• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving wavelet reconstruction algorithm to achieve comprehensive application of thermal infrared remote sensing data from TM and MODIS①

    2015-04-17 05:45:12ZhouQigang周啟剛
    High Technology Letters 2015年2期

    Zhou Qigang(周啟剛)

    (Tourism and Land Resources School, Chongqing Technology and Business University, Chongqing 400067, P.R.China)

    ?

    Improving wavelet reconstruction algorithm to achieve comprehensive application of thermal infrared remote sensing data from TM and MODIS①

    Zhou Qigang(周啟剛)②

    (Tourism and Land Resources School, Chongqing Technology and Business University, Chongqing 400067, P.R.China)

    According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fusion algorithm about thermal infrared data has been proposed in the article based on improving wavelet reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MODIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing high-frequency information. The neighborhood correction coefficient method (NCCM) is set up based on the search neighborhood of a certain size to fuse low-frequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the algorithm in the paper. Verification results show that the texture information of TM data and high spectral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parameters.

    neighborhood wavelet reconstruction, neighborhood correction coefficient method (NCCM), thematic mapper (TM), MODIS, thermal infrared remote sensing image

    0 Introduction

    With the rapid development of remote sensing technology in the world, massive remote sensing data are acquired every day[1]. The processing technology of different remote sensing data has become a main reason to restrict the efficient application of remote sensing data. Along with the expanding application domain of remote sensing data, application limitation of remote sensing data from a single sensor is increasingly prominent. Comprehensive application research of remote sensing data in different sources or different periods is to be a hot study point at present[2]. The integration of remote sensing data with different bands or different resolutions can not only make up for the deficiencies including incomplete information, distortion and noise interference in the image of a single sensor, but also further improve the precision and accuracy of the data[3].

    The fusion of remote sensing images is a branch of handling remote sensing data. The remote sensing images are optimized by the decomposition and merging of remote sensing images from different sensors or different bands. The discrimination of remote sensing images after optimization is enhanced. The interpretation and recognition of remote sensing images are more scientific and accurate. Domestic and foreign scholars have studied the fusion of remote sensing images for a long time. These fusion algorithms, such as linear weighted, high-pass filter(HPF), principal component analysis(PCA), IHS(intensity, hue, saturation) transform, wavelet transform, curvelet transform, tetrolet transform and so on, have been applied in various fields[4-6]. The fusion algorithm based on zoom feature of wavelet transform is the most common method[7]. In general, the image is decomposed into three layers in the first step of wavelet transform method, and then images of the fusion of three layers are realized by the average weight method. But this method can’t target the partial treatment in the image region of interest. Some scholars also proposed to use the principal component analysis method or the independent component analysis method based on topological transformation to strengthen the partial information of image. But the calculation process of the two methods is cumbersome[8].

    The land surface temperature data can be achieved by using the thermal infrared band of Landsat thematic mapper(TM) with high spatial resolution. For the characteristics of satellite and sensor, it is difficult to form a time sequence data in a short time interval. The eleventh band and twelfth band of MODIS data are high time sequence data. Land surface temperature data in short time interval can be calculated based on the two bands of MODIS data. Due to the low spatial resolution characteristic of MODIS data, the application of MODIS data is limited. Hou Peng found that land surface temperature value calculated by using MODIS data is closer to the actual value of the land surface temperature than by using TM data[9]. But at present, the research about this fusion technique of texture information of TM data and high spectral information of MODIS data is rare.

    Wavelet reconstruction arithmetic has been analyzed and improved to fuse thermal infrared remote sensing data from TM and MODIS based on the traditional wavelet decomposition and reconstruction. Texture information of TM data and spectral information of MODIS data are combined to get high resolution data in spectral, spatial and temporal. This article can further improve the application depth and breadth of remote sensing image data.

    1 Theory and method

    1.1 The principle of wavelet analysis in remote sensing image fusion

    Wavelet transform is a “Digital Microscope”. It is a local analysis method of time or space frequency. This method is proposed by using expansion or translation operations to achieve multi-scale refinement of high-frequency and low-frequency signal, and to focus on any details of the signal[10].

    Applying wavelet analysis to achieve remote sensing images fusion from different source and different period, the research focuses on these aspects as follows mainly. First, the wavelet function is researched. Second, the method and layers of wavelet decomposition are researched. Finally, the wavelet reconstruction method is studied. Under the research achievements of the scholars, remote sensing image data are decomposed by breaking the images into three layers based on the bior6.8 wavelet function in this paper[11]. It focused on the reconstruction method of high-frequency and low-frequency information image in this paper. The fusion of texture information of TM data and high spectral information of MODIS data has been realized in the article.

