• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis and Evaluation of the GlobalAerosolOpticalProperties Simulated by an Online Aerosol-coup led Non-hydrostatic Icosahedral Atmospheric M odel

    2015-04-20 05:59:12DAITieSHIGuangyuandTeruyukiNAKAJIMA
    Advances in Atmospheric Sciences 2015年6期

    DAITieSHIGuangyuand TeruyukiNAKAJIMA

    1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute ofAtmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology,Nanjing210044

    3Collaborative Innovation Center on Forecastand Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology,Nanjing210044

    4Atmosphere and Ocean Research Institute,University of Tokyo,Kashiwa,Japan

    Analysis and Evaluation of the GlobalAerosolOpticalProperties Simulated by an Online Aerosol-coup led Non-hydrostatic Icosahedral Atmospheric M odel

    DAITie?1,2,3,SHIGuangyu1,3,and TeruyukiNAKAJIMA4

    1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute ofAtmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology,Nanjing210044

    3Collaborative Innovation Center on Forecastand Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology,Nanjing210044

    4Atmosphere and Ocean Research Institute,University of Tokyo,Kashiwa,Japan

    Aerosolopticalproperties are simulated using the SpectralRadiation TransportModel for AerosolSpecies(SPRINTARS) coupled w ith the Non-hydrostatic ICosahedralAtmospheric Model(NICAM).The 3-yearglobalmean all-sky aerosoloptical thickness(AOT)at550 nm,the?Angstr¨om Exponent(AE)based on AOTs at440 and 870 nm,and the single scattering albedo (SSA)at 550 nm are estimated at 0.123,0.657 and 0.944,respectively.For each aerosol species,the mean AOT is w ithin the range of the AeroCom models.Both the modeled all-sky and clear-sky results are compared w ith observations from the Moderate Resolution Imaging Spectroradiometer(MODIS)and the Aerosol Robotic Network(AERONET).The simulated spatiotemporal distributions of all-sky AOTs can generally reproduce the MODIS retrievals,and the correlation and model skill can be slightly improved using the clear-sky results over most land regions.The differences between clear-sky and all-sky AOTs are larger over polluted regions.Compared w ith observations from AERONET,the modeled and observed all-sky AOTs and AEs are generally in reasonable agreement,whereas the SSA variation is notwell captured.A lthough the spatiotemporal distributions of all-sky and clear-sky results are similar,the clear-sky results are generally better correlated w ith the observations.The clear-sky AOT and SSA are generally lower than the all-sky results,especially in those regions where the aerosol chem ical composition is contributed to mostly by sulfate aerosol.The modeled clear-sky AE is larger than the all-sky AE over those regions dominated by hydrophilic aerosol,while the opposite is found over regions dominated by hydrophobic aerosol.

    aerosolopticalproperties,non-hydrostatic icosahedralatmospheric model,Moderate Resolution Imaging Spectroradiometer,Aerosol Robotic Network

    1.Introduction

    Atmospheric aerosols have great impacts on the environment,human health,and the earth’s climate(Twomey,1974; Kampa and Castanas,2008;Zhang etal.,2012a).Currently, the effects of aerosol on climate(especially the interactions among aerosols,radiation,and clouds)are one of the largest uncertaintiesin modelsimulationsand climate change assessment(Lohmann et al.,2010).To properly quantify aerosol effects on the climate system,we need to accurately estimate aerosol optical properties such as aerosol optical thickness (AOT),?Angstr¨om exponent(AE)and single scattering albedo (SSA)w ith models(Goto etal.,2012).

    The opticalproperties ofaerosols are determ ined notonly by the aerosol amount,but also by physical and optical parameters such as aerosolsize distribution,the mixing state of particles,hygroscopic grow th,and refractive indices,especially in absorbing particles such as black carbon(BC)and dust.These parameters are either prescribed empirically or calculated explicitly in global climate aerosolmodels(Kinne etal.,2006;Textor etal.,2007;Peng etal.,2012;Zhang etal.,2012b;Mann etal.,2014),and the uncertainties of such parameterscan induce significantdifferencesin the simulated aerosolopticalproperties(Goto etal.,2011b).Aerosolmodeling also suffers from poorly known aerosol life cycles and em ission inventories(Textor et al.,2006,2007).Thus,the aerosol model has to be evaluated against observations before we can place confidence in such a model(Takemura et al.,2002a;Prados etal.,2007;Chin etal.,2009;Su and Toon, 2011;Ridley etal.,2012).

    Evaluations of simulated aerosoloptical fields in climate models have been performed in many previous studies,and resulting know ledge of aerosol processes has generally improved(Chin etal.,2002;Kinne etal.,2003;Lee and Adams, 2010;Chin et al.,2014).This makes modeled AOTs generally comparable to observations.However,the pathway to making such a match is less well constrained,and uncertainties associated w ith aerosol and aerosol–cloud interaction modeling are still large(Textor et al.,2006;Lee et al.,2013).Model results and observations are often compared in an inconsistent manner(Chin et al.,2002).Observations of aerosol optical properties are generally retrieved only under cloud-free conditions,whereasmodel results used for comparison are generally calculated under all-sky conditions.The effect of such an inconsistent comparison on modeled AOT evaluation has been studied recently(Colarco et al.,2010).The indication is that sampling model output consistently w ith satellite AOT retrievals is a more appropriate methodology to making aerosolmodelevaluations. Separating the modeled aerosol optical properties w ith a new aerosol-coupled version of the Non-hydrostatic ICosahedralAtmospheric Model(NICAM)into all-sky and clear-sky properties,we presenta model to observation comparison of the AOT,AE and SSA using both the modeled all-sky and clear-sky results in the presentstudy.In the nextsection,the model setup and observation data used are described.The general model performances are shown in section 3.1.The model results are further evaluated by comparing them w ith MODIS and AERONET retrievals in sections 3.2 and 3.3,respectively.The paper closes w ith a conclusion in section 4.

    2.M odeldescription and observation data

    2.1.Model description

    The Non-hydrostatic ICosahedral Atmospheric Model (NICAM)isdesigned to perform cloud-resolving simulations by directly calculating deep convection and mesoscale circulations,which play key roles not only in tropical circulation but also the global circulation of the atmosphere(Satoh et al.,2008).The model has been used for several types of global cloud-resolving experiments w ith horizontal resolutions up to 3.5 km(Satoh et al.,2008),including a realistic simulation of the Madden–Julian Oscillation(M iura et al.,2007).These studies demonstrate that NICAM reproduces the detailed features of global cloud and precipitation fields.The Spectral Radiation Transport Model for Aerosol Species(SPRINTARS)is a global three-dimensionalaerosol transport–radiation model,described fully in Takemura etal. (2000;2002a;2009)and Goto etal.(2011a).In the aerosolcoupled version of NICAM(Suzuki et al.,2008),which is referred to as NICAM+SPRINTARS,the mass m ixing ratios of the main tropospheric aerosols,i.e.,carbonaceous aerosols (BC and organic carbon),sulfate,soil dust,sea salt,and the precursor gases of sulfate,are predicted w ith the transport processes including advection,convection,diffusion,gravitational settling,and wet and dry deposition.The advection scheme of NICAM has desirable requirements for tracer transportsimulations:mass conservation,monotonicity,and efficiency(Niwa etal.,2011b).These facts encourage us to use NICAM+SPRINTARS as an aerosol transportmodel.

    The present study requires a long-term model integration to include the aerosol seasonal variation.This makes it too expensive to perform the modelsimulation w ith cloudresolving resolutions,which directly simulate the cloud microphysics using a one-moment(Tomita,2008)or twomoment bulk scheme(Seiki and Nakajima,2014;Seiki et al.,2014)for several days only(M iura et al.,2007;Suzuki et al.,2008). NICAM can also be run at coarser resolutions(Niwa et al.,2011a;Dai et al.,2014a),using the prognostic Arakawa–Schubert cumulus convection scheme (Arakawa and Schubert,1974)and large-scale condensation scheme(Le Trent and Li,1991)for cloud parameterization.NICAM is still advantageous when run at coarser resolutions,especially for transport simulations,because of the conservation of mass.Thus,we perform the model simulation w ith a coarse horizontal resolution of 224 km and 40 vertical layers and the model top located at 40 km for four years(2005–08).The fi rst year is used for spinup.The column cloud fraction is calculated w ith the commonly used maximum-random overlap method(Geleyn and Hollingsworth,1979).The other model physics,such as the m inimal advanced treatments of surface interaction and runoff(MATSIRO)land surface scheme(Takata etal.,2003), the two-streamk-distribution radiation scheme(Nakajima et al.,2000;Sekiguchiand Nakajima,2008),and the level2 vertical turbulence closure scheme(Mellor and Yamada,1974) are identical to those used in the cloud-resolving resolutions. NationalCenters for EnvironmentalPrediction(NCEP)Final (FNL)operational global tropospheric analyses are used for the initialand boundary conditions.

