 and 0859 on 9 March 2010 UTC.

    Figure 7 demonstrates the variation of DSSR in one hour for several satellite scanning tracks when M is greater than 800.The days chosen in Figs.6a–f are very close,and the DSSR for a large region as a whole has no obvious change in one or two days,so the variationsare comparable.Figures 7a and e show the variation in the TP and NP regions on the same day(9 March 2010 UTC),respectively.The clear-sky sampling pointsin the monorailtrack w ithin an hourare 1256 for Fig.7a,and 814 for Fig.7e.The CV of DSSR is 5.98% for the TP region and 3.17%for the NP region.A lthough the distribution of clear-sky sampling points can affect the CV, the surface properties still contribute the most to the DSSR and its CV.Figures 7b and f are for two tracks w ith similar clear-sky sampling points(1036 and 1091,respectively)on nearby days.The spatial CV of DSSR is 6.95%in the TP region and 4.10%in the NP region.Figures 7c and d show the spatial variation of DSSR w ithin one hour for two tracks in the ECWP region.M is 2722 for Fig.7c and 851 for Fig.7d. The CV is 2.55%and 4.95%,respectively.The above case analyses show that the underlying surface properties affect the distribution of DSSR the mostin the TP region.

    3.3.Simulation by the I3RC model

    Shortwave flux transmittance(T)is the ratio of the surface horizontal solar radiation to extraterrestrial radiation (Liou,2002).Under the concurrence of variable surface albedo and 3D clouds,what is the effect of surface albedo on the shortwave flux transm ittance?As an example,Fig.8 shows the distributions of the shortwave flux transmittance of stratocumulusclouds.Figures8a–d are for the wavelength of 0.675μm,and Figs.8e–h are for the wavelength of 2.13 μm.Foreach simulation ata certain wavelength,the surface albedo was 0.0 for Figs.8a and e,0.2 for Figs.8b and f,0.4 for Figs.8c and g,and 0.6 for Figs.8d and h.For the regions w ith white color,the transm ittance is greater than 1.0, which means that the enhancementof the radiation caused by cloud cover is more evident than the reducing effect.We know thatsuch a phenomenon is mainly induced by scattered radiation resulting from the underlying surface and inhomogeneous structure of clouds in principle.From the figures,we conclude that the distributions of shortwave radiation transmittance in the three domains are similar,which is mainly caused by the structure of clouds.The average T at0.675μm is 0.686,0.745,0.815 and 0.900 for a surface albedo of 0.0, 0.2,0.4 and 0.6,and at2.13μm it is 0.512,0.548,0.589 and 0.638,respectively.It is clear that the shortwave flux transmittance increases as the surface albedo increases.

    Another example is for the impactof cumulus cloud on the distribution of the shortwave flux transm ittance(Fig.9). Figures 9a–d are at 0.675μm,and Figs.9e–h are at 2.13 μm.The average T at0.675μm is 0.900,0.929,0.959,and 0.992 for a surface albedo of 0.0,0.2,0.4 and 0.6,respec-

    Fig.8.Simulated shortwave flux transm ittance of stratocumulus cloud atwavelengths(a–d)0.675 μm and(e–h)2.13μm.The surface albedos are 0.0 in(a,e),0.2 in(b,f),0.4 in(c,g)and 0.6 in(d, h).

    tively,and at 2.13μm it is 0.860,0.880,0.901 and 0.923, respectively.For cumuluscloud,the effectsofsurface albedo on downward shortwave radiation flux are weaker than for stratocumuluscloud.Thisisbecause the stratocumuluscloud field has a much more complex structure than thatof cumulus cloud.Surface properties have a strongereffecton solar radiation under the sky ofmore complex 3D clouds.The largest effectoccurs in regions w ith cloud gaps.This is mainly attributed to the increase of the diffuse radiation,while the direct solar radiation component is almost unaffected.If the spatial changes of cloud properties(e.g.cloud optical thickness,liquid water content,effective particle radius,cloud coverage and geometry)are more complex,the role of surface albedo on DSSR is stronger.At the same time,we can see that DSSR w ill increase as surface albedo increases.As the surface albedo increases,more photons w ill be reflected to the sky instead of reaching the ground,and participate in the processesofmultiple scattering.A proportion of those re-flected photons w ill transfer to the ground through a complex physicalprocess.

    Fig.9.Simulated shortwave flux transm ittance of cumulus cloud atwavelengths(a–d)0.675 μm and(e–h)2.13μm.The surface albedos are 0.0 in(a,e),0.2 in(b,f),0.4 in(c,g)and 0.6 in(d,h).

    Previous studies on surface albedo have paid much more attention to its effecton the upward surface shortwave radiation than itseffecton the DSSR(e.g.,Lietal.,1993;Gupta et al.,2001;Ma and Pinker,2012;Qin etal.,2012).Our study shows thatsurface albedo has an important role in the value of DSSR itself.Given the importance of the upward surface shortwave radiation based on surface albedo and DSSR,it is necessary to consider the effect of surface albedo on the surface radiation budget.Surface albedo is a dynam ic parameter.It can change notonly w ith the variation of surfaceconditions,suchasthephysicalandchemicalpropertiesof soil,butalsowiththesun’sangle.Surfacealbedoitselfis complexanduncertain.Atpresent,theproblemoftheerror duetosurfacealbedointhesatelliteinversionandradiative transferalgorithmisachallengeinthefieldofatmospheric science.Furtherstudyisstillneeded.