    1.2 The wavelet fusion method of high-frequency information image

    The high-frequency information is the fast changing part of the remote sensing image information, which reflects details of image data. The high-frequency information mainly embodies the texture features of image data. The spatial resolution of MODIS data is lower than TM. The purpose of wavelet fusion of high-frequency information image data is to keep the TM texture information in this study. The TM value method is used in the fusion of high-frequency information.

    1.3 The new wavelet fusion method of low-frequency information image

    Low-frequency information is the slowly varying part of all information. It is the framework and outline of the image. Low-frequency information reflects the characteristics of image spectral information mainly. MODIS data has 36 channels. The spectral resolution and time resolution of MODIS data are superior to TM data.

    Wavelet analysis method was used to fuse the low-frequency information of TM data and MODIS data in this paper. The algorithm is designed by trying to modify the spectral information of TM data based on spectral information of MODIS data. This method reduces computing scale and selects the optimal size of the correction. Combined with the characteristics and advantages of low-frequency information of TM data and MODIS data, cells of TM data are modified one by one. By trial and error, the neighborhood correction coefficient method(NCCM) is designed based on the method of neighborhood variance .The implemented steps are as follows:

    (1) Resample grid size of MODIS data and TM data by setting sampling unit size.

    (2) Set the statistical coverage of neighborhood based on neighborhood statistics, and realize the reconstruction of low-frequency information image data. The specific calculation method is shown as

    (1)

    (2)

    (3)

    (4) The value of correction factor K is used to amend TM low-frequency information and get high spatial resolution image data.

    (4)

    2 Experiments

    2.1 The profile of the study area

    In this work, the range of nearly 41906.45 hectares where at the big terrain elevation and close to the waters in Wanzhou, was taken as the study area. Wanzhou is one typical area of the three gorges reservoir area. The water line of the three gorges reservoir area has gradually increased to 175m after 2008 from 135m before 2003. The rising water line seriously affected the environment of surrounding regions in three gorges reservoir area. The surface environment parameter value of the study area changes highlightedly in the process of retain water. The reconstruction of multi-source data can be achieved better. The reconstruction method can be verified accurately in this study region.

    2.2 Data sources

    The product data (1000×1000m) of land surface temperature from MODIS in June 2007 and thermal infrared data (120×120m) from TM in June 2007 were taken as experimental data. The MODIS product data (1000×1000m) of land surface temperature in January 2012 was taken as the verification data. The time and season of selected experimental data and validation data are different. In June 2007, three gorges reservoir area began flowing over the water. In January 2012, three gorges reservoir area completed the water storage. In the two periods, there is a great difference in land surface thermal environment. And it is also easy to test the results of experiments by choosing these data.

    2.3 Data processing

    The methods of ortho-rectification and radiometric correction of images were taken to reduce the error and deformation generated in the process of collecting and processing. By selecting 10 ground control points and 3 order polynomial to do the geometric correction of TM data and MODIS data, and the accuracy of geometric correction was controlled in a pixel.

    There were more than 8 times the gap between the spatial resolution of TM data and MODIS data. In the principle of maintaining the highest spatial resolution and quick speed in processing, the common multiple 10×10m was taken as the standard to achieve two images in a same spatial resolution . No-interpolation method was applied in the process of resampling the grid size of MODIS data and TM data to 10×10m. The land surface temperature data from TM was obtained by using the mono-window algorithm(Qin Zhihao, 2001)[12].

    2.4 The technical route of the experiment

    The grid size of image data was 10×10m. Through repeated tests, it was found that selecting 9 grids (3×3) as the field in the process of calculation could obtain the optimal experimental results. Fig.1 shows the specific technical route of experiment.

    Fig.1 The flowchart of experimental technology

    MODAj and MODDj(j=1,2,3) respectively represent the low-frequency coefficients and the high-frequency coefficients of MODIS data in the process of wavelet decomposition. TMAj and TMDj(j =1,2,3) indicate the low-frequency coefficients and the high-frequency coefficients of TM data in the process of wavelet decomposition, respectively. Dj(j=1,2,3) and A3 are the new high-frequency coefficients and low-frequency coefficients after the fusion calculation.

    2.5 The result of experiment

    In the experiment, the absolute value method (Max)[13]and neighborhood variance algorithm (NV)[14]have been used in reconstructing low-frequency coefficients and high-frequency coefficients. The Max method and NV method have been used widely, and the fusion effect has been repeatedly verified. The effect and superiority of image data obtained by different combination of reconstruction methods have been compared and analyzed. Indicators, including entropy, average gradient, degree of distortion, correlation coefficient, cross entropy and peak signal to noise ratio, are used to compare and analyze images[15,16]. These indicators are most representative, including definition, spatial detail information and spectral information which are core traits of image quality evaluation.