    The emission inventories of BC are based on the Global Em issions Inventory Activity(GEIA)database(Cooke and Wilson,1996),as monthly means w ithout yearly variation, w ith the exception of the fossil fuel consumption em ission. The latter is based on yearly mean data taken from the Aero-Com phase-IIdataset(Diehletal.,2012).Assuming different em ission ratios of OC to BC according to the burning conditions(Takemura etal.,2000;Takemura etal.,2002a),the OC em ission flux is calculated by the model itself.The inventory of sulfate aerosolprecursor(SO2)is also taken from the AeroCom phase-IIdataset.The dustand sea saltem ission fluxes are parameterized as in Takemura etal.(2009).The oxidant concentrations,such as ozone and hydroxyl radical,which are required to calculate sulfate chem istry(Takemura et al.,2000),are given by a global chemical transportmodel(Sudo et al.,2002).For proper simulation of the aerosol distribution,the modeled w ind,water vapor,and temperature fields are nudged to the NCEP FNL analysis data w ith a time-scale of six hours.

    The modeled AOT,AE and SSA are calculated in the same way as Daietal.(2014a)by using the new ly proposed opticalparameters.Hygroscopic grow ths for sulfate,organic carbon,and sea salt are parameterized as a function of relative hum idity to consider the aerosol water uptake(Takemura etal.,2002a).The relative humidity iscalculated identically forclear-sky and cloud-sky gridsbased on the Clausius–Clapeyron equation w ith grid mean values(i.e.,grid mean specific hum idity and temperature).The model integral time step is 20 m inutes,and the aerosoloptical properties are calculated at each integral time step but archived at every 3 hours.The modeled daily mean aerosolopticalpropertiesare simple means of the eight instantaneous snapshots per day. To exam ine the effectof cloud on the evaluation of the model results,we separate the simulated monthly mean aerosolopticalproperties into clear-sky and all-sky properties.We sample the modeled daily aerosoloptical properties to the daily cloud-free observations and calculate the modeled clear-sky monthly aerosoloptical properties by averaging the sampled daily results,whereas the all-sky ones are calculated w ithout any conditionalsampling.

    2.2.The MODIS products

    The Moderate Resolution Imaging Spectroradiometer (MODIS)is a key instrument onboard the NASA earth observing system satellites(Salomonson et al.,1989;Barnes et al.,1998).It has the ability to monitor the spatiotemporal variation of the globalaerosoland cloud fields over both ocean and land w ith severalwell-calibrated spectralchannels (King etal.,1992;Kaufman etal.,1997;Tanre′ etal.,1997). To elim inate the strong solar reflectance by cloud,MODIS Level 2 AOT retrieval at a 10×10 km2resolution considersonly the bestcloud-free pixelsusing a sophisticated cloud screen as a preprocessing step(Ackerman etal.,1998;Martins etal.,2002;Remer etal.,2005).The Level2 AOT is furtheraggregated to Level3 gridded globalproductata 1?×1?resolution(King etal.,2003;Remer and Kaufman,2006).In the present study,the MODIS Collection 5.1 daily Level 3 products of AOT at550 nm and cloud fraction from both the Terra and Aqua satellites are used,which can be downloaded freely from NASA’s innovative data analysis and visualization system(http://disc.sci.gsfc.nasa.gov/giovanni/overview/ index.htm l)(Ackerand Leptoukh,2007).

    2.3.AERONET dataset

    The Aerosol Robotic Network(AERONET)provides the largest dataset of global aerosol optical properties derived from ground-based remote sensing using sun/skyradiometers(Holben etal.,1998;Dubovik etal.,2000).In the presentstudy,the daily average AERONET Level2.0 almucantar inversion products are used for comparison(http:// aeronet.gsfc.nasa.gov/cgi-bin/combined data access inv). The AERONET AOTs and SSAs at both 440 and 675 nm are interpolated to compare w ith the modeled results at550 nm under the assumption that the AOTs are proportional to wavelength on a logarithm ic scale.The AE used for comparison is determ ined from the AOTs at440 and 870 nm.

    3.Results

    3.1.Global aerosol distribution with NICAM

    Figure 1 shows the three-year averaged global distribution of simulated AOT under all-sky conditions at the wavelength of 550 nm for individual aerosol components and its relative contribution to the total AOT.The sulfate and dust aerosols are located mainly in the Northern Hem isphere, whereas the carbonaceous aerosols and sea salt are located mainly in the Southern Hem isphere.High AOT values(>0.2) for sulfate aerosolare found in eastern Asia and Europe because of the high em ission of the sulfate aerosol precursor SO2from fossil fuel consumption.Carbonaceous aerosols originating from biomass burning are prom inent in central and southern A frica,Southeast Asia,and South America, w ith AOT values generally higher than 0.2.The maximum value of dust AOT(>0.3)is seen over the Sahara Desert area,and the dustw ith high AOT em itted from the deserts of East Asia is also simulated well(Wang etal.,2008;Bietal., 2011).High sea salt AOT(>0.1)located near 60?S directly reflects the high em ission rates due to the strong surface w ind. In terms of the global3-yearmeans,soildustaerosolhas the largestAOT(0.035),followed by sulfate aerosol(0.032),carbonaceous aerosol(0.030),and sea salt(0.026).As shown in Table 1,the mean AOTs of NICAM for both aerosol species and the totalare allw ithin the ranges of the 20 aerosolmodels that participated in the AeroCom exercise(Kinne et al., 2006).For dust aerosol,sulfate aerosol and the total,the mean AOTs are close to(~10%)the AeroCom means.For carbonaceous aerosoland sea salt,the mean AOTs are 30.4% higher and 18.7%lower than the AeroCom means,respectively.Sulfate aerosol usually contributes more than 40% to the total AOT over major pollution regions,such as East Asia,Europe,and eastern America.On the other hand,carbonaceous aerosols contribute most(>60%)to the totalAOT overbiomass burning regions.Sea saltaerosolcontributes the most to the AOT over oceans,except the paths of the Asian aerosol transpacific transportand the Sahara dusttransatlantic transport.Dustaerosolcontributesover60%to the totalAOT over the desertsource and outfl ow regions.

    AE indicates the wavelength dependence of AOT,which is used commonly to infer the aerosol particle size distribution and chem ical composition(Chung et al.,2012;Logan et al.,2013).Small aerosol particles(i.e.sulfate and carbonaceous)have strong wavelength dependence and thus large AE.SSA governs the strength of aerosol in absorption(Dubovik et al.,2000).The AE and SSA both have spatial distributions related to the aerosol chemical composition(figure not shown for brevity).Large AEs(>1.0)in biomass burning and pollution regions are found becausesmall aerosol particles(sulfate and carbonaceous)are dominant in such areas.Small AEs(<0.6)are seen in the dust or sea salt aerosol predominant regions because the aerosol particles are large.Dustand carbonaceous aerosols make the SSAs as smallas 0.86–0.90 because of theirstrong absorption properties.Over the remote ocean,especially in the Southern Hem isphere,the SSAs are around 1.0,as non-absorbing sea saltaerosoldominates.

    Fig.1.NICAM-simulated 3-yearaveraged all-sky AOTs at550 nm(leftcolumn)for individualaerosolcomponents and its contribution to the total AOT(rightcolumn).

    Table 1.Globally and annually averaged AOTs at550 nm w ith NICAM+SPRINTARS,the AeroCom means,and the AeroCom ranges.

    3.2.Comparisons with MODIS retrievals

    The modeled climatology of all-sky AOTs at550 nm,the corresponding MODIS retrievals,and the discrepancies for January,April,July,and October are shown in Fig.2.The simulated AOTs can reproduce the general characteristics of aerosol distribution as observed by MODIS.AOTs are commonly higher over the Saharan,Arabian and East Asian regions,and the seasonal variation of AOT w ith higher values in Apriland July ismostly regulated by the largerdustaerosol em issions(Yang etal.,2008;Ridley etal.,2012).Although the model tends to overestimate the AOTs overbiomass burning regions in July,the strong seasonal cycles of the biomass burning in the Congo and Amazon basins are captured.The transpacific transportof the aerosolplume from EastAsia to North America(Takemura etal.,2002b;Logan etal.,2010) is evident from both the model and satellite results.The discrepancies reveal the model tends to underestimate the transatlantic transport of the Saharan Desert dust and overestimate the transpacific transportof the EastAsian aerosols, exceptduring the summerseason.

    To investigate the effectof cloud cover on AOT simulation,the modeled climatology of all-sky and clear-sky AOTs are compared in Fig.3.Distinct differences are found over the regionsof EastAsia,Europe,and eastern America,where aerosols are mostly from pollution sources.The clear-sky AOTs are generally lower than the all-sky AOTs,especially in January.The maximum absolute and relative differences over-0.3 and-30%,respectively,are found over eastern China in January.To clarify the reason for such maximal differences,the modeled and MODIS-retrieved cloud fraction are also compared.The MODIS cloud fraction is highest over eastern China in January(figure notshown for brevity), and this w illcause more highermodeled AOTs to be masked out for the climatology of clear-sky AOTs because the sulfate aerosol is mostly formed in clouds and the hygroscopic grow th is more effective in higher hum idity regions near the clouds(Takemura et al.,2000;Goto et al.,2011a).Meanwhile,we find there is a clear correlation between the simulated cloud fraction distributions and MODIS results,although the model tends to underestimate the cloud fraction over North America,Eurasia,and the western coasts of the main continents,as in many other models(Le Trent and Li, 1991).Detailed verification of the modeled cloud structures is beyond the scope of this study.Over the tropical and subtropicalocean regions,the clear-sky AOTs are generallyslightly higher(<0.05)than the all-sky ones,and this could induce some high relative differences where the AOTs are also small,such as over the tropical Pacific.The clear-sky AOTs are generally slightly lower(<-0.05)than the all-sky AOTs over the Southern Ocean near 60?S,where the cloud fraction and sea salt aerosol are generally higher.This indicates that the sea salt AOT enhancement by hygroscopic grow th is larger than the decrement caused by the wet deposition under high-cloud or high-humidity conditions,and the large AOT under high cloud fraction conditions may be masked out to calculate the climatology of clear-sky AOT.