    4.Conclusionanddiscussion

    4.1.Conclusion

    Asabasicproblemintheearth–atmospheresystem,detailedstudiesoftheradiativetransferprocesscontributeto furtherresearchonclimatechangeandthephysicsofremote sensing.IntheTPregion,itsprotrudingnaturewithhigh elevationandcomplexsurfacepropertiesresultsinequally complexweatherandcloudsystems.Asaresult,presentradiativetransfermodelsandsatelliteinversionalgorithmscannotmeetthenecessaryrequirements.Satelliteremotesensing hasbecomemoreandmorewidelyusedinthegeosciences. However,satellitedatashouldbeevaluatedagainstinsituobservationsbeforebeingused.TheTPischaracterizedbyhigh elevationandcomplexsurfaceproperties,andthusactsasa usefulbenchmarkforevaluatingsatellitedata.InsituobservationsatYangbajain,NamCo,andSACOLwereadoptedin thisstudytoevaluateFLASHFluxsatellitedata.Theeffects ofsurfacepropertiesontheDSSRwereanalyzedbycomparingtheTP,ECWPandNPregions.TheI3RCmodelwas usedtostudytheeffectsofsurfacealbedoontheDSSR.The mainresultscanbesummarizedasfollows:

    (1)Underclear-skyconditions,thesatelliteproductsand insitudataareconsistentwithacorrelationof0.992atYangbajain,0.991atNamCosite,and0.998atSACOL.Themean absoluteerrorofsatellite-estimatedproductsisabout6.7%at Yangbajain,6.3%atNamCo,and3.4%atSACOL.Under all-skyconditions,theerrorincreasessignificantlybecause thepresentalgorithmsignore3Dcloudproperties.Thequalityofthesatelliteinversionproductsisspatiallydependent, andittendstobebetterforsmootherterrain.Theerrorincreasesandbecomesmorevariablewiththeincreasingcomplexityofsurfaceproperties.

    (2)TheCVwasusedtoevaluatetheeffectofsurface propertiesonthedistributionofDSSR.Theworkwasperformedbychoosingthreeregionslocatedatthesamelatitudes(26?–40?N),includingtheTPregion(75?–105?E), theECWPregion(105?–135?E),andtheNPregion(150?–180?E).TheCVhasanannualcycle,whichishigherinthe winterhalfyearandlowerinthesummerhalfyear.ThemaximumCVreachesabout17%intheTPregion,andabout 13%intheothertworegions.Whentheclear-skysampling pointsofthemonorailtrackwithinanhouraregreaterthan 500,theaverageCVis9.44%fortheTPregion,4.95%for theECWPregion,and3.49%fortheNPregion.Whenthe clear-skysamplingpointsaregreaterthan800,theaveraged CVis10.5%,5.11%and3.55%,respectively.Theimpactof underlyingsurfacefeaturesintheTPregionisabouttwiceas largeasintheECWPorNPregions.

    (3)TheI3RCnumericalsimulationsshowedthatsurface albedoaffectsDSSRdramatically.DSSRincreasesassurfacealbedoincreases,andtheimpactofsurfacealbedoon DSSRislargerifthespatialdistributionofcloudsismore non-uniform.Surfacealbedoisjustoneoftheparametersof surfaceproperties.Itisnecessarytoconsidertheeffectof surfacealbedoonthesurfaceradiationbudget.

    4.2.Discussion

    Currentsatelliteproductsfacegreatchallengesoverthe TPbecauseofthecomplexsurfaceandskyconditions.SurfacepropertiesdramaticallyaffectthedistributionofDSSR overtheTP,whichinturnwillmodulatetheenergycycleand furtherleadtoaseriesofclimaticandmeteorologicalconsequences.Thepresentstudyqualitativelyandquantitatively indicatedthattheeffectofsurfacefeaturesisanabsoluterestrictionfortheprecisionofcurrentradiativetransfermodelsandsatelliteinversionalgorithms.Inareaswithacomplexsurface,thevariabilityofthatunderlyingsurfaceand itsradiativepropertiescombinetogeneratecomplicatedspatialandtemporalpatternsofsurfaceradiationbudgets.Underclear-skyconditions,shortwavesurfaceeffectscanleadto surfacetemperaturedifferencesofupto2.5K,andlongwave effectstodifferencesofupto1K(Mannersetal.,2012).The TPhasverydifferentcharacteristicsofDSSRcomparedto otherregions.Moreattentionshouldbepaidtotheeffectof theunderlyingsurfaceonthesurfaceradiationbalance.

    Intermsoftheeffectofsurfaceproperties,mostpreviousstudieshavesimplyperformedtheirworkunderclearskyconditions(e.g.Liouetal.,2007;Mannersetal.,2012; Leeetal.,2013).However,theEarth’saveragecloudfraction isabouttwothirds(Madduxetal.,2010),andthecomplexityofsurfacepropertiescaninduceequallycomplexweather typesandskyconditions.Complexsurfacesand3Dclouds coexistmostofthetime.Inoursimulation,onlythesurfacealbedoeffectwasinvestigatedundertheskywith3D cloudsbecauseofthelimitationofthecurrentI3RCMonte Carlocode.Oursimulationshowedthattheimpactofsurface albedoonDSSRislargerifthespatialdistributionofclouds ismorenon-uniform.Theproblemwillbemorecomplex ifthetopographiceffectisaddedintotheradiativetransfer model.Inthefuture,weintendtoperformstudiesofthetopographiceffectbyimprovingtheI3RCMonteCarlomodel, orbyusingothereffectivemodels.Thepresentworkcanbe usedasafoundationuponwhichwecanbuildandthinkabout howtoextractthesurfaceshortwaveradiationvaluesbyusing moreaccuratemethodsandsatellitedata.Itisimperativeto establishinhomogeneoussurface–atmospherecouplinginto radiativetransfermodels.