    Fig.2 to Fig.7 and Table 1 show that the pixel texture of the new image obtained by combining NCCM with TM value method is closer to the TM image, and the spatial resolution is higher. The spectral information of the new image is the closest to the MODIS image, and the spectral resolution is higher. In summary, selecting NCCM to obtain new high-frequency coefficients and choosing the TM value method to get the new low-frequency coefficients could achieve the combination of high spatial resolution and high spectral resolution.

    Table 1 The quantitative analysis for fusion image of TM and MODIS based on different algorithms

    Fig.2 Original MODIS surface temperature data in July, 2007

    Fig.3 Original TM surface temperature data in July, 2007

    Fig.4 The fusion result by using TM value method and NV

    Fig.5 The fusion result by using Max and NV

    Fig.6 The fusion result by using Max and NCCM

    Fig.7 The fusion result by using TM value method and NCCM

    3 Proving

    3.1 Proven methods

    The surface temperature parameter data generated by TM thermal infrared data in June 2007 and two land surface temperature data of MODIS in January 2012 and June 2007 are used to validate the new method presented in this article. Based on the new high-frequency and low-frequency fusion method, the two images with different space spectrum and time characteristic are fused into a new image. At the same time, the relationship between the fusion result images and the images of the original MODIS and TM are compared and analyzed.

    3.2 Analysis of the experimental results

    From Fig.8 to Fig.11, it could be found that the texture information of image data after fusing is consistent with TM image. The spectral characteristics of MODIS land surface temperature data in different time points and different season spaces are quite different. The image spectral information after fusing keeps high consistency with MODIS image data, and the fusion effect is better by visualizing. From Table 2, the information of fusion image obtained by using the new fusion rules and wavelet analysis method is greatly increased, and the quality and clarity of the image are improved. After the integration of the MODIS land surface temperature data in the winter of 2012 and the TM land surface temperature data in the summer of 2007, the cross entropy between the fusion result and TM data is minimal. The results show that the difference of pixel texture between the fusion result and TM data is small. There are great differences in the space spectrum characteristics between the MODIS land surface temperature data in the winter of 2012 and the land surface temperature data captured by TM in the summer of 2007. Because the spectral values of the fusion results come mainly from spectral values of MODIS data, the difference of spectrum between fusion result and TM data is larger.

    Fig.8 MODIS original surface temperature data in July, 2007

    From what has been discussed above, the NCCM and TM value method are combined to use in the fusion of images. The results show that, not only TM data can be amended by using MODIS data with high spectral resolution and high time series, but also the high spatial resolution characteristics of TM data could be got. The new surface parameter data with high temporal resolution, high spatial resolution and high spectral resolution could be obtained.

    Fig.9 The fusion result of TM(July, 2007) and MODIS(July, 2007)

    Fig.10 MODIS original surface temperature data in January, 2012

    Fig.11 The fusion result of TM(July, 2007) and MODIS(January, 2012)

    TimeofDataEntropyAverageGradientCrossEntropyDegreeofDistortionCorrelationCoefficientPeakSignaltoNoiseRatioJuly2007MODISTM7.5940.01413.59410.26525.16536.4860.7740.57417.90114.88January2012MODISTM7.5630.01412.9429.82426.17245.9360.7220.717.62613.749OriginalDataMODISin2007MODISin2012TMin20076.96.043.0780.0080.0070.013------------

    4 Conclusion

    In order to get the data of high spatial resolution and high spectral resolution, a wavelet reconstruction algorithm is applied based on the features of MODIS data and TM data in this study. Remote sensing images are decomposed by breaking the images into three layers based on the bior6.8 wavelet function. The new high-frequency coefficients after fusing are replaced by high-frequency coefficients of TM data directly. NCCM is proposed to fuse low-frequency coefficients. The advantage of the two neighborhood methods which have been used in the integration of MODIS data and TM data is compared and analyzed. It could be found from the experiment that the effect of resulting image data captured by using the new combination algorithm of NCCM and TM value method is pretty clear. The optimal texture information of TM data and high spectral information of MODIS data are preserved in resulting image. The improved wavelet reconstruction algorithm could be used to achieve the fusion of thermal infrared remote sensing data of TM data and MODIS data quickly, and to generate new remote sensing data with high temporal resolution, high spatial resolution and high spectral resolution. The reconstruction unit is smaller. It is a targeted method. Local correction effect of image data would become better by using this algorithm. The research is a breakthrough in the technology of comprehensive application of TM data and MODIS data.