    Fig.2.Modeled all-sky AOTs at 550 nm(left column),the corresponding MODIS-retrieved AOTs(m iddle column),and the differences between the modeled and MODIS-retrieved AOTs(right column)in January(top row),April(2nd row),July(3rd row),and October(bottom row)averaged over the 3-yearperiod from 2006 to 2008.

    Fig.3.Absolute(leftcolumn)and relative(rightcolumn)differences of the modeled all-sky and clear-sky AOTs in January(top row),April(2nd row),July(3rd row),and October(bottom row)averaged over the 3-yearperiod from 2006 to 2008.The absolute difference is defined as the clear-sky AOT m inus the all-sky AOT.The relative difference is defined as the ratio of the clear-sky AOT to the all-sky AOT.

    To evaluate the evolution of the modeled AOTs quantitatively,we compare the modeled AOTs over land and over ocean w ith MODIS retrievalsseparately.The global land area is divided into seven regions according to the aerosolsources and theirgeographical locations,sim ilar to Chin etal.(2009): North America(NAM),Europe(EUR),Asia(ASA),northern Africa and the M iddle East(NAF),South America(SAM), southern A frica(SAF),and Australia/New Zealand/tropical western Pacific countries(AUS)(Fig.4a).Figures 4b–ishow comparisons of the regional and global monthly mean modeled AOT over land under both clear-sky and all-sky conditions w ith the MODIS retrievals.The statistical parameters, including the correlation coefficient(R),bias,and modelskill are given in Table 2.The model skill depends on bothRand the standard deviations of the observed and modeled results:

    whereσfis the ratio of the standard deviation of the model tothatof the observation,andR0is the maximum attainableR, which is set to 1(Taylor,2001;Chin etal.,2009).Note that the regionalmonthly mean AOT under all-sky conditions is calculated using only the grid values where monthly mean MODIS AOTs are available.It is clear that the modeled all-sky and clear-sky AOTs can both reproduce the monthly AOT variability as observed by MODIS,except over NAM where the modeled AOT variability is too small compared to MODIS results.Although the model tends to underestimate the AOTs over all regions,and the clear-sky AOTs further enlarge the underestimations,the clear-sky AOTs are better correlated w ith the observed AOTs.This indicates that the aerosol variations are better simulated using the modeled clear-sky results,and this is further verified by the increments of the model skill using the clear-sky AOTs over all regions.The globalocean is also divided into seven regions, as shown in Fig.5a:northern Atlantic(NA),northern Pacific(NP),tropical northern Atlantic(TA),southern Pacific (SP),southern Atlantic(SA),Indian Ocean(IO),and Southern Ocean(SO).Sim ilar comparisons over the ocean as over land are shown in Figs.5b–i,and the statistical parameters are given in Table 3.The modelshowshigherskillin simulating the monthly AOT variations over the downw ind regions of the main land aerosolsources,such as the outflows of dust aerosol from the Sahara Desert(TA),m ixed aerosols from East Asia(NP),and biomass burning aerosols from South America(SA).The differences between clear-sky and all-sky AOTs are generally ignorable,except over the NA and SOregions.A lthough theRvalues of the clear-sky AOTs w ith observations are higher over the SO region,the increment of underestimation using clear-sky AOTs further induces the decrement of the model skill.On the basis of the global ocean,the clear-sky AOT is better correlated w ith the observation and slightly increases the modelskill.

    Table 2.Summary of the statisticalparameters for the comparisons shown in Fig.4.

    Fig.4.(a)Definition of the different land regions used in this study.The surrounding panels compare the variation ofmodeled monthly all-sky AOT(red line),clear-sky AOT(green line),and MODIS AOT(black line)over(b–h)the different regions and (i)the global land area.

    Table 3.Summary of the statisticalparameters for the comparisons shown in Fig.5.

    Fig.5.(a)Definition of the differentocean regions used in thisstudy.The surrounding panelsshow comparisonsof the variation of modeled monthly all-sky AOT(red line),clear-sky AOT(green line),and MODIS AOT(black line)over(b–h)the different regions and(i)the globalocean.

    Figure 6a shows the 3-year mean differences of the modeled daily AOTs and the MODIS retrievals over land as a function of MODIS cloud fraction.During the comparison, the modeled AOTs are sampled to the observations for the regionalmean.The differences are clearly dependent on the cloud fraction over all regions.The model tends to overestimate the AOTs over the AUS,SAF,SAM,and NAF regions under low cloud fraction conditions,whereas underestimations are found underhigh cloud fraction conditions.In these regions,aerosols are mostly from dust and biomass burning sources.The cloud only affects the wet deposition of these aerosols.Insufficient wet deposition under low cloud fraction conditions induces the overestimation of the AOT.The model underestimates the AOTs under all cloud conditions over the ASA,EUR,and NAM regions.In these regions, aerosols are dom inated by sulfate.The cloud affects both the formation and the wet deposition of sulfate.A lthough the wet deposition is smallwhen the cloud cover is low,the insufficient formation of sulfate could cause the underestimation of AOT.It is interesting that the AOT underestimation increases w ith the cloud fraction over all regions.As shown in Fig.6b,the MODIS AOT increases w ith the cloud fractionoverall regions,and such enhancementcan be wellexplained as the aerosolhygroscopic grow th in the humid environment surrounding clouds(Chand et al.,2012).As shown in Fig. 6c,the model can generally reproduce AOT enhancements w ith the cloud fraction except over the NAF region;however,the slopes of enhancements are much smaller than in the MODIS retrievals.This indicates that the modelmay underestimate the effectof aerosol hygroscopic grow th,while MODIS may overestimate the AOT underhigher cloud fraction caused by the unscreened cloud particles w ith AOT uncertainties of about 5%–15%(Remer et al.,2005).In our model,the consideration ofhydrophobic dustaerosolinduces the decrementof the AOT w ith cloud fraction over the NAF region.Sim ilar results are also found over the ocean regions, as shown in Figs.6d–f.

    Fig.6.Mean differences of the modeled and MODIS-retrieved daily AOTs over the 3-year period for varying cloud fraction over(a)land and(d)ocean,the mean MODIS-retrieved AOTs for varying cloud fraction over(b)land and(e) ocean,and the mean modeled AOTs w ith varying cloud fraction over(c)land and(f)ocean.

    3.3.Comparisons with AERONET observations

    AERONET simultaneously retrieves AOT,AE,and SSA (Dubovik and King,2000;Dubovik et al.,2000),and this makes more aerosol characteristics available to constrain modelperformances.The modeled monthly and 3-yearmean AOT and SSA at 550 nm and the AE based on AOTs at440 and 870 nm are compared w ith the AERONET retrievals. The monthly and 3-year mean AERONET-retrieved optical values are derived from the daily mean values.There are in total 148 AERONET sites thathave more than 120 daily mean retrievals during the period 2006 to 2008.The locations of these AERONET sites are shown in Fig.7a,and the AERONET sites are also further classified into seven world regions.The regional mean observed aerosol optical properties are calculated using the available observations at the AERONET sites located over each region,and the regional mean modeled results are calculated sim ilarly to the observed ones by interpolating the model results to the corresponding AREONET sites.

    Figures 7b–ishow inter-comparisons of the modeled allsky,clear-sky,and the retrieved monthly mean AOT variations on the basis of regionaland global means,and the statisticalparameters are given in Table 4.Sim ilar comparisons for the AE and SSA are shown in Figs.8 and 9,and the statistical parameters are summarized in Tables 5 and 6,respectively.Over the NAM and EUR regions,where aerosols are mostly from pollution sources,the observed AOTs show clear seasonal variation,which is reproduced better by using the clear-sky AOTs than the all-sky AOTs,although the clear-sky AOTs are more biased than the all-sky AOTs over the NAM region.Such an influence is not so obvious w ith respect to the comparisons of the AE and SSA values.The monthly variations of AE and SSA are not clear,except that the AEs are slightly lower during the spring season in the NAM region.The latter could be caused by the frequent occurrence of Asian dust transpacific transport in the spring season(Logan et al.,2010).Over the biomass burning regions of SAM and SAF,the observed monthly variations of AOTs and AEs w ith peaks during biomass burning periods are also slightly improved w ith higher model skill by usingclear-sky results.The retrieved SSAs w ith lower values during the biomass burning season over the SAF region are also better simulated by the clear-sky results,although the bias is slightly higher than based on the all-sky results.Over the NAF and AUS regions,where aerosols are mostly from dust sources,except those perturbed by biomass burning,the observed AOT,AE,and SSA variations are also better reproduced by the clear-sky results w ith higherR.In the ASA region,where the aerosol composition is more complicated, although the biases of AOT,AE and SSA are enlarged w ith the clear-sky results,the variations are better reproduced by the clear-sky results w ith higherRand model skill for both AOT and AE.