    Acknowledgements.ThisresearchwassupportedbytheNationalNaturalScienceFoundationofChina(GrantNo.41127901) andtheStrategicPriorityResearchProgram–ClimateChange:CarbonBudgetandRelevantIssues(GrantNo.XDA05040300).The authorswouldliketothankProfs.HUANGJian-Ping,ZHANGWu, MAYao-Ming,XUANYue-Jian,andCHENHong-Binfortheir provisionofinsitudata.TheauthorswouldalsoliketothankProf.TamasVARNAIandProf.RobertPINCUSfortheirmanysuggestionsanddiscussionsontheMonteCarlomodel.

    REFERENCES

    Cahalan,R.F.,andCoauthors,2005:TheI3RC:Bringingtogether themostadvancedradiativetransfertoolsforcloudyatmospheres.Bull.Amer.Meteor.Soc.,86(9),1275–1293.

    Cong,Z.Y.,S.C.Kang,A.Smirnov,andB.Holben,2009: AerosolopticalpropertiesatNamCo,aremotesiteincentralTibetanPlateau.Atmos.Res.,92(1),42–48.

    Dubayah,R.C.,andS.Loechel,1997:Modelingtopographicsolar radiationusingGOESdata.J.Appl.Meteor.,36(2),141–154.

    Dubayah,R.C.,andP.M.Rich,1995:TopographicsolarradiationmodelsforGIS.Int.J.GeographicalInform.Syst.,9(4), 405–419.

    Evans,K.F.,andA.Marshak,2005:Numericalmethods.3DRadiativeTransferinCloudyAtmospheres.A.MarshakandA. B.Davis,Eds.,Springer,Berlin,261–274.

    Geiger,M.,L.Diabate,L.Menard,andL.Wald,2002:Aweb serviceforcontrollingthequalityofmeasurementsofglobal solarirradiation.SolarEnergy,73(6),475–480.

    Gui,S.,S.L.Liang,andL.Li,2009:ValidationofsurfaceradiationdataprovidedbytheCERESovertheTibetanPlateau. 200917thInternationalConferenceonGeoinformatics,Fairfax,VA,1–6.

    Gui,S.,S.L.Liang,K.C.Wang,andL.Li,2010:Assessmentof threesatellite-estimatedlandsurfacedownwellingshortwave irradiancedataSets.IEEEGeosci.RemoteSens.Lett.,7(4), 776–780.

    Gupta,S.K.,D.P.Kratz,Jr.P.W.Stackhouse,andA.C. Wilber,2001:TheLangleyparameterizedshortwavealgorithm(LPSA)forsurfaceradiationbudgetstudies(version1.0).NASA/TP-2001-211272.

    Hayasaka,T.,K.Kawamoto,G.Shi,andA.Ohmura,2006:Importanceofaerosolsinsatellite-derivedestimatesofsurface shortwaveirradianceoverChina.Geophys.Res.Lett.,33, L06802,doi:10.1029/2005GL025093.

    Helbig,N.,H.L¨owe,andM.Lehning,2009:Radiosityapproach forthesurfaceradiationbalanceincomplexterrain.J.Atmos. Sci.,66,2900–2912.

    Houborg,R.,H.Soegaard,W.Emmerich,andS.Moran,2007: Inferencesofall-skysolarirradianceusingTerraandAqua MODISsatellitedata.Int.J.RemoteSens.,28(20),4509–4535.

    Huang,J.Y.,2004:MeteorologicalStatisticalAnalysisandForecastMethod.ChinaMeteorologicalPress,Beijing,298pp.(in Chinese)

    Huo,J.,andD.R.L¨U,2012:CloudamountanalysisatYangbajingofTibetin2009–2010usingall-skyimages.Climaticand EnvironmentalResearch,17(4),393–399.(inChinese)

    Kang,S.,S.Kim,andD.Lee,2002:Spatialandtemporalpatterns ofsolarradiationbasedontopographyandairtemperature. CanadianJournalofForestResearch,32(3),487–497.

    Kim,H.Y.,andS.L.Liang,2010:Developmentofahybrid methodforestimatinglandsurfaceshortwavenetradiation fromMODISdata.RemoteSens.Environ.,114,2393–2402.

    Kurosaki,Y.,andF.Kimura,2002:RelationshipbetweentopographyanddaytimecloudactivityaroundTibetanPlateau.J. Meteor.Soc.Japan,80(6),1139–1355.

    Kuwagata,T.,A.Numaguti,andN.Endo,2001:Diurnalvariation ofwatervaporoverthecentralTibetanPlateauduringsummer.J.Meteor.Soc.Japan,79,401–418.

    Lee,W.L.,K.N.Liou,andC.C.Wang,2013:Impactof3-DtopographyonsurfaceradiationbudgetovertheTibetan Plateau.Theor.Appl.Climatol.,113,95–103.

    Li,Z.,H.G.Leighton,K.Masuda,andT.Takashima,1993:EstimationofSWfluxabsorbedatthesurfacefromTOAreflected flux.J.Climate,6(2),317–330.

    Liou,K.N.,2002:AnIntroductiontoAtmosphericRadiation.2nd ed.,AcademicPress,Boston,583pp.