    [ 1] Yang H P, Shen Z F, Luo J C, et al. Recent developments in high performance geocomputation for massive remote sensing data. Journal of Geo-information Science, 2013, 15(1): 128-136

    [ 2] Zhang X. The monitoring of antarctic snow and ice changes from the multiple-sources remote sensing data. Acta Geodaetica et Cartographica Sinica, 2014, 43(4): 437-443

    [ 3] Fu D S, Xie Y H. Multi-source remote sensing image data fusion based on wavelet multi-resolution technique. Computer Applications and Software, 2003, 1: 41-43

    [ 4] Hao H X, Liu F, Jiao L C. Image denoising based on multi-directional difference and multi-scale products of curvelet transform. Huazhong Univ Of Sci &Tech (Natural Science Edition), 2013, 41(12): 39-43

    [ 5] Yan X, Qin H L, Liu S Q, et al. Image fusion based on tetrolet transform. Journal of Optoelectronics Laser, 2013, 24(8): 1629-1633

    [ 6] Zheng Z B, Li J, Ren J L. Study on the transportation network accessibility measures based on GIS. YUNNAN Geographic Environment Research, 2007, 19(6): 96-104

    [ 7] Zhao L Q, Yang D Z, Zhou Y H, et al. Multi focus image fusion algorithm based on wavelet transform. Computer Engineering and Applications, 2014:1-6

    [ 8] Zhao X L. Image fusion based on IHS transform and principal component analysis (PCA) transform. Science Technology and Engineering, 2010, 10(20): 4954-4957

    [ 9] Hou P, Cao G Z, Jiang W G, et al. Temperature inversion of urban complex land surface by TM and its comparison with MODIS temperature product. Journal of Natural Disasters, 2009, 18(5): 113-118

    [10] Lin Z P, Li Y, Wu H W. Analysis of overlapping chromatographic peaks based on quadratic differential and wavelet transform. Journal of East China University of Science and Technology (Natural Science Edition), 2014, 40(1): 91-95

    [11] Gu X H, Han L J, Wang J H, et al. Estimation of maize planting area based on wavelet fusion of multi-resolution images. Agricultural Engineering Report, 2012, 28(3): 203-209

    [12] Qin Z H, Zhang M H, Arnon K, et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6data. ACTA GEOGRAPHICA SINICA, 2001,56(4): 456-466

    [13] Liu S T, Shen T S, Yang S Q. Mult-iresolution image fusion algorithm based on adaptive fusion rule. Laser & Inferared, 2007, 37(8): 788-791

    [14] Gou L, Cheng G, Zhao T Y. A new and effective multi-focus image fusion algorithm based on wavelet transforms and neighborhood features. Journal of Northwestern Polytechnical University, 2011, 29(3): 454-460

    [15] Li Y, Liu Y X. Multi-spectral and panchromatic image fusion based on 2DPCA-NSCT transformation. Computer Engineering & Science, 2013, 35(7): 143-148

    [16] Hu G S, Bao W X, Liang D, et al. Fusion of panchromatic image and multi-spectral image based on SVR and Bayesian method. Journal of Zhejiang University (Engineering Science), 2013, 47(7): 1258-1266

    Zhou Qigang, born in 1976. He received his Ph.D degrees in Institute of Mountain Hazards and Environment, Chinese Academy of Sciences in 2006. He also received his B.S. and M.S. degrees from Sichuan Normal University in 1998 and 2003 respectively. His research interests include “3S” technology, the research of remote sensing and infrared spectroscopic.

    10.3772/j.issn.1006-6748.2015.02.016

    ①Supported by the National Natural Science Foundation of China (No. 41101503), the National Social Science Foundation of China (No. 11&ZD161) and Graduate Innovative Scientific Research Project of Chongqing Technology and Business University (No. yjscxx2014-052-29).

    ②To whom correspondence should be addressed. E-mail: zqg1050@126.com Received on Sep. 2, 2014, Chen Dan