    Table 4.Summary of the statisticalparameters for the comparisons shown in Fig.7.

    Fig.7.(a)Locations of the AERONET sites used in this study and the seven regions these sites are furtherdivided into.the surrounding panels show inter-comparisons between the modeled all-sky(red line),clear-sky(green line)and AERONET-retrieved (black line)monthly mean AOT variations at550 nm on the basis of the(b–h)regionalmean and(i)globalmean.

    Fig.8.As in Fig.7 but for AEs(440/870 nm).

    Fig.9.As in Fig.7 but for SSA at550 nm.

    Table 5.Summary of the statisticalparameters for the comparisons shown in Fig.8.

    Table 6.Summary of the statisticalparameters for the comparisons as shown in Fig.9.

    Figure 10 shows an inter-comparison of the modeled allsky,clear-sky,and observed 3-year mean of AOT,AE and SSA over all the available AERONET sites.As shown in Figs.10a–c,on a global basis,the all-sky and clear-sky AOTs,AEs and SSAs are significantly correlated w ithRvalues of 0.963,0.985,and 0.950,respectively,indicating similar horizontal distributions of clear-sky and all-sky results.The 3-year mean all-sky AOT,AE,and SSA are 0.203, 0.895,and 0.916,respectively,which are 0.022,0.019,and 0.008 higher than the clear-sky values.The clear-sky AOT is generally lower than the all-sky AOT,except over the dustdom inant regions.The clear-sky AE is generally larger than the all-sky AE when the AE value is high(>1.1),whereas the clear-sky AE is lower than the all-sky AE when the AE value is low(<0.6).The high AE value indicates that the AOT is contributed to mostly by the sulfate and/or carbonaceous aerosols.These aerosol radiiare larger under cloudy conditions because of hygroscopic grow th,so the all-sky AE values are lower.In contrast,the low AEs indicate the aerosol composition is mostly dust.This hydrophobic aerosol is not influenced much by the cloud,but the extinction coefficients of hydrophilic aerosols in clear-sky conditions are lower than in all-sky conditions,and this induces the lower all-sky AEs.The clear-sky SSAs are mostly lower than the all-sky SSAs,especially over those regions dom inated by sulfate aerosol,further indicating the lesser contribution of the non-absorption sulfate aerosolunderclear-sky conditions. Figures 10d–i show comparisons between the modeled and AERONET-retrieved values,and the statistics that reveal the comparison between the model simulations and AERONET observations are summarized in a Taylor diagram(Taylor, 2001)(not shown for brevity).Comparing the modeled allsky AOTs w ith the AERONET retrievals,we find that they are generally in reasonable agreement w ithRranging from 0.419 in the EUR region to 0.921 in the AUS region,and the modeled standard deviations are generally lower than those of the retrievals.The latter could be induced by the coarse model resolution.The modeled value represents an average over a GCM grid box of about 220×220 km2,which is little affected by the local aerosol sources.The observations of AERONET may be influenced by the local aerosol sources,such as over the urban sites.This is further verifi ed by the general underestimation of high AOTs(>0.5).Using the clear-sky AOTs,theRand the root-mean-square error are generally improved,except over the ASA region.Comparing the modeled all-sky AEs w ith the AERONET retrievals, we find that the variations of the AE values are captured well w ithR>0.6 exceptover the NAF and AUS regions,while the model tends to underestimate the AE values over the NAM, EUR,and ASA regions.We consider two possible explanations for the AE underestimation here.One is that the removal processes of dust aerosols may be underestimated in our model,and this induces more suspended dust over the outflow regions.The lifetime or residence time of dust is 8.2 days in ourmodel,which is about tw ice thatof the AeroCom mean(4.2 days).The other possible explanation is thatour modelmay also have less scavenging for large dustparticles, and this induces an incorrect dust size distribution over the outflow regions.SPRINTARS uses a single-momentscheme to track only the dust mass in 10 bins,as compared to the two-momentdustmodel thatalso includes the size distribution(Adams and Seinfeld,2002;Peng etal.,2012).A lthough the underestimation of AE is further enlarged when using the clear-sky results,especially over the NAM and ASA regions,Ris generally improved.TheRvalues between modeled allsky SSAs and retrievals are generally low(<0.3)and the modeled standard deviations are generally lower than those of the retrievals.The clear-sky values can slightly improve the value ofR.

    4.Conclusion

    The globalspatialand temporaldistributionsof the major aerosoloptical properties,i.e.,AOT,AE,and SSA,are simulated using a new aerosol-coupled non-hydrostatic icosahedral atmospheric model from 2006 to 2008.The 3-year global mean AOT,AE and SSA at 550 nm are estimated at 0.123,0.657 and 0.944,respectively,w ith soil dust having the largestAOT(0.035),followed by sulfate aerosol(0.032), carbonaceousaerosol(0.030),and sea salt(0.026).Forall the aerosol species,the mean AOTs are w ithin the ranges of the AeroCom results.

    Fig.10.Inter-comparison of the modeled all-sky,clear-sky and AERONET-retrieved 3-year mean AOTs at 550 nm(left column),AEs(440/870 nm)(middle column),and SSAs at 550 nm(right column)at all the available AERONET sites in this study.Each point represents the site-specific 3-yearmean results,and points are colored according to the seven world regions.

    To include the effectof cloud on the aerosolmodelevaluation,the model results are separated to all-sky and clear-sky results.The simulated spatial distribution of all-sky AOTs can generally reproduce the MODIS retrievals.The transpacific transport of the aerosol plume and the seasonal variation of AOTs are in reasonable agreementw ith the retrievals. Although the clear-sky results show larger bias to the observations,they are in better agreement w ith the retrievals w ith higherRand model skill.The differences between the modeled AOTs and observations are larger under the higher cloud fraction conditions.Compared w ith the ground-based AERONET observations,the modeled clear-sky AOT,AE, and SSA are generally in better agreementw ith observations than the all-sky results,based onR.The clear-sky AOTs and SSAs are generally lower than the all-sky results,especially over those regions where aerosols are mostly from pollution sources,because the non-absorbing sulfate is mostly formed in cloud and the hygroscopic grow th is more effective in higher hum idity regions near the cloud.The modeled clear-sky AEs could be either larger or smaller than the all-sky AEs,depending on the aerosolchemicalcomposition. Although largerdifferencesbetween all-sky and clear-sky results are found over the pollution regions,the differences are smaller than the aerosolseasonaland spatialvariations.

    The modeled AEs are exclusively lower than the AERONET retrievals in the NAM,EUR,and ASA regions,highlighting the uncertainties of the aerosol processes in our model.An investigation of the model’s uncertainties using updated em ission inventories and observations(Levy et al.,2013)w ill provide multi-dimensional diagnostics of the model’s shortcomings,as well as possible remedies.Recently,the aerosol assimilation system of NICAM+SPRINTARS has been developed to overcome some of the uncertainties involved in the aerosol processes (Dai et al.,2013;Dai et al.,2014b),helping to improve thesimulation ofaerosolopticalproperties over EastAsia.

    Acknow ledgements.SHIGuangyu and DAITie are supported by projects from National Natural Science Funds of China(Grant Nos.41130104,and 41475031),Open Research Program of Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration from Nanjing University of Information Science and Technology(Grant No.KDW 1302),the Public Meteorology Special Foundation of MOST(Grant No.GYHY201406023),the National Key Basic Research and Development Program(973 Program,2011CB403401),and Teruyuki NAKAJIMA is supported by projects from JAXA/EarthCARE,MEXT/VL for Climate System Diagnostics,the MOE/Global EnvironmentResearch Fund A-1101, NIES/GOSAT,NIES/CGER,MEXT/RECCA/SALSA,and the S-12 of the MOE.

    Open Access.This article is distributed under the terms of the Creative Commons Attribution License which perm its any use,distribution,and reproduction in any medium,provided the original author(s)and the source are credited.

    REFERENCES

    Acker,J.G.,and G.Leptoukh,2007:Online analysis enhances use of NASA Earth science data.Eos,Trans.Amer.Geophys. Union,88(2),14–17.

    Ackerman,S.A.,K.I.Strabala,W.P.Menzel,R.A.Frey,C. C.Moeller,and L.E.Gum ley,1998:Discrim inating clear sky from clouds w ith MODIS.J.Geophys.Res.,103(D24), 32141–32157.

    Adams,P.J.,and J.H.Seinfeld,2002:Predicting global aerosol size distributions in general circulation models.J.Geophys. Res.:Atmos.,107(D19),AAC 4-1–AAC 4-23.

    Arakawa,A.,and W.H.Schubert,1974:Interaction of a cumulus cloud ensemble w ith the Large-Scale environment,Part I.J. Atmos.Sci.,31(3),674–701.

    Barnes,W.L.,T.S.Pagano,and V.V.Salomonson,1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer(MODIS)on EOS-AM 1.IEEE Trans. Geosci.Remote Sens.,36(4),1088–1100.