    Liou,K.N.,W.Lee,andA.Hall,2007:Radiativetransferin mountains:ApplicationtotheTibetanPlateau.Geophys.Res. Lett.,34,L23809,doi:10.1029/2007GL031762.

    Loeb,N.G.,N.M.Smith,S.Kato,W.F.Miller,S.K.Gupta, P.Minnis,andB.A.Wielicki,2003:Angulardistribution modelsfortop-of-atmosphereradiativefluxestimationfrom thecloudsandtheEarth’sradiantenergysysteminstrument ontheTropicalRainfallMeasuringMissionsatellite.PartI: Methodology.J.Appl.Meteor.,42,240–265.

    Ma,Y.,andR.T.Pinker,2012:Modelingshortwaveradiative fluxesfromsatellites.J.Geophys.Res.,117,D23202,doi: 10.1029/2012JD018332.

    Ma,Y.,andCoauthors,2005:Diurnalandinter-monthlyvariation oflandsurfaceheatfluxesoverthecentralTibetanPlateau area.Theor.Appl.Climatol.,80,259–273.

    Maddux,B.,S.A.Ackeman,andS.Platnick,2010:ViewinggeometrydependenciesinMODIScloudproducts.J.Atmos. OceanicTechnol.,27(9),1519–1528.

    Manners,J.,S.B.Vosper,N.Roberts,2012:Radiativetransferoverresolvedtopographicfeaturesforhigh-resolution weatherprediction.Quart.J.Roy.Meteor.Soc.,138,720–733.

    Moeng,C.H.,andCoauthors,1996:Simulationofastratocumulustoppedplanetaryboundarylayer:Intercomparisonamong differentnumericalcodes.Bull.Amer.Meteor.Soc.,77(2), 261–278.

    Ohring,G.,B.Wielicki,R.Spencer,B.Emery,andR.Datla,2005: Satelliteinstrumentcalibrationformeasuringglobalclimate change.Bull.Amer.Meteor.Soc.,86,1303–1314.

    Pincus,R.,andK.F.Evans,2009:Computationalcostandaccuracyincalculatingthree-dimensionalradiativetransfer:ResultsfornewimplementationsofMonteCarloandSHDOM. J.Atmos.Sci.,66,3131–3146.

    Qin,J.,K.Yang,S.Liang,andW.Tang,2012:Estimationofdaily meanphotosyntheticallyactiveradiationunderAll-Skyconditionsbasedonrelativesunshinedata.J.Appl.Meteor.Climatol.,51,150–160.

    Ryu,Y.,S.Kang,S.K.Moon,andJ.Kim,2008:Evaluationof landsurfaceradiationbalancederivedfrommoderateresolutionimagingspectroradiometer(MODIS)overcomplexterrainandheterogeneouslandscapeonclearskydays.Agric. Forest.Meteorol.,148(10),1538–1552.

    Spencer,J.W.,1971:Fourierseriesrepresentationoftheposition ofthesun.Search,2,172.

    Stevens,B.,andD.H.Lenschow,2001:Observations,experiments,andlargeeddysimulation.Bull.Amer.Meteor.Soc., 82(2),283–294.

    St¨ockli,R.,2013:TheHelioMontSurfaceSolarRadiationProcessing.ScientificReportMeteoSwiss,No.93,122pp.

    Stroeve,J.,J.E.Box,F.Gao,S.Liang,A.Nolin,andC.Schaaf, 2005:AccuracyassessmentoftheMODIS16-dayalbedo productforsnow:ComparisonswithGreenlandinsuitmea-surements.RemoteSens.Environ.,94(1),46–60.

    Wang,K.C.,X.J.Zhou,J.M.Liu,andM.Sparrow,2005:Estimatingsurfacesolarradiationovercomplexterrainusing moderate-resolutionsatellitesensordata.Int.J.RemoteSens., 26(1),47–58.

    Wang,L.D.,D.R.L¨u,andW.X.Zhang,2013:StudyoncharacteristicofsolarradiationatNamCoandYangbajainin Qinghai-XizangPlateau.PlateauMeteorology,32(2),315–326.(inChinese)

    Wang,L.D.,D.R.L¨u,andJ.Huo,2014:ObservationandsimulationofabnormaltransmittanceoverYangbajing,Tibet.AtmosphericandOceanicSciencesLetters,7,190–197,doi: 10.3878/j.issn.1674-2834.13.0086.

    Wang,S.,R.F.Grant,D.L.Verseghy,andT.A.Blac,2002:Modellingcarbondynamicsofborealforestecosystemsusingthe Canadianlandsurfacescheme.ClimaticChange,55(4),451–477.

    Yang,K.,T.Koike,P.Stackhouse,C.Mikovitz,andS.J.Cox, 2006:AnassessmentofsatelliteSurfaceradiationProducts forhighlandswithTibetinstrumentaldata.Geophys.Res. Lett.,33,L22403,doi:10.1029/2006GL027640.

    Yang,K.,R.T.Pinker,Y.M.Ma,T.Koike,M.M.Wonsick, S.J.Cox,Y.C.Zhang,andP.Stackhouse,2008:Evaluationofsatelliteestimatesofdownwardshortwaveradiation overtheTibetanPlateau.J.Geophys.Res.,113,D17204,doi: 10.1029/2007JD009736.