    97在线人人人人妻| 一级二级三级毛片免费看| 日本黄大片高清| 伊人久久精品亚洲午夜| 午夜视频国产福利| 在线观看人妻少妇| 免费看日本二区| 能在线免费看毛片的网站| 一级片'在线观看视频| 91aial.com中文字幕在线观看| 身体一侧抽搐| 免费观看在线日韩| 插逼视频在线观看| 九草在线视频观看| 日韩视频在线欧美| 一级av片app| a 毛片基地| 婷婷色综合www| 18禁在线播放成人免费| 亚洲自偷自拍三级| 国产高清国产精品国产三级 | 午夜福利在线在线| 亚洲第一区二区三区不卡| 欧美激情国产日韩精品一区| 丝袜喷水一区| 国产91av在线免费观看| 人妻少妇偷人精品九色| 中文乱码字字幕精品一区二区三区| 国产高清国产精品国产三级 | 女性被躁到高潮视频| 久久人人爽av亚洲精品天堂 | 精品人妻偷拍中文字幕| 赤兔流量卡办理| 中文字幕亚洲精品专区| 亚洲精品第二区| 久久久久性生活片| 美女cb高潮喷水在线观看| 2018国产大陆天天弄谢| 亚洲伊人久久精品综合| 最黄视频免费看| 国产精品偷伦视频观看了| 91午夜精品亚洲一区二区三区| 全区人妻精品视频| 人人妻人人澡人人爽人人夜夜| 又爽又黄a免费视频| 九九爱精品视频在线观看| 男女国产视频网站| 久久99蜜桃精品久久| 在线观看一区二区三区| 成人免费观看视频高清| 人人妻人人爽人人添夜夜欢视频 | 欧美成人一区二区免费高清观看| 久久久久久久精品精品| 日本猛色少妇xxxxx猛交久久| 国产成人免费观看mmmm| 视频区图区小说| 最黄视频免费看| 免费播放大片免费观看视频在线观看| 亚洲av男天堂| 99热国产这里只有精品6| 日本色播在线视频| 成人毛片60女人毛片免费| 亚洲av日韩在线播放| 亚洲欧美一区二区三区黑人 | 男男h啪啪无遮挡| 亚洲欧美日韩卡通动漫| 欧美3d第一页| 高清av免费在线| 一本色道久久久久久精品综合| 少妇人妻久久综合中文| 91aial.com中文字幕在线观看| 中文欧美无线码| 一区在线观看完整版| 精品国产乱码久久久久久小说| 国产精品国产三级专区第一集| 五月伊人婷婷丁香| 少妇丰满av| 国产成人91sexporn| www.色视频.com| 99久久中文字幕三级久久日本| 国产精品av视频在线免费观看| 最近最新中文字幕免费大全7| 亚洲av福利一区| 久久久久久久久大av| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩伦理黄色片| 久久99热这里只有精品18| 国产伦精品一区二区三区视频9| 成人国产av品久久久| 特大巨黑吊av在线直播| 久久久久久久国产电影| 纯流量卡能插随身wifi吗| 中文字幕制服av| 亚洲精品456在线播放app| 亚洲国产成人一精品久久久| 亚洲美女搞黄在线观看| 国产无遮挡羞羞视频在线观看| 亚洲美女黄色视频免费看| 只有这里有精品99| 免费人妻精品一区二区三区视频| 免费观看a级毛片全部| 精品一区二区免费观看| 国产成人免费观看mmmm| 99热网站在线观看| 九九久久精品国产亚洲av麻豆| 久久久久久伊人网av| 国产亚洲欧美精品永久| 久久久国产一区二区| 久久久久人妻精品一区果冻| 色视频在线一区二区三区| 久久6这里有精品| 国产黄片视频在线免费观看| 最近中文字幕高清免费大全6| 日本爱情动作片www.在线观看| 亚洲国产最新在线播放| 大片免费播放器 马上看| 我要看黄色一级片免费的| 亚洲国产色片| 久久久色成人| 国产一级毛片在线| 特大巨黑吊av在线直播| 国产精品蜜桃在线观看| 欧美高清性xxxxhd video| 亚洲av在线观看美女高潮| 精品一区二区三卡| 中文资源天堂在线| 高清视频免费观看一区二区| 99re6热这里在线精品视频| 亚洲经典国产精华液单| 大陆偷拍与自拍| 日韩欧美 国产精品| 只有这里有精品99| 亚洲伊人久久精品综合| 国产精品欧美亚洲77777| 男女国产视频网站| 卡戴珊不雅视频在线播放| 在线 av 中文字幕| 国产一级毛片在线| 国产一区有黄有色的免费视频| 久久久精品免费免费高清| 黄色配什么色好看| 国产女主播在线喷水免费视频网站| 自拍偷自拍亚洲精品老妇| 精品久久久久久电影网| 免费av中文字幕在线| 国产av国产精品国产| 乱系列少妇在线播放| 熟妇人妻不卡中文字幕| 观看免费一级毛片| kizo精华| 欧美三级亚洲精品| 欧美精品一区二区免费开放| 亚洲综合色惰| 我要看日韩黄色一级片| 春色校园在线视频观看| 国产亚洲一区二区精品| 