    Bi,J.R.,J.P.Huang,Q.Fu,X.Wang,J.S.Shi,W.Zhang,H. W.Huang,and B.D.Zhang,2011:Toward characterization of the aerosolopticalproperties over Loess Plateau of Northwestern China.Journal of Quantitative Spectroscopy and Radiative Transfer,112(2),346–360.

    Chand,D.,and Coauthors,2012:Aerosol optical depth increase in partly cloudy conditions.J.Geophys.Res.:Atmos., 117(D17),D17207,doi:10.1029/2012JD017894.

    Chin,M.,and Coauthors,2002:Tropospheric aerosol optical thickness from the GOCART model and comparisons w ith satellite and sun photometer measurements.J.Atmos.Sci., 59(3),461–483.

    Chin,M.,T.Diehl,O.Dubovik,T.F.Eck,B.N.Holben,A. Sinyuk,and D.G.Streets.2009:Light absorption by pollution,dust,and biomass burning aerosols:A global model study and evaluation w ith AERONET measurements.Ann. Geophys.,27,3439–3464.

    Chin,M.,and Coauthors,2014:Multi-decadal aerosol variations from 1980 to 2009:A perspective from observations and a global model.Atmospheric Chemistry and Physics,14(7), 3657–3690.

    Chung,C.E.,V.Ramanathan,and D.Decremer,2012:Observationally constrained estimates of carbonaceous aerosol radiative forcing.Proceedings ofthe NationalAcademy ofSciences of the United States of America,109(29),11624–11629.

    Colarco,P.,A.da Silva,M.Chin,and T.Diehl,2010:Online simulations ofglobalaerosoldistributions in the NASA GEOS-4 modeland comparisons to satellite and ground-based aerosol optical depth.J.Geophy.Res.:Atmos.,115(D14),D14207, doi:10.1029/2009JD012820.

    Cooke,W.F.,and J.J.N.Wilson,1996:A global black carbon aerosolmodel.J.Geophys.Res.,101(D14),19 395–19 409.

    Dai,T.,N.A.J.Schutgens,and T.Nakajima,2013:Applying a local Ensemble transform Kalman fi lter assim ilation system to the NICAM-SPRINTARS model.AIP Conference Proceedings,1531(1),744–747.

    Dai,T.,D.Goto,N.A.J.Schutgens,X.Dong,G.Shi,and T. Nakajima,2014a:Simulated aerosol key optical properties over global scale using an aerosol transport model coupled w ith a new type of dynam ic core.Atmos.Enviro.,82,71–82.

    Dai,T.,N.A.J.Schutgens,D.Goto,G.Shi,and T.Nakajima, 2014b:Improvement of aerosol optical properties modeling over Eastern Asia w ith MODIS AOD assim ilation in a global non-hydrostatic icosahedralaerosol transportmodel.Environmental Pollution,195,319–329.

    Diehl,T.,A.Heil,M.Chin,X.Pan,D.Streets,M.Schultz,and S. Kinne,2012:Anthropogenic,biomass burning,and volcanic em issions of black carbon,organic carbon,and SO2from 1980 to 2010 for hindcast model experiments.Atmospheric Chemistry and Physics Discussions,12(9),24 895–24 954.

    Dubovik,O.,and M.D.King,2000:A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements.J.Geophys.Res.,105(D16), 20 673–20 696.

    Dubovik,O.,A.Sm irnov,B.N.Holben,M.D.King,Y.J.Kaufman,T.F.Eck,and I.Slutsker,2000:Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network(AERONET)Sun and sky radiance measurements. J.Geophys.Res.,105(D8),9791–9806.

    Geleyn,J.F.,and A.Hollingsworth,1979:An econom icalanalytical method for the computation of the interaction between scattering and line absorption of radiation.Beitr.Phys.Atmos.,52,1–16.

    Goto,D.,T.Nakajima,T.Takemura,and K.Sudo,2011a:A study of uncertainties in the sulfate distribution and its radiative forcing associated w ith sulfur chem istry in a global aerosol model.Atmos.Chem.Phys.,11(21),10 889–10 910.

    Goto,D.,N.A.J.Schutgens,T.Nakajima,and T.Takemura, 2011b:Sensitivity of aerosol to assumed optical properties over Asia using a global aerosolmodel and AERONET. Geophys.Res.Lett.,38(17),L17810,doi:10.1029/2011GL 048675.

    Goto,D.,S.Kanazawa,T.Nakajima,and T.Takemura,2012: Evaluation of a relationship between aerosols and surface downward shortwave flux through an integrative analysis of modeling and observation.Atmos.Environ.,49,294–301.

    Holben,B.,and Coauthors,1998:AERONET—A federated instrument network and data archive for aerosol characterization.Remote Sens.Environ.,66(1),1–16.

    Kampa,M.,and E.Castanas,2008:Human health effects of air pollution.Environmental Pollution,151(2),362–367.

    Kaufman,Y.J.,D.Tanr′e L.A.Remer,E.F.Vermote,A.Chu, and B.N.Holben,1997:Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer.J.Geophys.Res.:Atmos.,102 (D14),17 051–17 067.

    King,M.D.,Y.J.Kaufman,W.P.Menzel,and D.Tanre,1992: Remote sensing of cloud,aerosol,and water vapor properties from the moderate resolution imaging spectrometer (MODIS).IEEE Trans.Geosci.Remote Sens.,30(1),2–27.

    King,M.D.,and Coauthors,2003:Cloud and aerosol properties, precipitable water,and profi les of temperature and water vapor from MODIS.IEEE Trans.Geosci.Remote Sens.,41(2), 442–458.

    Kinne,S.,and Coauthors,2003:Monthly averagesofaerosolproperties:A globalcomparison among models,satellite data,and AERONET ground data.J.Geophys.Res.:Atmos.,108(D20), 4634,doi:10.1029/2001JD001253.

    Kinne,S.,and Coauthors,2006:An AeroCom initialassessment–optical properties in aerosol component modules of global models.Atmos.Chem.Phys.,6(7),1815–1834.

    Le Trent,H.,and Z.-X.Li,1991:Sensitivity of an atmospheric general circulation model to prescribed SST changes:Feedback effects associated w ith the simulation of cloud optical properties.Climate Dyn.,5(3),175–187.

    Lee,L.A.,K.J.Pringle,C.L.Reddington,G.W.Mann,P.Stier, D.V.Spracklen,J.R.Pierce,and K.S.Carslaw,2013:The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei.Atmospheric Chemistry and Physics,13(17),8879–8914.

    Lee,Y.H.,and P.J.Adams,2010:Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics modelw ith remote sensing observations.Atmospheric Chemistry and Physics,10(5),2129–2214.

    Levy,R.C.,S.Mattoo,L.A.Munchak,L.A.Remer,A.M.Sayer, F.Patadia,and N.C.Hsu,2013:The Collection 6 MODIS aerosolproducts over land and ocean.Atmospheric MeasurementTechniques,6(11),2989–3034.

    Logan,T.,B.Xi,X.Dong,R.Obrecht,Z.Li,and M.Cribb,2010: A study of Asian dustplumes using satellite,surface,and aircraftmeasurements during the INTEX-B field experiment.J. Geophys.Res.,115,D00K25,doi:10.1029/2010JD014134.

    Logan,T.,B.Xi,X.Dong,Z.Li,and M.Cribb,2013:Classification and investigation of Asian aerosolabsorptive properties. Atmospheric Chemistry and Physics,13(4),2253–2265.

    Lohmann,U.,and Coauthors,2010:Totalaerosoleffect:radiative forcing or radiative flux perturbation?Atmospheric Chemistry and Physics,10(7),3235–3246.

    Mann,G.W.,and Coauthors,2014:Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity.Atmospheric Chemistry and Physics,14(9),4679–4713.

    Martins,J.V.,D.Tanr′e L.Remer,Y.Kaufman,S.Mattoo,and R. Levy,2002:MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability.Geophys.Res. Lett.,29(12),MOD4-1–MOD4-4.

    Mellor,G.L.,and T.Yamada,1974:A hierarchy of turbulence closure models for planetary boundary layers.J.Atmos.Sci., 31(7),1791–1806.

    M iura,H.,M.Satoh,T.Nasuno,A.T.Noda,and K.Oouchi,2007: A Madden-Julian oscillation event realistically simulated by a global Cloud-Resolving model.Science,318(5857),1763–1765.

    Nakajima,T.,M.Tsukamoto,Y.Tsushima,A.Numaguti,and T. Kimura,2000:Modeling of the radiative process in an atmospheric general circulation model.Appl.Opt.,39(27),4869–4878.

    Niwa,Y.,and Coauthors,2011a:Three-dimensional variations of atmospheric CO2:aircraftmeasurements and multi-transport model simulations.Atmospheric Chemistry and Physics, 11(24),13359–13375.

    Niwa,Y.,H.Tom ita,M.Satoh,and R.Imasu,2011b:A threedimensional icosahedral grid advection scheme preserving monotonicity and consistency w ith continuity foratmospheric tracer transport.J.Meteor.Soc.Japan,89(3),255–268.

    Peng,Y.,K.von Salzen,and J.Li,2012:Simulation of mineral dust aerosol w ith Piecew ise Log-normal Approximation(PLA)in CanAM 4-PAM.Atmospheric Chemistry and Physics,12(15),6891–6914.