    Yang,K.,J.He,W.J.Tang,J.Qin,andC.C.K.Cheng,2010: Ondownwardshortwaveandlongwaveradiationsoverhigh altituderegions:ObservationandmodelingintheTibetan Plateau.Agric.Forest.Meteor.,150(1),38–46.

    Zhang,Y.C.,W.B.Rossow,andJr.P.W.Stackhouse,2006: Comparisonofdifferentglobalinformationsourcesusedin surfaceradiativefluxcalculation:Radiativepropertiesofthe near-surfaceatmosphere.J.Geophys.Res.,111,D13106,doi: 10.1029/2005JD006873.

    Zhang,Y.C.,W.B.Rossow,andJr.P.W.Stackhouse,2007:Comparisonofdifferentglobalinformationsourcesusedinsurface radiativefluxcalculation:Radiativepropertiesofthesurface. J.Geophys.Res.,112,D01102,doi:10.1029/2005JD007008.

    :Wang,L.D.,D.R.L¨u,and Q.He,2015:The impactofsurface properties on downward surface shortwave radiation over the Tibetan Plateau.Adv.Atmos.Sci.,32(6),759–771,

    10.1007/s00376-014-4131-2.

    (Received 20 June 2014;revised 11 October 2014;accepted 22 October 2014)

    ?Corresponding author:L¨U Daren

    Email:ludr@mail.iap.ac.cn

    ?Institute of Atm ospheric Physics/Chinese Academ y of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2015