丝袜喷水一区| 亚洲,欧美,日韩| 身体一侧抽搐| 观看av在线不卡| 国产亚洲91精品色在线| 嫩草影院新地址| 国产精品嫩草影院av在线观看| 久久精品久久久久久久性| 国产大屁股一区二区在线视频| av视频免费观看在线观看| 不卡视频在线观看欧美| 男女免费视频国产| 欧美日韩精品成人综合77777| 黑人高潮一二区| 少妇猛男粗大的猛烈进出视频| 51国产日韩欧美| 97在线人人人人妻| 青春草视频在线免费观看| 黄色配什么色好看| 寂寞人妻少妇视频99o| 亚洲真实伦在线观看| 高清日韩中文字幕在线| 国产精品精品国产色婷婷| 亚洲精品国产av成人精品| 女的被弄到高潮叫床怎么办| 老女人水多毛片| 亚洲久久久国产精品| 国产女主播在线喷水免费视频网站| 日韩中字成人| 97在线视频观看| 亚洲精品国产av成人精品| 国产一级毛片在线| h视频一区二区三区| 久久久久久久久久久免费av| 午夜福利网站1000一区二区三区| 3wmmmm亚洲av在线观看| 日韩强制内射视频| 一区二区三区免费毛片| 日韩一区二区三区影片| 亚洲国产毛片av蜜桃av| 国产精品.久久久| 亚洲精品视频女| 我的女老师完整版在线观看| 亚洲国产精品一区三区| 日韩免费高清中文字幕av| 久久99热6这里只有精品| 免费少妇av软件| 色综合色国产| 久久99蜜桃精品久久| 国产成人免费观看mmmm| 最近最新中文字幕免费大全7| 视频区图区小说| 日韩强制内射视频| 在线免费观看不下载黄p国产| 久久久精品免费免费高清| 男女边摸边吃奶| 亚洲精品国产成人久久av| 国产中年淑女户外野战色| 久久久欧美国产精品| 日韩人妻高清精品专区| 麻豆国产97在线/欧美| 精品人妻熟女av久视频| 成人一区二区视频在线观看| 1000部很黄的大片| 久久人人爽人人爽人人片va| 国产精品久久久久久精品电影小说 | 青春草视频在线免费观看| 久久久久久九九精品二区国产| 国产高清国产精品国产三级 | 国产亚洲午夜精品一区二区久久| 国产 一区 欧美 日韩| 国产精品偷伦视频观看了| 99久久精品国产国产毛片| 99re6热这里在线精品视频| 成人国产麻豆网| 久久久久国产精品人妻一区二区| 女人久久www免费人成看片| 国产精品免费大片| 亚洲精品456在线播放app| 肉色欧美久久久久久久蜜桃| 色视频在线一区二区三区| 欧美97在线视频| 五月伊人婷婷丁香| 国产精品一二三区在线看| 亚洲第一区二区三区不卡| 一级二级三级毛片免费看| 又黄又爽又刺激的免费视频.| 91aial.com中文字幕在线观看| 一本一本综合久久| 久久久久久久久久人人人人人人| 亚洲av电影在线观看一区二区三区| 老女人水多毛片| 成人黄色视频免费在线看| 亚洲国产色片| 亚洲第一区二区三区不卡| 久久97久久精品| 亚洲av中文字字幕乱码综合| 国产成人精品婷婷| 丝袜喷水一区| 国产成人91sexporn| 妹子高潮喷水视频| 日韩av在线免费看完整版不卡| 日韩欧美精品免费久久| 亚洲久久久国产精品| 日韩av免费高清视频| 国产在线一区二区三区精| 日本与韩国留学比较| 毛片女人毛片| 美女脱内裤让男人舔精品视频| 美女xxoo啪啪120秒动态图| 一个人免费看片子| 亚洲美女视频黄频| 亚洲精品国产av蜜桃| 日产精品乱码卡一卡2卡三| 国产亚洲精品久久久com| 伦理电影大哥的女人| 丰满乱子伦码专区| 秋霞伦理黄片| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 精品久久久久久久久亚洲| 亚洲人与动物交配视频| 男的添女的下面高潮视频| 一区二区三区乱码不卡18| 伊人久久精品亚洲午夜| 观看美女的网站| 久热这里只有精品99| 色吧在线观看| 久久久久久久久久久丰满| 久久国产乱子免费精品| 久久久久国产精品人妻一区二区| 欧美精品人与动牲交sv欧美| 最近手机中文字幕大全| 最近中文字幕2019免费版| 日本爱情动作片www.