    Prados,A.I.,S.Kondragunta,P.Ciren,and K.R.Knapp, 2007:GOES Aerosol/Smoke Product(GASP)over North America:Comparisons to AERONET and MODIS observations.J.Geophys.Res.:Atmos.,112(D15),D15201,doi: 10.1029/2006JD007968.

    Remer,L.A.,and Y.J.Kaufman,2006:Aerosol direct radiative effectat the top of the atmosphere over cloud free ocean derived from fouryears of MODIS data.Atmospheric Chemistry and Physics,6(1),237–253.

    Remer,L.A.,and Coauthors,2005:The MODIS aerosol algorithm,products,and validation.J.Atmos.Sci.,62(4),947–973.

    Ridley,D.A.,C.L.Heald,and B.Ford,2012:North A frican dustexportand deposition:A satellite and modelperspective. J.Geophys.Res.,117(D2),D02202,doi:10.1029/2011JD 016794.

    Salomonson,V.V.,W.L.Barnes,P.W.Maymon,H.E.Montgomery,and H.Ostrow,1989:MODIS:Advanced facility instrument for studies of the Earth as a system.IEEE Trans. Geosci.Remote Sens.,27(2),145–153.

    Satoh,M.,T.Matsuno,H.Tomita,H.M iura,T.Nasuno,and S. Iga,2008:Nonhydrostatic icosahedral atmospheric model (NICAM)for global cloud resolving simulations.J.Comput. Phys.,227(7),3486–3514.

    Seiki,T.,and T.Nakajima,2014:Aerosoleffects of the condensation process on a convective cloud simulation.J.Atmos.Sci., 71(2),833–853.

    Seiki,T.,M.Satoh,H.Tom ita,and T.Nakajima,2014:Simultaneous evaluation of ice cloud microphysics and nonsphericity of the cloud opticalproperties using hydrometeorvideo sonde and radiometer sonde in situ observations.J.Geophys.Res.: Atmos.,119(11),6681–6701.

    Sekiguchi,M.,and T.Nakajima,2008:A k-distribution-based radiation code and its computational optim ization for an atmospheric general circulation model.Journal of Quantitative Spectroscopy and Radiative Transfer,109(17–18),2779–2793.

    Su,L.,and O.B.Toon,2011:Saharan and Asian dust:Similarities and differences determ ined by CALIPSO,AERONET,and a coupled climate-aerosolm icrophysicalmodel.Atmos.Chem. Phys.,11(7),3263–3280.

    Sudo,K.,M.Takahashi,J.-i.Kurokawa,and H.Akimoto,2002: CHASER:A global chem ical model of the troposphere 1. Model description.J.Geophys.Res.,107(D17),ACH 7-1–ACH 7-20.

    Suzuki,K.,T.Nakajima,M.Satoh,H.Tom ita,T.Takemura,T.Y.Nakajima,and G.L.Stephens,2008:Global cloud-systemresolving simulation of aerosoleffect on warm clouds.Geophys.Res.Lett.,35(19),L19817,doi:10.1029/2008GL 035449.

    Takata,K.,S.Emori,and T.Watanabe,2003:Development of the m inimal advanced treatments of surface interaction and runoff.Globaland Planetary Change,38(1–2),209–222.

    Takemura,T.,H.Okamoto,Y.Maruyama,A.Numaguti,A.Higurashi,and T.Nakajima,2000:Global three-dimensional simulation of aerosoloptical thickness distribution of various origins.J.Geophys.Res.,105(D14),17 853–17 873.

    Takemura,T.,T.Nakajima,O.Dubovik,B.N.Holben,and S. Kinne,2002a:Single-scattering albedo and radiative forcing of various aerosol species w ith a global Three-Dimensional model.J.Climate,15(4),333–352.

    Takemura,T.,I.Uno,T.Nakajima,A.Higurashi,and I.Sano, 2002b:Modeling study of long-range transportof Asian dust and anthropogenic aerosols from East Asia.Geophys.Res. Lett.,29(24),11-1–11-4.

    Takemura,T.,M.Egashira,K.Matsuzawa,H.Ichijo,R.O’Ishi, and A.Abe-Ouchi,2009:A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last GlacialMaximum.Atmospheric Chemistry and Physics,9(9), 3061–3073.

    Tanr′e,D.,Y.J.Kaufman,M.Herman,and S.Mattoo,1997: Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances.J.Geophys.Res.,102(D14), 16 971–16 988.

    Taylor,K.E.,2001:Summarizing multiple aspects of model performance in a single diagram.J.Geophys.Res.,106(D7), 7183–7192.

    Textor,C.,and Coauthors,2006:Analysis and quantification of the diversities of aerosol life cycles w ithin AeroCom.Atmos. Chem.Phys.,6(7),1777–1813.

    Textor,C.,and Coauthors,2007:The effect of harmonized em issions on aerosolproperties in globalmodels-an AeroCom experiment.Atmospheric Chemistry and Physics,7(17),4489–4501.

    Tomita,H.,2008:New microphysical schemes w ith five and six categories by diagnostic generation of cloud ice.J.Meteor. Soc.Japan Ser.II,86A,121–142.

    Twomey,S.,1974:Pollution and the planetary albedo.Atmos.Environ.,8(12),1251–1256.

    Wang,X.,J.Huang,M.Ji,and K.Higuchi,2008:Variability of EastAsia dustevents and their long-term trend.Atmos.Environ.,42(13),3156–3165.

    Yang,Y.Q.,Q.Hou,C.H.Zhou,H.L.Liu,Y.Q.Wang,and T.Niu,2008:Sand/dust storm processes in Northeast Asia and associated large-scale circulations.Atmospheric Chemistry and Physics,8(1),25–33.

    Zhang,H.,and Coauthors,2012a:Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system.Climate Dyn.,38(7–8),1675–1693.

    Zhang,K.,and Coauthors,2012b:The global aerosol-climate model ECHAM-HAM,version 2:Sensitivity to improvements in process representations.Atmospheric Chemistry and Physics,12(19),8911–8949.

    :Dai,T.,G.Y.Shi,and T.Nakajima,2015:Analysis and evaluation of the globalaerosoloptical properties simulated by an online aerosol-coupled non-hydrostatic icosahedralatmospheric model.Adv.Atmos.Sci.,32(6),743–758,

    10.1007/s00376-014-4098-z.

    (Received 25 August2014;revised 22 October 2014;accepted 15 November2014)