    2018国产大陆天天弄谢| 少妇的丰满在线观看| 色94色欧美一区二区| 国产成人系列免费观看| 2021少妇久久久久久久久久久| 色精品久久人妻99蜜桃| 国产一卡二卡三卡精品 | 国产在视频线精品| av在线播放精品| 国产精品无大码| 亚洲人成网站在线观看播放| 一区二区三区激情视频| 国产人伦9x9x在线观看| 青草久久国产| 大陆偷拍与自拍| 国产精品久久久久久精品古装| 国产一区二区 视频在线| 91国产中文字幕| a级片在线免费高清观看视频| 热99国产精品久久久久久7| 七月丁香在线播放| 亚洲成av片中文字幕在线观看| 一区二区三区激情视频| 日本爱情动作片www.在线观看| 亚洲激情五月婷婷啪啪| 搡老岳熟女国产| 啦啦啦视频在线资源免费观看| 亚洲av国产av综合av卡| 熟女av电影| 亚洲国产成人一精品久久久| 国产成人av激情在线播放| 日本一区二区免费在线视频| 精品酒店卫生间| 波多野结衣av一区二区av| 丰满饥渴人妻一区二区三| 一级毛片电影观看| 亚洲一级一片aⅴ在线观看| 欧美亚洲 丝袜 人妻 在线| 免费高清在线观看日韩| 91成人精品电影| 少妇人妻精品综合一区二区| 美女福利国产在线| 中文精品一卡2卡3卡4更新| 欧美精品一区二区大全| 一本一本久久a久久精品综合妖精| 午夜福利视频在线观看免费| 国产精品一二三区在线看| 99久久综合免费| 久久久精品94久久精品| 日本vs欧美在线观看视频| 日韩av在线免费看完整版不卡| 99精国产麻豆久久婷婷| kizo精华| 国产一区有黄有色的免费视频| 99久国产av精品国产电影| xxxhd国产人妻xxx| 多毛熟女@视频| 一本—道久久a久久精品蜜桃钙片| 亚洲av中文av极速乱| 在线天堂最新版资源| 精品人妻熟女毛片av久久网站| 一级爰片在线观看| 久久久精品区二区三区| 别揉我奶头~嗯~啊~动态视频 | 另类精品久久| 欧美人与善性xxx| 亚洲欧美中文字幕日韩二区| 国精品久久久久久国模美| 色综合欧美亚洲国产小说| 一区二区三区精品91| 亚洲精品aⅴ在线观看| 伦理电影大哥的女人| kizo精华| 国产亚洲av片在线观看秒播厂| 亚洲国产欧美日韩在线播放| 国产精品久久久久成人av| 黄片播放在线免费| 多毛熟女@视频| 国产精品亚洲av一区麻豆 | 99久久99久久久精品蜜桃| 久久99热这里只频精品6学生| 午夜激情久久久久久久| 99精品久久久久人妻精品| 午夜日本视频在线| 香蕉丝袜av| 国产精品一区二区在线观看99| 高清视频免费观看一区二区| 亚洲第一青青草原| 久久精品aⅴ一区二区三区四区| av在线app专区| 妹子高潮喷水视频| 99re6热这里在线精品视频| 少妇精品久久久久久久| 国产在线一区二区三区精| 欧美日韩亚洲高清精品| 建设人人有责人人尽责人人享有的| 亚洲国产最新在线播放| 天堂8中文在线网| 欧美精品av麻豆av| 国产男人的电影天堂91| 操美女的视频在线观看| 又大又黄又爽视频免费| 国产一区二区三区av在线| 日韩一本色道免费dvd| 午夜福利网站1000一区二区三区| 最近中文字幕2019免费版| 日本黄色日本黄色录像| 亚洲成人国产一区在线观看 | 韩国精品一区二区三区| 黄色 视频免费看| 97人妻天天添夜夜摸| 女性被躁到高潮视频| 热99国产精品久久久久久7| 一级毛片我不卡| 王馨瑶露胸无遮挡在线观看| 男男h啪啪无遮挡| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美精品免费久久| 亚洲婷婷狠狠爱综合网| 亚洲国产欧美网| 无限看片的www在线观看| 亚洲欧美清纯卡通| 日本欧美国产在线视频| 不卡av一区二区三区| 99久国产av精品国产电影| 久久人人爽人人片av| 国产免费又黄又爽又色| 精品国产一区二区三区四区第35| 无遮挡黄片免费观看| avwww免费| 久久婷婷青草| 国产一卡二卡三卡精品 | 亚洲人成电影观看| 亚洲色图 男人天堂 中文字幕| 婷婷色综合大香蕉| 制服诱惑二区| 亚洲欧洲国产日韩| 十分钟在线观看高清视频www| 大码成人一级视频| 欧美少妇被猛烈插入视频| 制服人妻中文乱码| 综合色丁香网| 亚洲欧美一区二区三区久久| 亚洲精品国产av成人精品| 国产老妇伦熟女老妇高清| 日韩 亚洲 欧美在线| 青春草国产在线视频| 成年av动漫网址| 波多野结衣av一区二区av| 精品视频人人做人人爽| 久久亚洲国产成人精品v| 亚洲在久久综合| 国产在线视频一区二区| 人人妻人人爽人人添夜夜欢视频| 一本一本久久a久久精品综合妖精| 亚洲,欧美,日韩| 熟女av电影| 精品人妻熟女毛片av久久网站| 在线天堂中文资源库| 18禁国产床啪视频网站| 秋霞伦理黄片| 亚洲,欧美,日韩| 亚洲成色77777| 波野结衣二区三区在线| 黄频高清免费视频| 欧美在线一区亚洲| 国产精品国产三级专区第一集| 日韩av不卡免费在线播放| 婷婷色麻豆天堂久久| 日韩av不卡免费在线播放| 亚洲精品自拍成人| 亚洲美女黄色视频免费看| 制服诱惑二区| 午夜老司机福利片| 女人精品久久久久毛片| 国产老妇伦熟女老妇高清| 久久人人爽av亚洲精品天堂| 黄色怎么调成土黄色| 人妻 亚洲 视频| 国产色婷婷99| 精品一区二区三卡| 人妻 亚洲 视频| 久久精品国产亚洲av涩爱| 大香蕉久久网| 肉色欧美久久久久久久蜜桃| 国产av码专区亚洲av| 久久精品国产亚洲av高清一级| 男的添女的下面高潮视频| 日韩大码丰满熟妇| 一区在线观看完整版| 成人国产av品久久久| 久久久久久久久久久久大奶| 街头女战士在线观看网站| 日本一区二区免费在线视频| 亚洲欧洲日产国产| 免费观看性生交大片5| 无限看片的www在线观看| 国产精品一二三区在线看| 亚洲少妇的诱惑av| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻丝袜一区二区 | 观看美女的网站| 