在线观看| 少妇的逼水好多| 爱豆传媒免费全集在线观看| 成年av动漫网址| 中文欧美无线码| 最近的中文字幕免费完整| 免费观看在线日韩| 18禁裸乳无遮挡免费网站照片| 国产在线视频一区二区| 青青草视频在线视频观看| 亚洲av中文字字幕乱码综合| 夫妻午夜视频| 国产日韩欧美在线精品| 高清日韩中文字幕在线| av在线app专区| 久久ye,这里只有精品| 亚洲国产成人一精品久久久| 在线观看免费日韩欧美大片 | 大片免费播放器 马上看| 亚洲最大成人中文| 久久97久久精品| 亚洲无线观看免费| 噜噜噜噜噜久久久久久91| 秋霞伦理黄片| 欧美另类一区| 国产又色又爽无遮挡免| 国产精品爽爽va在线观看网站| 久久精品熟女亚洲av麻豆精品| 最近最新中文字幕免费大全7| 亚洲精品乱码久久久v下载方式| 亚洲熟女精品中文字幕| 一级av片app| 只有这里有精品99| 国产中年淑女户外野战色| 久久久久久九九精品二区国产| 日本欧美国产在线视频| av在线蜜桃| 美女cb高潮喷水在线观看| av天堂中文字幕网| 一级毛片我不卡| 欧美最新免费一区二区三区| 最近中文字幕高清免费大全6| 尾随美女入室| 色视频在线一区二区三区| 91精品一卡2卡3卡4卡| av一本久久久久| 国产伦精品一区二区三区四那| 啦啦啦在线观看免费高清www| 免费黄频网站在线观看国产| 国产精品人妻久久久影院| 老女人水多毛片| 99热网站在线观看| 国产高清三级在线| 国产男人的电影天堂91| 久久婷婷青草| 丰满乱子伦码专区| 欧美老熟妇乱子伦牲交| 噜噜噜噜噜久久久久久91| 欧美变态另类bdsm刘玥| 亚洲精品国产成人久久av| 99久久精品一区二区三区| 777米奇影视久久| 在线观看一区二区三区激情| 中国三级夫妇交换| 久久国产精品男人的天堂亚洲 | 熟女av电影| 成人影院久久| 老熟女久久久| 日韩制服骚丝袜av| 伊人久久国产一区二区| 一本色道久久久久久精品综合| 乱码一卡2卡4卡精品| 美女国产视频在线观看| 亚洲人成网站高清观看| 少妇的逼好多水| 日韩电影二区| 啦啦啦中文免费视频观看日本| 欧美人与善性xxx| 亚洲av电影在线观看一区二区三区| 免费看不卡的av| 国产高清国产精品国产三级 | 精品久久久久久久末码| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 成人亚洲欧美一区二区av| 欧美xxxx黑人xx丫x性爽| 国产黄片美女视频| 精品久久久精品久久久| 亚洲av日韩在线播放| 女性被躁到高潮视频| 永久免费av网站大全| 简卡轻食公司| 蜜臀久久99精品久久宅男| 国产视频内射| 亚洲成人中文字幕在线播放| 欧美日韩亚洲高清精品| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 自拍欧美九色日韩亚洲蝌蚪91 | av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 交换朋友夫妻互换小说| 久久久久性生活片| 国产精品成人在线| 午夜精品国产一区二区电影| 精品一区二区免费观看| 免费少妇av软件| 国产男女内射视频| 少妇的逼水好多| 中国国产av一级| 国产精品99久久久久久久久| 久久精品久久精品一区二区三区| 国产成人精品福利久久| 久久久久久久精品精品| 黄色日韩在线| 亚洲av免费高清在线观看| 亚洲欧美一区二区三区黑人 | 日韩欧美一区视频在线观看 | 成年免费大片在线观看| 免费观看a级毛片全部| 国产91av在线免费观看| 亚洲一级一片aⅴ在线观看| 国产免费又黄又爽又色| 狂野欧美激情性xxxx在线观看| 国产成人一区二区在线| 久久国产亚洲av麻豆专区| 国产高清不卡午夜福利| 成年人午夜在线观看视频| 22中文网久久字幕| 妹子高潮喷水视频| 亚洲国产av新网站| 黄色欧美视频在线观看| 欧美少妇被猛烈插入视频| 国产精品人妻久久久久久| 视频中文字幕在线观看| 欧美最新免费一区二区三区| 久久国内精品自在自线图片| 国产爱豆传媒在线观看| 99热这里只有是精品在线观看| 日本午夜av视频| 99久久人妻综合| 久久久久视频综合| 免费看不卡的av| 久久久久久久精品精品| 色网站视频免费| 男人和女人高潮做爰伦理| 日韩一本色道免费dvd| 久久99热6这里只有精品| 日韩中字成人| 又黄又爽又刺激的免费视频.| 日韩av免费高清视频| 91精品一卡2卡3卡4卡| 亚洲色图综合在线观看| 夜夜看夜夜爽夜夜摸| av女优亚洲男人天堂| 蜜臀久久99精品久久宅男| 欧美 日韩 精品 国产| 色婷婷av一区二区三区视频| 久久国产精品男人的天堂亚洲 | 精品酒店卫生间| 欧美xxxx黑人xx丫x性爽| 男女免费视频国产| 天堂俺去俺来也www色官网| 男女下面进入的视频免费午夜| 97在线人人人人妻| 多毛熟女@视频| 国产伦理片在线播放av一区| 卡戴珊不雅视频在线播放| 亚洲电影在线观看av| 狂野欧美激情性bbbbbb| 精品久久久久久久久亚洲| 新久久久久国产一级毛片| 黄色视频在线播放观看不卡| av在线观看视频网站免费| 