    ?Corresponding author:DAITie

    Email:daitie@mail.iap.ac.cn

    ?The Authors 2015

    三级男女做爰猛烈吃奶摸视频| 久久天躁狠狠躁夜夜2o2o| 国产男靠女视频免费网站| 成年版毛片免费区| 亚洲第一电影网av| 精品无人区乱码1区二区| 丝袜美腿诱惑在线| 香蕉av资源在线| 精品人妻1区二区| 国产精品乱码一区二三区的特点| 久久人妻av系列| 老司机午夜十八禁免费视频| 黄频高清免费视频| 中文字幕人妻丝袜一区二区| 999久久久国产精品视频| 一区二区三区国产精品乱码| svipshipincom国产片| 99在线视频只有这里精品首页| 我要搜黄色片| 美女高潮喷水抽搐中文字幕| 男人舔女人的私密视频| 国产黄片美女视频| 日日爽夜夜爽网站| 精品日产1卡2卡| 亚洲欧美一区二区三区黑人| 宅男免费午夜| av天堂在线播放| 不卡一级毛片| 成人高潮视频无遮挡免费网站| 久久久久久久久免费视频了| www国产在线视频色| 精品欧美国产一区二区三| 最近最新免费中文字幕在线| 90打野战视频偷拍视频| 日韩欧美一区二区三区在线观看| 人妻夜夜爽99麻豆av| 777久久人妻少妇嫩草av网站| 丁香六月欧美| 欧美中文综合在线视频| bbb黄色大片| 麻豆av在线久日| 国产亚洲精品久久久久5区| 国产欧美日韩精品亚洲av| 一区福利在线观看| 日韩欧美 国产精品| 欧美精品亚洲一区二区| 国内精品一区二区在线观看| 日韩国内少妇激情av| 在线国产一区二区在线| 日本一本二区三区精品| 欧美另类亚洲清纯唯美| 中文字幕精品亚洲无线码一区| 午夜福利视频1000在线观看| 亚洲av第一区精品v没综合| 亚洲九九香蕉| 国产一区二区在线av高清观看| 欧美久久黑人一区二区| 久久久久久久精品吃奶| 女生性感内裤真人,穿戴方法视频| 久久精品夜夜夜夜夜久久蜜豆 | 一区二区三区国产精品乱码| 国产精品一区二区免费欧美| 可以在线观看毛片的网站| 国内久久婷婷六月综合欲色啪| 狂野欧美激情性xxxx| 成人国语在线视频| 久久久国产成人免费| 亚洲成av人片免费观看| 一本久久中文字幕| 最近最新免费中文字幕在线| 夜夜爽天天搞| 啪啪无遮挡十八禁网站| 久久亚洲真实| 久久久久九九精品影院| 欧美成人一区二区免费高清观看 | 99国产综合亚洲精品| 九九热线精品视视频播放| 麻豆国产97在线/欧美 | 男女视频在线观看网站免费 | 国产成人啪精品午夜网站| 国内精品久久久久久久电影| 久久性视频一级片| а√天堂www在线а√下载| 视频区欧美日本亚洲| 免费高清视频大片| 亚洲激情在线av| 亚洲片人在线观看| 2021天堂中文幕一二区在线观| 亚洲一区二区三区色噜噜| 国产精品1区2区在线观看.| 欧美日韩国产亚洲二区| 一区二区三区国产精品乱码| 精品久久久久久久久久久久久| 精品日产1卡2卡| 桃色一区二区三区在线观看| 免费在线观看黄色视频的| 热99re8久久精品国产| 18美女黄网站色大片免费观看| 嫩草影院精品99| 亚洲av成人av| 亚洲国产欧美人成| 19禁男女啪啪无遮挡网站| 1024香蕉在线观看| 在线永久观看黄色视频| 在线视频色国产色| 啦啦啦免费观看视频1| 午夜福利欧美成人| 日韩精品免费视频一区二区三区| 丁香欧美五月| 精华霜和精华液先用哪个| 久久久久亚洲av毛片大全| 亚洲精品中文字幕在线视频| 熟女电影av网| 精品一区二区三区视频在线观看免费| 岛国在线观看网站| 99国产精品一区二区三区| 欧美高清成人免费视频www| 在线国产一区二区在线| 亚洲中文日韩欧美视频| 午夜日韩欧美国产| 国产激情欧美一区二区| 成人精品一区二区免费| 99久久99久久久精品蜜桃| 50天的宝宝边吃奶边哭怎么回事| 日日摸夜夜添夜夜添小说| 亚洲中文日韩欧美视频| netflix在线观看网站| 国产1区2区3区精品| 国产激情欧美一区二区| 在线观看舔阴道视频| 国产精品亚洲美女久久久| 欧美乱码精品一区二区三区| 国产午夜精品论理片| 不卡av一区二区三区| 又黄又粗又硬又大视频| 不卡av一区二区三区| 日日摸夜夜添夜夜添小说| 桃色一区二区三区在线观看| 久99久视频精品免费| 久久久久性生活片| 欧美极品一区二区三区四区| 日本三级黄在线观看| www.熟女人妻精品国产| 欧美3d第一页| 国产区一区二久久| 成熟少妇高潮喷水视频| 高清在线国产一区| 精品久久久久久久毛片微露脸| 97人妻精品一区二区三区麻豆| 国产av在哪里看| 天天躁夜夜躁狠狠躁躁| 少妇粗大呻吟视频| 麻豆久久精品国产亚洲av| 国产一区二区三区视频了| 久久香蕉精品热| 亚洲乱码一区二区免费版| 亚洲精品色激情综合| 久久天堂一区二区三区四区| 精品乱码久久久久久99久播| 久久久久久国产a免费观看| 国产精品精品国产色婷婷| av在线天堂中文字幕| 我要搜黄色片| 亚洲av熟女| 这个男人来自地球电影免费观看| 久久天躁狠狠躁夜夜2o2o| 亚洲五月婷婷丁香| 99在线视频只有这里精品首页| 操出白浆在线播放| 免费在线观看成人毛片| 日本撒尿小便嘘嘘汇集6| 国产亚洲欧美98| www国产在线视频色| √禁漫天堂资源中文www| 成人18禁高潮啪啪吃奶动态图| 怎么达到女性高潮| 天堂av国产一区二区熟女人妻 | 白带黄色成豆腐渣| 国产精品1区2区在线观看.| 日本黄色视频三级网站网址| 亚洲人成网站在线播放欧美日韩| 精品高清国产在线一区| 色综合欧美亚洲国产小说| 国产欧美日韩一区二区精品| 欧美成狂野欧美在线观看| 国产熟女午夜一区二区三区| 国产精品美女特级片免费视频播放器 | 一级毛片女人18水好多| 午夜日韩欧美国产| 欧美精品啪啪一区二区三区| 中文亚洲av片在线观看爽| 国产午夜福利久久久久久| 国产精品影院久久| 精品国产美女av久久久久小说| 亚洲精品粉嫩美女一区| 在线观看美女被高潮喷水网站 | 婷婷精品国产亚洲av在线| 日韩中文字幕欧美一区二区| 精品电影一区二区在线| 成人三级黄色视频| 亚洲片人在线观看| 一二三四社区在线视频社区8| 亚洲av电影在线进入| 性色av乱码一区二区三区2| 国产免费男女视频| 欧美乱色亚洲激情| 黑人操中国人逼视频| 欧美日韩瑟瑟在线播放| 亚洲电影在线观看av| 人人妻人人澡欧美一区二区| 欧美午夜高清在线| 亚洲国产欧美人成| 性色av乱码一区二区三区2| 给我免费播放毛片高清在线观看| 两人在一起打扑克的视频| 制服人妻中文乱码| 欧美乱码精品一区二区三区| 欧美成人午夜精品| 天天躁夜夜躁狠狠躁躁| 国产成人系列免费观看| 岛国视频午夜一区免费看| 亚洲狠狠婷婷综合久久图片| 亚洲黑人精品在线| 欧美黄色淫秽网站| 久久国产精品人妻蜜桃| 国产免费男女视频| 老司机靠b影院| 丰满的人妻完整版| 男女之事视频高清在线观看| 麻豆国产av国片精品| 久久伊人香网站| 国产成人精品久久二区二区免费| 国产精品亚洲一级av第二区| 神马国产精品三级电影在线观看 | 久久久精品国产亚洲av高清涩受| 女人被狂操c到高潮| 中文字幕久久专区| 午夜精品久久久久久毛片777| 美女 人体艺术 gogo| 久久久久国内视频| 大型av网站在线播放| 香蕉丝袜av| 免费搜索国产男女视频| 精品免费久久久久久久清纯| 国产一区二区三区在线臀色熟女| 日日干狠狠操夜夜爽| 久久久久久大精品| 一本大道久久a久久精品| 国产三级在线视频| 国产成年人精品一区二区| 久久久国产成人免费| 99国产综合亚洲精品| 亚洲男人天堂网一区| 欧美黄色片欧美黄色片| 长腿黑丝高跟| 国产精品免费一区二区三区在线| 国产精品一区二区三区四区久久| 久久久久久国产a免费观看| 成在线人永久免费视频| 国产精品精品国产色婷婷| 日本a在线网址| 日韩av在线大香蕉| 99riav亚洲国产免费| 成人av在线播放网站| 一进一出抽搐动态| 草草在线视频免费看| 国产av一区二区精品久久| 久久精品国产清高在天天线| 久久中文看片网| 欧美黄色片欧美黄色片| 色综合亚洲欧美另类图片| 国产高清激情床上av| 精品久久久久久,| 国产蜜桃级精品一区二区三区| 久久精品aⅴ一区二区三区四区| 一边摸一边做爽爽视频免费| 欧美一级a爱片免费观看看 | 制服丝袜大香蕉在线| 亚洲全国av大片| 国产高清视频在线播放一区| 2021天堂中文幕一二区在线观| 美女大奶头视频| 18禁国产床啪视频网站| 十八禁网站免费在线| 久久久水蜜桃国产精品网| 久久久精品欧美日韩精品| 亚洲av第一区精品v没综合| 久久天躁狠狠躁夜夜2o2o| 免费搜索国产男女视频| 久久久久国内视频| 午夜精品在线福利| 久久久精品国产亚洲av高清涩受| 久久久久性生活片| 成人av在线播放网站| 女警被强在线播放| 狂野欧美白嫩少妇大欣赏| 桃色一区二区三区在线观看| 波多野结衣巨乳人妻| 成人高潮视频无遮挡免费网站| 午夜激情av网站| 动漫黄色视频在线观看| 欧美又色又爽又黄视频| 一a级毛片在线观看| 国产欧美日韩一区二区三| 香蕉丝袜av| 男女视频在线观看网站免费 | 欧美久久黑人一区二区| 啦啦啦韩国在线观看视频| 精品高清国产在线一区| 色老头精品视频在线观看| 三级国产精品欧美在线观看 | 国产又黄又爽又无遮挡在线| 黄色毛片三级朝国网站| 天天一区二区日本电影三级| 身体一侧抽搐| 国产av在哪里看| 国产精品爽爽va在线观看网站| 俄罗斯特黄特色一大片| 日韩av在线大香蕉| 好男人在线观看高清免费视频| 成年女人毛片免费观看观看9| 午夜久久久久精精品| 亚洲av中文字字幕乱码综合| 在线十欧美十亚洲十日本专区| 熟女电影av网| 国产野战对白在线观看| 日韩欧美三级三区| 69av精品久久久久久| 在线观看午夜福利视频| 中文字幕精品亚洲无线码一区| 精品午夜福利视频在线观看一区| 久久人妻av系列| 精品久久蜜臀av无| 午夜久久久久精精品| 男男h啪啪无遮挡| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡欧美一区二区| 搡老岳熟女国产| 久久婷婷人人爽人人干人人爱| 黄色女人牲交| 精品乱码久久久久久99久播| 99国产极品粉嫩在线观看| 巨乳人妻的诱惑在线观看| 国产欧美日韩精品亚洲av| 国产一区二区三区在线臀色熟女| 制服丝袜大香蕉在线| 精品免费久久久久久久清纯| 最近最新免费中文字幕在线| 午夜福利视频1000在线观看| 在线看三级毛片| 欧洲精品卡2卡3卡4卡5卡区| 脱女人内裤的视频| 国产亚洲精品一区二区www| 国产精品99久久99久久久不卡| ponron亚洲| 在线观看一区二区三区| 一个人免费在线观看的高清视频| 国产精品久久久久久人妻精品电影| 亚洲欧美精品综合久久99| 成人18禁高潮啪啪吃奶动态图| 757午夜福利合集在线观看| 一区二区三区高清视频在线| 一级a爱片免费观看的视频| 在线永久观看黄色视频| 亚洲熟妇中文字幕五十中出| 国产成人精品久久二区二区91| 两性夫妻黄色片| 99久久精品国产亚洲精品| 亚洲av中文字字幕乱码综合| 亚洲自偷自拍图片 自拍| 亚洲 欧美 日韩 在线 免费| 久久久久久九九精品二区国产 | 午夜两性在线视频| 国产黄片美女视频| 999久久久国产精品视频| 亚洲国产精品999在线| 美女黄网站色视频| а√天堂www在线а√下载| tocl精华| 久久这里只有精品19| 观看免费一级毛片| 欧美一级毛片孕妇| 国产成人啪精品午夜网站| 国产亚洲精品一区二区www| 一二三四在线观看免费中文在| 大型黄色视频在线免费观看| 男女做爰动态图高潮gif福利片| 中文字幕人成人乱码亚洲影| 变态另类丝袜制服| 最近最新免费中文字幕在线| 久久这里只有精品19| 久久人妻av系列| 亚洲一区二区三区不卡视频| 我的老师免费观看完整版| 在线观看一区二区三区| www日本黄色视频网| 深夜精品福利| 亚洲精品美女久久久久99蜜臀| www.999成人在线观看| 国产精品久久久久久人妻精品电影| 国产精品美女特级片免费视频播放器 | 成年人黄色毛片网站| aaaaa片日本免费| 最近最新中文字幕大全电影3| 手机成人av网站| 亚洲精品中文字幕在线视频| 亚洲自拍偷在线| 床上黄色一级片| 在线观看午夜福利视频| www国产在线视频色| 久久久久久久久中文| 亚洲精品中文字幕在线视频| 草草在线视频免费看| 日本免费a在线| 亚洲精华国产精华精| av福利片在线| 两个人看的免费小视频| 黄色成人免费大全| 久久久久亚洲av毛片大全| 亚洲国产欧美人成| 国产成人影院久久av| 婷婷丁香在线五月| 啦啦啦观看免费观看视频高清| 亚洲专区国产一区二区| 国产在线观看jvid| 淫秽高清视频在线观看| 99久久国产精品久久久| 黄色丝袜av网址大全| 不卡av一区二区三区| 黄色 视频免费看| 欧美黑人欧美精品刺激| 人成视频在线观看免费观看| 国产视频内射| 免费一级毛片在线播放高清视频| 精品国产超薄肉色丝袜足j| 国产精品香港三级国产av潘金莲| 听说在线观看完整版免费高清| 久久这里只有精品19| 一级毛片精品| 啦啦啦免费观看视频1| 男女之事视频高清在线观看| aaaaa片日本免费| 日韩欧美国产在线观看| 非洲黑人性xxxx精品又粗又长| 50天的宝宝边吃奶边哭怎么回事| 成人高潮视频无遮挡免费网站| 国产三级在线视频| 国产精品日韩av在线免费观看| 亚洲精品粉嫩美女一区| 久久久国产成人免费| 午夜久久久久精精品| 国产野战对白在线观看| 最近最新免费中文字幕在线| 欧美另类亚洲清纯唯美| 久久久久免费精品人妻一区二区| 亚洲精品在线观看二区| 精品乱码久久久久久99久播| 午夜精品在线福利| 国产成人欧美在线观看| 波多野结衣巨乳人妻| 亚洲精品中文字幕在线视频| 亚洲av美国av| a级毛片在线看网站| 老司机午夜福利在线观看视频| 亚洲电影在线观看av| 午夜免费观看网址| 麻豆av在线久日| 正在播放国产对白刺激| 一级黄色大片毛片| 国产精品自产拍在线观看55亚洲| 狂野欧美白嫩少妇大欣赏| 亚洲国产欧美网| 又粗又爽又猛毛片免费看| 听说在线观看完整版免费高清| a级毛片在线看网站| e午夜精品久久久久久久| 国产精品1区2区在线观看.| 精华霜和精华液先用哪个| 欧美在线一区亚洲| 日本在线视频免费播放| 全区人妻精品视频| 亚洲成人中文字幕在线播放| 欧美日韩乱码在线| 亚洲一区高清亚洲精品| 在线观看www视频免费| 天堂动漫精品| 亚洲成人久久爱视频| 国产人伦9x9x在线观看| 曰老女人黄片| 国产不卡一卡二| 国产成人精品久久二区二区91| 国产久久久一区二区三区| 国产乱人伦免费视频| 亚洲国产看品久久| 久久精品91无色码中文字幕| 日本三级黄在线观看| 757午夜福利合集在线观看| 床上黄色一级片| xxxwww97欧美| 久久精品亚洲精品国产色婷小说| av中文乱码字幕在线| 91av网站免费观看| 日韩大尺度精品在线看网址| 精品电影一区二区在线| 亚洲av成人av| 老司机午夜十八禁免费视频| 国产熟女xx| 波多野结衣高清作品| 非洲黑人性xxxx精品又粗又长| 一区二区三区国产精品乱码| 午夜福利18| 一个人观看的视频www高清免费观看 | 日日干狠狠操夜夜爽| 亚洲精品国产一区二区精华液| 一级黄色大片毛片| 亚洲精品色激情综合| 免费在线观看成人毛片| 亚洲中文字幕日韩| 国产精品爽爽va在线观看网站| 91麻豆av在线| 婷婷亚洲欧美| 老汉色av国产亚洲站长工具| 欧洲精品卡2卡3卡4卡5卡区| 人妻夜夜爽99麻豆av| 亚洲精品美女久久av网站| 国产97色在线日韩免费| 一区二区三区激情视频| 女生性感内裤真人,穿戴方法视频| 亚洲人成伊人成综合网2020| 女人爽到高潮嗷嗷叫在线视频| 在线视频色国产色| 久久精品综合一区二区三区| 国产又黄又爽又无遮挡在线| 欧美一区二区精品小视频在线| 欧美日韩亚洲综合一区二区三区_| 亚洲男人的天堂狠狠| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 国内久久婷婷六月综合欲色啪| 中文亚洲av片在线观看爽| 久久香蕉国产精品| 日本一区二区免费在线视频| 精品久久久久久久久久免费视频| www日本在线高清视频| 又黄又爽又免费观看的视频| 日韩中文字幕欧美一区二区| 国产黄片美女视频| 小说图片视频综合网站| 亚洲精品中文字幕在线视频| 丰满的人妻完整版| 别揉我奶头~嗯~啊~动态视频| 亚洲国产日韩欧美精品在线观看 | 一级毛片女人18水好多| 午夜两性在线视频| 国内揄拍国产精品人妻在线| 最近最新免费中文字幕在线| 黑人欧美特级aaaaaa片| 欧美一级a爱片免费观看看 | 国产精品亚洲美女久久久| 变态另类成人亚洲欧美熟女| 精品国产美女av久久久久小说| 男插女下体视频免费在线播放| 久久久久精品国产欧美久久久| 999久久久精品免费观看国产| 亚洲18禁久久av| 美女 人体艺术 gogo| 国产精品国产高清国产av| 99精品欧美一区二区三区四区| 给我免费播放毛片高清在线观看| 日日夜夜操网爽| 伊人久久大香线蕉亚洲五| 成在线人永久免费视频| 国产精品久久电影中文字幕| 成人av一区二区三区在线看| 大型av网站在线播放| 国产99久久九九免费精品| 婷婷精品国产亚洲av在线| 岛国在线免费视频观看| 精品久久久久久久久久免费视频| 又粗又爽又猛毛片免费看| 久久久久久久精品吃奶| 日日爽夜夜爽网站| 亚洲成人中文字幕在线播放| 1024手机看黄色片| 欧美一级a爱片免费观看看 | 宅男免费午夜| 中出人妻视频一区二区| 久久精品亚洲精品国产色婷小说| 亚洲精品色激情综合| 中文字幕精品亚洲无线码一区| 国产精品98久久久久久宅男小说| 国产精品爽爽va在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| 91字幕亚洲| 狂野欧美白嫩少妇大欣赏| 久久香蕉精品热| 亚洲性夜色夜夜综合| 免费在线观看黄色视频的| 搡老熟女国产l中国老女人| 免费av毛片视频| 黄片大片在线免费观看| 国产激情偷乱视频一区二区| 嫩草影视91久久| 色精品久久人妻99蜜桃| 天堂av国产一区二区熟女人妻 | 怎么达到女性高潮| 国产在线观看jvid| 别揉我奶头~嗯~啊~动态视频| 亚洲一区中文字幕在线| 床上黄色一级片| 亚洲第一电影网av| av中文乱码字幕在线| 成人手机av| 少妇熟女aⅴ在线视频| 九色成人免费人妻av|