婷婷色综合www| 精品国产超薄肉色丝袜足j| 十八禁高潮呻吟视频| 一区二区日韩欧美中文字幕| 五月开心婷婷网| 亚洲一码二码三码区别大吗| 91国产中文字幕| 国产97色在线日韩免费| 国产高清国产精品国产三级| 啦啦啦视频在线资源免费观看| 久久久久网色| 精品亚洲成a人片在线观看| 国产在线视频一区二区| 肉色欧美久久久久久久蜜桃| 街头女战士在线观看网站| 国产成人欧美在线观看 | 免费在线观看完整版高清| 国产成人精品在线电影| 男女边摸边吃奶| 少妇人妻久久综合中文| 亚洲综合色网址| 欧美精品av麻豆av| 91精品伊人久久大香线蕉| a级毛片黄视频| 女人被躁到高潮嗷嗷叫费观| 在线观看人妻少妇| 欧美老熟妇乱子伦牲交| 国产av码专区亚洲av| 亚洲av中文av极速乱| 菩萨蛮人人尽说江南好唐韦庄| 自拍欧美九色日韩亚洲蝌蚪91| 人人澡人人妻人| 日韩免费高清中文字幕av| 亚洲精品在线美女| 日本欧美视频一区| 国产在线视频一区二区| 国产福利在线免费观看视频| av免费观看日本| 亚洲综合色网址| 亚洲 欧美一区二区三区| 夜夜骑夜夜射夜夜干| 亚洲熟女毛片儿| 国产精品久久久av美女十八| 国产一区二区三区综合在线观看| 狠狠婷婷综合久久久久久88av| 亚洲人成电影观看| 国产成人欧美在线观看 | av视频免费观看在线观看| 亚洲男人天堂网一区| videosex国产| 母亲3免费完整高清在线观看| 日韩制服骚丝袜av| 亚洲国产精品一区三区| 毛片一级片免费看久久久久| 老司机在亚洲福利影院| 久久久久久久国产电影| 人妻 亚洲 视频| 黑丝袜美女国产一区| 亚洲人成电影观看| 18禁裸乳无遮挡动漫免费视频| 黑人欧美特级aaaaaa片| 热re99久久国产66热| 少妇人妻精品综合一区二区| 国产在线一区二区三区精| a级片在线免费高清观看视频| 高清黄色对白视频在线免费看| 亚洲欧美成人综合另类久久久| 欧美中文综合在线视频| 男男h啪啪无遮挡| 亚洲欧美日韩另类电影网站| www.自偷自拍.com| 热99久久久久精品小说推荐| 国产精品av久久久久免费| 欧美精品一区二区免费开放| 亚洲综合色网址| 卡戴珊不雅视频在线播放| 亚洲欧美中文字幕日韩二区| 久久人人97超碰香蕉20202| 亚洲欧美中文字幕日韩二区| 啦啦啦在线免费观看视频4| av网站在线播放免费| av视频免费观看在线观看| 国产成人91sexporn| 亚洲情色 制服丝袜| 女人精品久久久久毛片| 国产精品免费大片| 大片免费播放器 马上看| 99热全是精品| 精品一区二区三卡| 亚洲成色77777| 美女主播在线视频| 成人18禁高潮啪啪吃奶动态图| 我要看黄色一级片免费的| 欧美 日韩 精品 国产| 亚洲精品一二三| 亚洲av日韩在线播放| 精品一区二区三区四区五区乱码 | 丝袜人妻中文字幕| 色吧在线观看| 午夜福利视频精品| 国产无遮挡羞羞视频在线观看| 欧美在线黄色| 色网站视频免费| 亚洲欧洲国产日韩| 一区二区三区四区激情视频| 麻豆乱淫一区二区| 国产淫语在线视频| 久久精品人人爽人人爽视色| 亚洲熟女精品中文字幕| 黑人猛操日本美女一级片| 婷婷色综合www| 十八禁高潮呻吟视频| 成年人免费黄色播放视频| 老鸭窝网址在线观看| 色综合欧美亚洲国产小说| av电影中文网址| 国产爽快片一区二区三区| 美女高潮到喷水免费观看| 成人国产麻豆网| 国产精品久久久久成人av| 亚洲精品中文字幕在线视频| 国产精品香港三级国产av潘金莲 | 成人亚洲欧美一区二区av| av免费观看日本| xxxhd国产人妻xxx| 一区二区三区激情视频| 蜜桃在线观看..| 电影成人av| 夫妻午夜视频| 五月天丁香电影| 国产日韩欧美在线精品| 中文字幕人妻丝袜制服| 性少妇av在线| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 亚洲中文av在线| av福利片在线| 啦啦啦在线免费观看视频4| 欧美日韩亚洲高清精品| 国产在线视频一区二区| 亚洲熟女精品中文字幕| 91老司机精品| 美女视频免费永久观看网站| 亚洲国产日韩一区二区| 香蕉国产在线看| 天堂8中文在线网| 热re99久久精品国产66热6| 18禁国产床啪视频网站| 一区二区三区精品91| 久久综合国产亚洲精品| 妹子高潮喷水视频| 在线精品无人区一区二区三| av免费观看日本| 国精品久久久久久国模美| 国产欧美日韩一区二区三区在线| 欧美激情高清一区二区三区 | 国产一级毛片在线| 亚洲精品一二三| av在线观看视频网站免费| 青春草亚洲视频在线观看| 国产精品免费视频内射| 欧美老熟妇乱子伦牲交| 中文欧美无线码| 在线观看国产h片| 亚洲三区欧美一区| 成人午夜精彩视频在线观看| 老鸭窝网址在线观看| 一级毛片电影观看| 亚洲欧美一区二区三区国产| 80岁老熟妇乱子伦牲交| 午夜日本视频在线| 国产精品免费大片| 99久国产av精品国产电影| 国产xxxxx性猛交| 久久久亚洲精品成人影院| 亚洲国产中文字幕在线视频| 侵犯人妻中文字幕一二三四区| 久久天堂一区二区三区四区| 一区二区三区精品91| 日本爱情动作片www.