国产欧美日韩一区二区三区在线 | 精品久久久久久久久亚洲| 中文字幕人妻熟人妻熟丝袜美| 国产男女内射视频| 日韩国内少妇激情av| 久久午夜福利片| 高清黄色对白视频在线免费看 | 黄片wwwwww| 国产大屁股一区二区在线视频| 麻豆国产97在线/欧美| 国产成人一区二区在线| 能在线免费看毛片的网站| av网站免费在线观看视频| 亚洲成人一二三区av| 日本vs欧美在线观看视频 | 欧美精品人与动牲交sv欧美| 亚洲精品456在线播放app| 久久久久久久久大av| av专区在线播放| 日韩成人av中文字幕在线观看| 成人亚洲欧美一区二区av| 黄色视频在线播放观看不卡| 婷婷色综合大香蕉| 国产成人a区在线观看| 搡老乐熟女国产| 成人免费观看视频高清| 在线免费十八禁| 亚洲精品,欧美精品| 久久精品国产a三级三级三级| 少妇的逼好多水| 精品少妇黑人巨大在线播放| 美女cb高潮喷水在线观看| 国产黄色免费在线视频| 国产91av在线免费观看| 高清av免费在线| 精品少妇黑人巨大在线播放| 高清欧美精品videossex| 国产极品天堂在线| 亚洲精品乱码久久久v下载方式| 啦啦啦在线观看免费高清www| 亚洲性久久影院| 午夜老司机福利剧场| 午夜福利高清视频| 狠狠精品人妻久久久久久综合| 777米奇影视久久| 伦精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲精品乱码久久久久久按摩| 午夜精品国产一区二区电影| 九色成人免费人妻av| 亚洲在久久综合| 我要看黄色一级片免费的| 亚洲真实伦在线观看| 国产乱人偷精品视频| 97在线视频观看| 国产白丝娇喘喷水9色精品| 简卡轻食公司| 又大又黄又爽视频免费| 国产伦精品一区二区三区四那| 女人十人毛片免费观看3o分钟| 人妻夜夜爽99麻豆av| 久热久热在线精品观看| 爱豆传媒免费全集在线观看| 伦精品一区二区三区| 日本一二三区视频观看| 日本与韩国留学比较| 免费黄频网站在线观看国产| 久久人人爽av亚洲精品天堂 | 久久久久性生活片| 99热网站在线观看| 欧美日本视频| 日韩欧美精品免费久久| 亚洲精品,欧美精品| 精品亚洲成国产av| 一级毛片久久久久久久久女| 欧美日韩一区二区视频在线观看视频在线| 色视频www国产| 亚洲av.av天堂| 日日摸夜夜添夜夜添av毛片| 夜夜骑夜夜射夜夜干| 久久99精品国语久久久| av在线老鸭窝| 国产综合精华液| 亚洲欧美一区二区三区黑人 | 免费大片黄手机在线观看| 精品一区二区三区视频在线| 26uuu在线亚洲综合色| 日韩一区二区视频免费看| 午夜福利视频精品| 亚洲av国产av综合av卡| 中文在线观看免费www的网站| 一级二级三级毛片免费看| 你懂的网址亚洲精品在线观看| 成年免费大片在线观看| av又黄又爽大尺度在线免费看| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影小说 | 国产老妇伦熟女老妇高清| 日韩中字成人| 成人午夜精彩视频在线观看| 国产乱人偷精品视频| 成人影院久久| av.在线天堂| 极品教师在线视频| 亚洲欧洲日产国产| 波野结衣二区三区在线| 99热这里只有是精品在线观看| 免费不卡的大黄色大毛片视频在线观看| 欧美激情国产日韩精品一区| 国产片特级美女逼逼视频| 日韩精品有码人妻一区| kizo精华| av不卡在线播放| av国产免费在线观看| 大又大粗又爽又黄少妇毛片口| 国产免费视频播放在线视频| 亚洲一区二区三区欧美精品| av黄色大香蕉| 日本av手机在线免费观看| 成人毛片a级毛片在线播放| 国产深夜福利视频在线观看| 亚洲精品国产色婷婷电影| 一级毛片黄色毛片免费观看视频| 国产一级毛片在线| 国国产精品蜜臀av免费| 夫妻性生交免费视频一级片| 欧美xxxx性猛交bbbb| 亚洲国产精品专区欧美| 亚洲性久久影院| 国产淫片久久久久久久久| 亚洲欧洲国产日韩| 中文资源天堂在线| 久久久久网色| 日本wwww免费看| 亚洲无线观看免费| 男人爽女人下面视频在线观看| 一区二区av电影网| 国产成人一区二区在线| 在线免费十八禁| 色婷婷av一区二区三区视频| 久久精品国产亚洲av涩爱| 亚洲欧美一区二区三区国产| 成人国产av品久久久| 极品少妇高潮喷水抽搐| 精品少妇久久久久久888优播| 欧美精品人与动牲交sv欧美| 国产日韩欧美亚洲二区| 啦啦啦中文免费视频观看日本| 亚洲精品自拍成人| 最近最新中文字幕大全电影3| 女人十人毛片免费观看3o分钟|