在线观看| 亚洲国产成人一精品久久久| 亚洲成人av在线免费| 一级毛片 在线播放| 国产精品久久久久成人av| 日韩电影二区| 久久天躁狠狠躁夜夜2o2o | 少妇人妻久久综合中文| 又黄又粗又硬又大视频| 搡老岳熟女国产| av网站免费在线观看视频| 国产日韩一区二区三区精品不卡| 悠悠久久av| 国产精品av久久久久免费| 一级毛片 在线播放| 女性被躁到高潮视频| 1024香蕉在线观看| 日韩伦理黄色片| 国产在视频线精品| 在线观看免费视频网站a站| 国产极品天堂在线| 日日摸夜夜添夜夜爱| 国产亚洲精品第一综合不卡| 国产视频首页在线观看| 黄色 视频免费看| 成人亚洲欧美一区二区av| 亚洲av福利一区| 少妇人妻精品综合一区二区| 91精品三级在线观看| 菩萨蛮人人尽说江南好唐韦庄| 不卡av一区二区三区| 午夜影院在线不卡| 电影成人av| 久久青草综合色| 亚洲伊人色综图| av网站免费在线观看视频| 国产精品女同一区二区软件| 18禁动态无遮挡网站| 香蕉丝袜av| 午夜激情久久久久久久| 激情视频va一区二区三区| 亚洲国产日韩一区二区| 色吧在线观看| av女优亚洲男人天堂| 男女床上黄色一级片免费看| 欧美日韩福利视频一区二区| 国语对白做爰xxxⅹ性视频网站| 男人添女人高潮全过程视频| 十八禁人妻一区二区| 丁香六月欧美| 午夜影院在线不卡| 老鸭窝网址在线观看| 精品少妇久久久久久888优播| 九九爱精品视频在线观看| 纵有疾风起免费观看全集完整版| 亚洲情色 制服丝袜| 午夜精品国产一区二区电影| 亚洲七黄色美女视频| 日韩成人av中文字幕在线观看| 伊人久久国产一区二区| 免费观看av网站的网址| 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| 丝袜美腿诱惑在线| 777米奇影视久久| 热re99久久精品国产66热6| 成人亚洲欧美一区二区av| 午夜久久久在线观看| 欧美亚洲日本最大视频资源| 老司机影院毛片| 国产精品 欧美亚洲| 久久久久久人妻| 欧美精品一区二区大全| 校园人妻丝袜中文字幕| tube8黄色片| 久久精品国产亚洲av高清一级| 看免费av毛片| 宅男免费午夜| 免费不卡黄色视频| 老司机影院成人| 久久精品国产亚洲av涩爱| 精品久久蜜臀av无| 少妇人妻精品综合一区二区| 中文字幕av电影在线播放| 丝袜在线中文字幕| 欧美日韩一区二区视频在线观看视频在线| av一本久久久久| 亚洲av在线观看美女高潮| 母亲3免费完整高清在线观看| av在线播放精品| 国产精品香港三级国产av潘金莲 | 一级片免费观看大全| xxxhd国产人妻xxx| 精品一区二区三卡| 波多野结衣一区麻豆| 久久精品国产综合久久久| 国产一卡二卡三卡精品 | 在线观看免费高清a一片| 午夜福利一区二区在线看| 99热国产这里只有精品6| 曰老女人黄片| 男女床上黄色一级片免费看| 大码成人一级视频| 亚洲国产成人一精品久久久| 男女下面插进去视频免费观看| 国产成人免费无遮挡视频| 国产午夜精品一二区理论片| 99久久精品国产亚洲精品| 国产乱来视频区| 香蕉丝袜av| 综合色丁香网| 在线观看一区二区三区激情| 亚洲美女黄色视频免费看| 国产精品嫩草影院av在线观看| 十八禁网站网址无遮挡| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕亚洲精品专区| 天天操日日干夜夜撸| 精品少妇内射三级| 宅男免费午夜| 99热网站在线观看| 悠悠久久av| av在线观看视频网站免费| 亚洲综合精品二区| 精品人妻熟女毛片av久久网站| 国产男人的电影天堂91| 久久久久久人妻| 久久久久久久久久久久大奶| 人妻人人澡人人爽人人| 欧美黑人欧美精品刺激| 一级片'在线观看视频| 高清在线视频一区二区三区| 国产极品天堂在线| 亚洲综合精品二区| 亚洲久久久国产精品| av网站在线播放免费| 亚洲专区中文字幕在线 | 9191精品国产免费久久| 欧美亚洲日本最大视频资源| 精品国产一区二区三区久久久樱花| 成人影院久久| 亚洲av在线观看美女高潮| 国产成人精品久久久久久| 国产男人的电影天堂91| 啦啦啦啦在线视频资源| 99国产精品免费福利视频| 最黄视频免费看| 国产精品免费视频内射| 免费高清在线观看日韩| 9色porny在线观看| 亚洲国产看品久久| 99香蕉大伊视频| 麻豆乱淫一区二区| 午夜福利网站1000一区二区三区| 精品少妇内射三级| 欧美日本中文国产一区发布| 日韩av免费高清视频| 十八禁高潮呻吟视频| 美女主播在线视频| 另类精品久久| 国产精品久久久久久人妻精品电影 | 999精品在线视频| 免费高清在线观看日韩| 中国国产av一级| h视频一区二区三区| 成人三级做爰电影| 日本91视频免费播放| 精品一区二区免费观看| 国产无遮挡羞羞视频在线观看| 亚洲av国产av综合av卡| www日本在线高清视频| 国产精品av久久久久免费| 啦啦啦中文免费视频观看日本| 赤兔流量卡办理| 免费久久久久久久精品成人欧美视频| 十八禁高潮呻吟视频| 精品国产乱码久久久久久小说| 老司机在亚洲福利影院| 免费女性裸体啪啪无遮挡网站| 丰满少妇做爰视频| 久久久国产精品麻豆| av在线播放精品| 人妻一区二区av| 免费av中文字幕在线| 成年动漫av网址| 亚洲欧洲日产国产| 欧美黑人精品巨大| 欧美国产精品一级二级三级| 成年动漫av网址| 久久久国产一区二区| 精品视频人人做人人爽| 各种免费的搞黄视频| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 久久久久久久国产电影| 久久精品久久久久久噜噜老黄| 蜜桃国产av成人99| 亚洲一卡2卡3卡4卡5卡精品中文| 超碰97精品在线观看| 中文欧美无线码| 另类精品久久| 国产精品一国产av| 国产成人欧美| 欧美日韩一级在线毛片| 18禁观看日本| 极品人妻少妇av视频| 亚洲成人免费av在线播放| 一本色道久久久久久精品综合| 欧美av亚洲av综合av国产av | 女的被弄到高潮叫床怎么办| 欧美人与性动交α欧美精品济南到| 国产乱来视频区| 老司机影院毛片| 免费观看性生交大片5| 午夜福利一区二区在线看| 99热网站在线观看| 欧美亚洲日本最大视频资源| 国产av码专区亚洲av| 我的亚洲天堂| 一区二区日韩欧美中文字幕| 美女主播在线视频| 老司机深夜福利视频在线观看 | 免费久久久久久久精品成人欧美视频| 国产色婷婷99| 国产一区亚洲一区在线观看| 两个人免费观看高清视频| 午夜免费鲁丝| 国产午夜精品一二区理论片| 国产日韩一区二区三区精品不卡| 亚洲精品一二三| 国产成人av激情在线播放| 国产在线视频一区二区| 亚洲成人手机| 色网站视频免费|